Julian Merten

SaWLens 1.4: Non-parametric lensing reconstruction

INAF - Osservatorio Astronomico di Bologna Institut für Theoretische Astrophysik Zentrum für Astronomie Universität Heidelberg

December 17th, 2009

Overview

- The theory behind the algorithm JM et al. (2009) arXiv:0806.1967
- The implementation
- A very recent example: CL0024+1654

SaWLens 1.4: A practical manual

Julian Merten ITA Heidelberg INAF-OA Bologna

November 11, 2009

The manual is available together with the source code:

https://www.ita.uni-heidelberg.de/svn/sawlens

SaWLens

What we want from the method

- Combine multiple observational constraints into a joint reconstruction method in a consistent way.
- The method should be fully non-parametric.
- It should perform well compared to specialised routines in their regimes.
- The demandings regarding CPU-time and resources should stay on an acceptable level.

- Divide the reconstruction field into a grid.
- Reconstruction quantity is the lensing potential ψ .
- Find a relation between the observed quantities and ψ .
- Define χ^2 -functions on the data grid.

 $\chi^{2}(\psi) = \chi^{2}_{1}(\psi) + \chi^{2}_{2}(\psi) + \chi^{2}_{3}(\psi) + \dots$

- Minimise the overall χ^2 with respect to the potential.
- Possible constraints: shear, flexion, magnification, critical curve position, mulitple image positions, velocity dispersions, X-ray temperature, SZ, ...

• Divide the reconstruction field into a grid.

- Reconstruction quantity is the lensing potential ψ .
- Find a relation between the observed quantities and ψ .
- Define χ^2 -functions on the data grid.

$$\chi^{2}(\psi) = \chi^{2}_{1}(\psi) + \chi^{2}_{2}(\psi) + \chi^{2}_{3}(\psi) + \dots$$

- Minimise the overall χ^2 with respect to the potential.
- Possible constraints: shear, flexion, magnification, critical curve position, mulitple image positions, velocity dispersions, X-ray temperature, SZ, ...

- Divide the reconstruction field into a grid.
- Reconstruction quantity is the lensing potential ψ .
- Find a relation between the observed quantities and $\psi.$
- Define χ^2 -functions on the data grid.

$$\chi^{2}(\psi) = \chi^{2}_{1}(\psi) + \chi^{2}_{2}(\psi) + \chi^{2}_{3}(\psi) + \dots$$

- Minimise the overall χ^2 with respect to the potential.
- Possible constraints: shear, flexion, magnification, critical curve position, mulitple image positions, velocity dispersions, X-ray temperature, SZ, ...

- Divide the reconstruction field into a grid.
- Reconstruction quantity is the lensing potential ψ .
- Find a relation between the observed quantities and $\psi.$
- Define χ^2 -functions on the data grid.

 $\chi^{2}(\psi) = \chi^{2}_{1}(\psi) + \chi^{2}_{2}(\psi) + \chi^{2}_{3}(\psi) + \dots$

- Minimise the overall χ^2 with respect to the potential.
- Possible constraints: shear, flexion, magnification, critical curve position, mulitple image positions, velocity dispersions, X-ray temperature, SZ, ...

- Divide the reconstruction field into a grid.
- Reconstruction quantity is the lensing potential ψ .
- Find a relation between the observed quantities and $\psi.$
- Define χ^2 -functions on the data grid.

$$\chi^{2}(\psi) = \chi^{2}_{1}(\psi) + \chi^{2}_{2}(\psi) + \chi^{2}_{3}(\psi) + \dots$$

- Minimise the overall χ^2 with respect to the potential.
- Possible constraints: shear, flexion, magnification, critical curve position, mulitple image positions, velocity dispersions, X-ray temperature, SZ, ...

- Divide the reconstruction field into a grid.
- Reconstruction quantity is the lensing potential ψ .
- Find a relation between the observed quantities and $\psi.$
- Define χ^2 -functions on the data grid.

$$\chi^{2}(\psi) = \chi^{2}_{1}(\psi) + \chi^{2}_{2}(\psi) + \chi^{2}_{3}(\psi) + \dots$$

- Minimise the overall χ^2 with respect to the potential.
- Possible constraints: shear, flexion, magnification, critical curve position, mulitple image positions, velocity dispersions, X-ray temperature, SZ, ...

- Divide the reconstruction field into a grid.
- Reconstruction quantity is the lensing potential ψ .
- Find a relation between the observed quantities and $\psi.$
- Define χ^2 -functions on the data grid.

$$\chi^{2}(\psi) = \chi^{2}_{1}(\psi) + \chi^{2}_{2}(\psi) + \chi^{2}_{3}(\psi) + \dots$$

- Minimise the overall χ^2 with respect to the potential.
- Possible constraints: shear, flexion, magnification, critical curve position, mulitple image positions, velocity dispersions, X-ray temperature, SZ, ...

