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These notes are work in progress and I will update them as the course proceeds.
It is very likely that they contain many mistakes, for which I assume full re-
sponsibility. If you find any mistake, please let me know by sending an email at
mattia.sormani@uni-heidelberg.de
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1 Hydrodynamics

1.1 Introductory remarks

Fluid dynamics is one of the most central branches of astrophysics. It
is essential to understand star formation, galactic dynamics (what is
the origin of spiral structure?), accretion discs, supernovae explosions,
cosmological flows, stellar structure (what is inside the Sun?), planet
atmospheres, the interstellar medium, and the list could go on.

Fluids such as water can usually be considered incompressible, be-
cause extremely high pressures of the order of thousands of atmospheres
are required to achieve appreciable compressions. Air is highly compress-
ible, but it can behave as an incompressible fluid if the flow speed is much
smaller than the sound speed. Astrophysical fluids, on the other hand,
must usually be treated as compressible fluids. This means that we must
account for the possibility of large density changes.

Astrophysical fluids usually consists of gases that are ultimately made
of particles. Although they are not exactly continuous fluids, most of the
time they can be treated as if they are. This approximation is valid if
the mean free path of a particle is small compared to the typical length
over which macroscopic quantities such as the density vary. If this is
the case, one can consider fluid elements that are i) large enough that
are much bigger than the mean free path and contain a vast number of
atoms ii) small enough that have uniquely defined values for quantities
such as density, velocity, pressure, etc. Effects such as viscosity and
thermal conduction are a consequence of finite mean free paths, and
extra terms can be included in the equations to take them into account
in the continuous approximation.

Most astrophysical fluids are magnetised. Although this can some-
times be neglected, there are many instances in which it is necessary to
take explicitly into account the magnetised nature of astrophysical fluids.
Therefore we shall study magnetohydrodynamics alongside hydrodynam-
ics.

1.2 The state of a fluid

In the simplest case, the state of a fluid at a certain time is fully specified
by its density ρ(x) and velocity field v(x). In some cases it is necessary
to know additional quantities, such as the pressure P (x), the tempera-
ture T (x), the specific entropy s(x), or in the case of magnetised fluids
the magnetic field B(x). Multi-component fluids can have more than
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one species defined at each point (think for example of a plasma made of
positive and negative charged particles which can move at different ve-
locities relative to one another), each with its own density and velocity,
but we will not consider this case in this course.

Equations of motion allow us to evolve in time the quantities that
define the state of the fluid once we know them at some given time t0.
In other words, they allow us to uniquely determine ρ(x, t), v(x, t), etc
at all times once their values ρ(x, t = t0), v(x, t = t0), etc are known for
all points in space at a particular time t0.

1.3 The continuity equation

Consider an arbitrary closed volume V that is fixed in space and bounded
by a surface S (see Fig. 1). The mass of fluid contained in this volume
is

M(t) =

∫
V

ρ(x, t)dV, (1)

and its rate of change with time is (can you show why is it legit to bring
the time derivative inside the integral?):

dM(t)

dt
=

∫
V

∂tρ(x, t)dV. (2)

We can equate this with the mass that is instantaneously flowing out

dV

dS
n̂

V

Figure 1: An arbitrary vol-
ume V .

through the surface S. The mass flowing out the surface area element
dS = dSn̂, where n̂ is a vector normal to the surface pointing outwards,
is ρv · dS, thus summing contributions over the whole surface we have:

dM(t)

dt
= −

∮
S

ρv · dS. (3)

The divergence theorem states that for any vector-valued function
F(x) (can you prove this?):∫

V

dV ∇ · F =

∮
S

dS · F(x)Divergence theorem (4)

Applying the divergence theorem with F = ρv to the RHS of Eq. (3)
and then equating the result to the RHS of Eq. (2) we obtain:∫

V

∂tρ(x, t)dV = −
∫
V

dV ∇ · (ρv). (5)
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Since this equation must hold for any volume V , the arguments inside
the integrals must be equal at all points.1 Hence we find:

∂tρ+ ∇ · (ρv) = 0 Continuity equation(6)

This is called continuity equation and expresses the conservation of
mass: what is lost inside a volume is what has outflown through the
surface bounding that volume.

