Combining Weak and Strong Gravitational Lensing

Julian Merten

INAF - Osservatorio Astronomico di Bologna Institut für Theoretische Astrophysik Zentrum für Astronomie Universität Heidelberg

October 27th, 2009

with: Massimo Meneghetti (OA Bologna) Matthias Bartelmann (ITA Heidelberg)

Gravitational Lensing

Gravitational Lensing

Julian Merten (ITA HD / OA BO)

Cluster Mass Reconstruction

The lensing potential

$$\begin{aligned} &\alpha_1 = \psi_{,1} & \alpha_2 = \psi_{,2} \\ &\gamma_1 = \frac{1}{2} (\psi_{,11} - \psi_{,22}) & \gamma_2 = \psi_{,12} \\ &\kappa = \frac{1}{2} (\psi_{,11} + \psi_{,22}) \end{aligned}$$

The lensing potential

$$\begin{aligned} \alpha_1 &= \psi_{,1} & \alpha_2 &= \psi_{,2} \\ \gamma_1 &= \frac{1}{2} (\psi_{,11} - \psi_{,22}) & \gamma_2 &= \psi_{,12} \\ \kappa &= \frac{1}{2} (\psi_{,11} + \psi_{,22}) \end{aligned}$$

Maximum-likelihood approach

$$\chi^2(\psi) = \chi^2_{\rm w}(\psi) + \chi^2_{\rm s}(\psi)$$

$$\frac{\partial \chi^2(\psi)}{\partial \psi} \stackrel{!}{=} 0$$

The lensing potential

$$\begin{aligned} &\alpha_1 = \psi_{,1} & \alpha_2 = \psi_{,2} \\ &\gamma_1 = \frac{1}{2} (\psi_{,11} - \psi_{,22}) & \gamma_2 = \psi_{,12} \\ &\kappa = \frac{1}{2} (\psi_{,11} + \psi_{,22}) \end{aligned}$$

Non-parametric method

$$\frac{\partial \chi^2(\psi_{\mathbf{k}})}{\partial \psi_{\mathbf{l}}} \stackrel{!}{=} \mathbf{0}$$

Maximum-likelihood approach

$$\chi^2(\psi) = \chi^2_{\rm w}(\psi) + \chi^2_{\rm s}(\psi)$$

$$\frac{\partial \chi^2(\psi)}{\partial \psi} \stackrel{!}{=} 0$$

The lensing potential

$$\alpha_1 = \psi_{,1} \qquad \qquad \alpha_2 = \psi_{,2}$$

$$\gamma_1 = \frac{1}{2} (\psi_{,11} - \psi_{,22}) \qquad \gamma_2 = \psi_{,12}$$

$$\kappa = \frac{1}{2} (\psi_{,11} + \psi_{,22})$$

Non-parametric method

$$rac{\partial \chi^2(\psi_{
m k})}{\partial \psi_{
m l}} \stackrel{!}{=} 0$$

Maximum-likelihood approach

$$\chi^2(\psi) = \chi^2_{\rm w}(\psi) + \chi^2_{\rm s}(\psi)$$

$$\frac{\partial \chi^2(\psi)}{\partial \psi} \stackrel{!}{=} 0$$

Julian Merten (ITA HD / OA BO)

Cluster Mass Reconstruction

October 27th, 2009 3 / 13

The lensing potential

$$\alpha_1 = \psi_{,1} \qquad \qquad \alpha_2 = \psi_{,2}$$

$$\gamma_1 = \frac{1}{2} (\psi_{,11} - \psi_{,22}) \qquad \gamma_2 = \psi_{,12}$$

$$\kappa = \frac{1}{2} (\psi_{,11} + \psi_{,22})$$

Non-parametric method

$$\frac{\partial \chi^2(\psi_{\rm k})}{\partial \psi_{\rm l}} \stackrel{!}{=} 0$$
$$\langle \varepsilon \rangle = \frac{\gamma}{1-\kappa}$$

Maximum-likelihood approach

$$\chi^2(\psi) = \chi^2_{\rm w}(\psi) + \chi^2_{\rm s}(\psi)$$

$$\frac{\partial \chi^2(\psi)}{\partial \psi} \stackrel{!}{=} 0$$

Julian Merten (ITA HD / OA BO)

Cluster Mass Reconstruction

October 27th, 2009 3 / 13

The lensing potential

$$\alpha_1 = \psi_{,1} \qquad \qquad \alpha_2 = \psi_{,2}$$

$$egin{aligned} &\gamma_1 = rac{1}{2} \left(\psi_{,11} - \psi_{,22}
ight) & \gamma_2 = \psi_{,12} \ &\kappa = rac{1}{2} \left(\psi_{,11} + \psi_{,22}
ight) \end{aligned}$$

Maximum-likelihood approach

$$\chi^2(\psi) = \chi^2_{\rm w}(\psi) + \chi^2_{\rm s}(\psi)$$

$$\frac{\partial \chi^2(\psi)}{\partial \psi} \stackrel{!}{=} 0$$

Non-parametric method

$$\begin{split} \frac{\partial \chi^2(\psi_{\mathbf{k}})}{\partial \psi_1} &\stackrel{!}{=} 0\\ \langle \varepsilon \rangle &= \frac{\gamma}{1-\kappa}\\ \left| (1-\kappa)^2 - (\gamma)^2 \right|_{\rm crit} &= 0 \end{split}$$

Julian Merten (ITA HD / OA BO)

Cluster Mass Reconstruction

A Matter of Scale: weak lensing

Julian Merten (ITA HD / OA BO)

October 27th, 2009

4 / 13

A Matter of Scale: strong lensing

Julian Merten (ITA HD / OA BO)

October 27th, 2009 5 / 13

Making it all work: Numerics

- α, γ, κ, F and G can be expressed by derivatives of ψ via finite differences.
- A specific finite difference can be written as a matrix multiplication

$$\kappa_i = \mathcal{K}_{ij}\psi_j.$$

- The minimisation of the χ^2 -function can be translated into a linear system of equations.
- Furthermore the code uses a 2-level iteration scheme.
- Runtime: 2 mins 6 hrs.