Numerics on a grid: Finite differencing

We need to relate every observed quantity to the $\psi\text{-values}$ on the grid, e.g. the convergence:

1	-1	1/2				1/2	-1/2	1/2	+
-1/2							-1		
1/2							1/2		
									1/2
÷							1/2	-1	-1/2
			1/3	-1/6	1/3				1/2
			-1/6	-2/3	-1/6				
			1/3	-1/6	1/3				
+						+			+

$$\kappa = \frac{1}{2} \left(\psi_{,11} + \psi_{,22} \right)$$

$$\kappa_i = \mathcal{K}_{ij}\psi_j$$

One example: weak lensing

$$\chi^{2}_{w}(\psi) = \sum_{i,j} \left(\varepsilon - \frac{Z(z)\gamma(\psi)}{1 - Z(z)\kappa(\psi)} \right)_{i} \mathcal{C}^{-1}_{ij} \left(\varepsilon - \frac{Z(z)\gamma(\psi)}{1 - Z(z)\kappa(\psi)} \right)_{j}$$

Another example: strong lensing

$$\chi_s^2(\psi) = \sum_i \frac{\left((1 - Z(z)\kappa(\psi))^2 - (Z(z)\gamma(\psi))^2\right)_i^2}{\sigma_i^2}$$

Obtaining a non-parametric result

$$\frac{\partial \chi^2(\psi)}{\partial \psi_I} \stackrel{!}{=} 0$$

Using
$$\gamma_i = \mathcal{G}_{ik}\psi_k$$
, $\kappa_i = \mathcal{K}_{ik}\psi_k$
and $\frac{\partial}{\partial\psi_l}\mathcal{K}_{ik}\psi_k = \mathcal{K}_{ik}\delta_{kl}$

$$\mathcal{B}_{lk}\psi_k=\mathcal{V}_l$$

With ψ_k being the final result as the potential on every grid position.

$$\begin{aligned} \mathcal{B}_{lk} &= \sum_{i,j} \mathcal{F}_{ij}^{\dagger} Z_i Z_j \\ &\cdot \left[\mathcal{E}_i^{\dagger} \mathcal{E}_j^{\dagger} \mathcal{K}_{lk} \mathcal{K}_{jl} + \mathcal{E}_i^{\dagger} \mathcal{E}_j^{\dagger} \mathcal{K}_{jk} \mathcal{K}_{il} + \mathcal{E}_i^{\dagger} \mathcal{K}_{ik} \mathcal{G}_{jl}^{\dagger} + \mathcal{E}_i^{\dagger} \mathcal{G}_{jk}^{\dagger} \mathcal{K}_{il} \\ &+ \mathcal{E}_j^{\dagger} \mathcal{K}_{jk} \mathcal{G}_{il}^{\dagger} + \mathcal{E}_j^{\dagger} \mathcal{G}_{ik}^{\dagger} \mathcal{K}_{jl} + \mathcal{G}_{ik}^{\dagger} \mathcal{G}_{jl}^{\dagger} + \mathcal{G}_{jk}^{\dagger} \mathcal{G}_{il}^{\dagger} \right] \\ &+ \sum_{i,j} \mathcal{F}_{ij}^{2} Z_i Z_j \\ &\cdot \left[\mathcal{E}_i^2 \mathcal{E}_j^2 \mathcal{K}_{ik} \mathcal{K}_{jl} + \mathcal{E}_i^2 \mathcal{E}_j^2 \mathcal{K}_{jk} \mathcal{K}_{il} + \mathcal{E}_i^2 \mathcal{K}_{ik} \mathcal{G}_{jl}^2 + \mathcal{E}_i^2 \mathcal{G}_{jk}^2 \mathcal{K}_{il} \\ &+ \mathcal{E}_j^2 \mathcal{K}_{jk} \mathcal{G}_{il}^2 + \mathcal{E}_j^2 \mathcal{G}_{ik}^2 \mathcal{K}_{jl} + \mathcal{G}_{ik}^2 \mathcal{G}_{jl}^2 + \mathcal{G}_{jk}^2 \mathcal{G}_{il}^2 \right] \\ &+ \sum_m \frac{4(\det \mathcal{M}_m)_m}{\sigma_m^2} Z_m^2 \\ &\cdot \left[\mathcal{K}_{mk} \mathcal{K}_{ml} - \mathcal{G}_{mk}^{\dagger} \mathcal{G}_{ml}^1 - \mathcal{G}_{mk}^2 \mathcal{G}_{ml}^2 \right] + \sum_n \eta_n \mathcal{K}_{nk} \mathcal{K}_{nl} \quad (A.17) \end{aligned}$$

and the result vector

$$\begin{aligned} \mathcal{V}_{l} &= \sum_{i,j} \mathcal{F}_{ij}^{1} \left[\varepsilon_{i}^{1} \varepsilon_{j}^{1} \mathcal{K}_{jl} + \varepsilon_{i}^{1} Z_{j} \mathcal{G}_{jl}^{1} + \varepsilon_{i}^{1} \varepsilon_{j}^{1} Z_{l} \mathcal{K}_{il} + \varepsilon_{j}^{1} Z_{l} \mathcal{G}_{il}^{1} \right] \\ &+ \sum_{i,j} \mathcal{F}_{ij}^{2} \left[\varepsilon_{i}^{2} \varepsilon_{j}^{2} \mathcal{K}_{jl} + \varepsilon_{i}^{2} Z_{j} \mathcal{G}_{jl}^{2} + \varepsilon_{i}^{2} \varepsilon_{j}^{2} Z_{l} \mathcal{K}_{il} + \varepsilon_{j}^{2} Z_{l} \mathcal{G}_{il}^{2} \right] \\ &+ \sum_{m} \frac{4(\det \mathcal{A})_{m}}{\sigma_{m}^{2}} Z_{m} \mathcal{K}_{ml} + \sum_{n} \eta_{n} k_{n}^{b} \mathcal{K}_{nl}, \end{aligned}$$
(A.18)

SaWLens

A convenient trick: Iterations

SaWLens 1.4

$General\ info$

- Written in C++
- $\bullet\,\sim\,12000$ lines
- MPI-implementation
- CUDA on the way
- 3 independent steps

Requirements

- At least \sim 8 cores
- $\sim 1 \text{ GB}$ of main memory per core
- negligible disk space per reconstruction: < 6 GB

Features

- WL: Ellipticity, Flexion
- SL: Ccurve, Msystems
- Field masking

Dependencies

- GSL
- MPI
- ATLAS
- LAPACK
- CFITSIO
- CCfits
- LibAstroC++

SaWLens

CL0024: input catalogues

Critical	curve	catalogue
x-pos	y-pos	redshift

Step 1: Data grids (Runtime ~ 1hr)

🔳 fv: Su	nmary of ellip_75.fits i	n /home/jmert	en/files/talks/roma_cl	ustermeetin	g 71209	/ = C ×
File Edit	Tools					Help
Index	Extension	Туре	Dimension		View	
0	Primary	Image	75 × 61	Header	Image	Table
□ 1	mean_ellip2	lmage	75 × 61	Header	Image	Table
2	ellip1_sd	Image	75 × 61	Header	Image	Table
<u> </u>	ellip2_sd	Image	75 × 61	Header	Image	Table
□ 4	overtap	Image	4575 X 4575	Header	Image	Table
□ 5	ellip1_covariance	Image	4575 × 4575	Header	Image	Table
0	ellip2_covariance	lmage	4575 × 4575	Header	Image	Table
□ 7	field_mask	Image	75 × 61	Header	Image	Table

🔳 fv: Sun	nmary of ccurve_150	fits in /home/	jmerten/science/clus	ter_project/C	L0024/e	lli = 0 ×
File Edit	Tools					Help
Index	Extension	Туре	Dimension		View	
0	Primary	Image	150 × 121	Header	Image	Table
0.1	pixel_relevance	Image	150 X 121	Header	Image	Table
_ Z	emr	Image	150 X 121	Header	Image	Table
_ 3	redshift_info	Image	150 X 121	Header	Image	Table
□ 4	field_mask	Image	150 X 121	Header	Image	Table

Step 2: Joint reconstruction (Runtime ~ 3hrs)

🔳 fv: Su	🖬 fv: Summary of rec_newreg_75.fits in /home/jmerten/science/cluster_project/CL0 💷 🗆 🗙								
File Edit	Tools		. W			Help			
Index	Extension	Туре	Dimension		View				
0	Primary	Image	75 X 61	Header	Image	Table			
1	convergence	Image	75 X 61	Header	Image	Table			
2	shear1	Image	75 × 61	Header	Image	Table			
🗆 3	shear2	Image	75 X 61	Header	Image	Table			
□ 4	n	Image	75 × 61	Header	Image	Table			
🗆 5	12	Image	75 X 61	Header	Image	Table			
□ 6	g1	Image	75 × 61	Header	Image	Table			
07	g2	Image	75 × 61	Header	Image	Table			
	jacdet	Image	75 × 61	Header	Image	Table			
	field_mask	Image	75 × 61	Header	Image	Table			

SaWLens

Step3 (optional): Highly resolved core (Runtime $\sim 1 \text{min}$)

5	0.2	0.4	0.6	0.8	1	1.2	1.4

SaWLens

Step3 (optional): Highly resolved core (Runtime ~ 1min)

SaWLens

Work in progress and what is missing

O Physics

- Improved usage of strong-lensing constraints
- Flexion implementation has to be tested carefully
- Inclusion of cluster-member dynamics
- Incorporation of parametric strong-lensing models
- X-Ray constraints

O Numerics

- CUDA-implementation
- Documentation
- User interface