Implementation

- Parallel C++ code
- $\bullet\,$ medium sized \sim 12000 lines
- Uses GSL, LAPACK, ATLAS, MPI
- Possibly, GPU implementation. More on that soon.

- Fully non-parametric, adaptive grid method (no initial model necessary).
- Reconstruction quantity is the lensing potential ψ .
- Maximum-likelihood method. We are searching for that lensing potential which is most likely to have caused the observations:

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

Input data are:

- Ellipticity catalogue
- Arc positions
- I Flexion catalogue (come tomorrow if you are interested in that)
- Multiple image positions (Bradač et al. 2005-08)

- Fully non-parametric, adaptive grid method (no initial model necessary).
- Reconstruction quantity is the lensing potential $\psi.$
- Maximum-likelihood method. We are searching for that lensing potential which is most likely to have caused the observations:

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

- Input data are:
 - Ellipticity catalogue
 - Arc positions
 - I Flexion catalogue (come tomorrow if you are interested in that)
 - Multiple image positions (Bradač et al. 2005-08)

- Fully non-parametric, adaptive grid method (no initial model necessary).
- Reconstruction quantity is the lensing potential ψ .
- Maximum-likelihood method. We are searching for that lensing potential which is most likely to have caused the observations:

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

- Input data are:
 - Ellipticity catalogue
 - 2 Arc positions
 - I Flexion catalogue (come tomorrow if you are interested in that)
 - Multiple image positions (Bradač et al. 2005-08)

- Fully non-parametric, adaptive grid method (no initial model necessary).
- Reconstruction quantity is the lensing potential ψ .
- Maximum-likelihood method. We are searching for that lensing potential which is most likely to have caused the observations:

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

- Input data are:
 - Ellipticity catalogue
 - 2 Arc positions
 - I Flexion catalogue (come tomorrow if you are interested in that)
 - Multiple image positions (Bradač et al. 2005-08)

- Fully non-parametric, adaptive grid method (no initial model necessary).
- Reconstruction quantity is the lensing potential ψ .
- Maximum-likelihood method. We are searching for that lensing potential which is most likely to have caused the observations:

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

- Input data are:
 - Ellipticity catalogue
 - 2 Arc positions
 - I Flexion catalogue (come tomorrow if you are interested in that)
 - Multiple image positions (Bradač et al. 2005-08)

Results: Simulations

(Meneghetti, Rasia, JM et al. 2009)

Julian Merten (ITA HD / OA BO)

Cluster Mass Reconstruction

October 27th, 2009 8 / 13

Results: Simulations

(Meneghetti, Rasia, JM et al. 2009)

Julian Merten (ITA HD / OA BO)

Cluster Mass Reconstruction

October 27th, 2009 9 / 13

Results: MS2137 (JM et al. 2009)

Julian Merten (ITA HD / OA BO)

Cluster Mass Reconstruction

October 27th, 2009 10 / 13

Results: COSMOS (preliminary, with Matteo Maturi)

Julian Merten (ITA HD / OA BO)

Cluster Mass Reconstruction

October 27th, 2009

Results: SUBARU Cluster sample (JM et al. in prep.)

with Masamune Oguri, Keiichi Umetsu and To Broadhurst

Julian Merten (ITA HD / OA BO)

Cluster Mass Reconstruction

October 27th, 2009

12 / 13

Results: SUBARU Cluster sample (JM et al. in prep.)

with Masamune Oguri, Keiichi Umetsu and Tom Broadhurst

TABLE 1 The Subaru Distortion Measurements Combined with the Einstein-Radius Constraint								
Cluster	z	Filters	Einstein Radius (arcsec)	$\langle D_{s}, /D_{s} \rangle$	$\frac{d \log N(< m)}{dm}$	M_{vir} (10 ¹⁵ $M_{\odot} h_{70}^{-1}$)	C _{vir}	χ^2 /dof
A1689	0.183	$V_{j}i'$	52 ($z_s = 3.05$)	0.704	0.150	1.59+0.24	15.69+3.96	4.94/9
A1703	0.258	gri	$33 (z_s = 2.8)$	0.722	0.062	1.30-0.20	9.92-1.63	2.69/5
A370	0.375	$BR_{\rm C} z'$	43 $(z_s = 1.5)$	0.606	0.088	2.93+0.36	7.75+1.12	5.54/8
RX J1347-11	0.451	$V_{\rm J}R_{\rm C} z'$	$35 (z_s = 1.8)$	0.553	0.066	$1.47^{+0.26}_{-0.23}$	$10.42^{+1.25}_{-2.13}$	6.25/7

Results: SUBARU Cluster sample (JM et al. in prep.)

with Masamune Oguri, Keiichi Umetsu and Tom Broadhurst

Julian Merten (ITA HD / OA BO)

Cluster Mass Reconstruction

October 27th, 2009 12 / 13

Thank You