1.4 The Euler equation, or F = ma

What is the fluid equivalent of Newton’s second law F = ma? Consider
a small fluid element of volume dV and mass dM = ρdV . By Newton’s
second law,

dM

(
Dv

Dt

)
= sum of the forces acting on the fluid element, (7)

where the quantity Dv/Dt is the acceleration of the fluid element. Note
that this is not the same as ∂tv(x, t). The difference between the two is as
follows: i) Dv/Dt is calculated by comparing the velocities of the same
fluid element at t and t + dt, which occupies different spatial positions
at different times ii) ∂tv(x, t) is calculated by comparing velocities at the
same position in space at different times.

We can find the relation between the two types of derivatives, which
holds for any property f(x, t) of the fluid and not just for velocities.
Consider a fluid element that is initially at x(t) (see Fig. 2). Its velocity
is v(x, t) and therefore after a time dt its new position will be x(t+dt) '
x(t) + vdt. To take the derivative following the fluid element, we must
compare f at the new position at time t+ dt with f at the old position
at time t: x(t)

x(t+ dt)

vdt

Figure 2: The convective
derivative.Df

Dt
≡ lim

dt→0

f (x(t+ dt), t+ dt)− f (x(t), t)

dt
(8)

' f (x(t) + vdt, t+ dt)− f (x(t), t)

dt
(9)

' ∂tfdt+ (∇f) · (vdt)

dt
(10)

= ∂tf + v ·∇f (11)

1Suppose there is a point in which they are not equal. Then one could just integrate
in the neighbourhood of that point, contradicting the result (5). Hence they must be
equal.
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Thus
D

Dt
= ∂t + v ·∇Convective derivative (12)

D/Dt is called the Lagrangian or convective derivative, to dis-
tinguish it from the Eulerian derivative ∂t (see also Section 1.9).

Now that we have discussed the LHS of Eq. (7), let us deal with
the RHS. What are the forces that act on a fluid element? The most
fundamental force acting on a fluid is pressure.

Consider a hypothetical plane slicing through a static (v = 0) fluid
with an arbitrary orientation. What is the (vector) force that material
on one side of that plane exerts on material on the other side? In the
most general case the force depends on the orientation of the plane and
the force itself can have any direction (different from the orientation of
the plane). The thing relating the force to the orientation is in general
a second-rank tensor, because it relates a vector to a vector, i.e. it is a
3× 3 array of numbers.

n̂

F

Figure 3: A hypothetical
plane slicing through the
fluid. n̂ is the normal to
the plane. In the general
case, the force F that the
fluid on one side exerts on
the fluid on the other side
can have any direction. In
this course, we only consider
cases in which n̂ and F have
the same direction, and F
does not depend on the ori-
entation of the plane.

Fortunately, in this course we only consider forces that in such a static
situation can always be considered isotropic, i.e. they do not depend on
the orientation of n̂ (can you think of an example where this is not true?),
and are directed perpendicularly to the surface at each point, i.e. they
are directed along n̂ (this is usually not a good approximation in solids.
Think of a twisted rubber: it is clearly not true inside it!). The force can
then be quantified by a single number called pressure, which is a function
of position and time, P = P (x, t). The pressure force acting on a surface
area dS is PdS.

A pressure exerts a net force on a fluid element only if it is not spa-
tially uniform, otherwise the force on opposite sides cancels out. The
pressure force acting on a fluid element is

−∇PdV. (13)

You can show this by considering the forces on the side of a small cube
of volume dV = dxdydz.

If the fluid is not static, we assume that the pressure force is the
same. If two layers of fluid are moving relative to each other, viscous
forces can also be present. In contrast to pressure, these are not directed
perpendicularly to our hypothetical plane, and will be the subject of
Section 1.13.

Now let’s put eveything together. First, substitute Eq. (12) into the
LHS of (7). If the only force acting on the fluid is pressure, the RHS is
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simply given by (13). After dividing by dM and using that dM = ρdV
we find:

∂tv + (v ·∇)v = −∇P

ρ
Euler equation(14)

This is the Euler equation. This was derived assuming that pressure
is the only force. Other forces can be added as needed. One of obvious
importance in astrophysics is gravity. In presence of a gravitational field
Φ the force per unit mass acting on a fluid element is −∇Φ, therefore
the Euler equation becomes in this case

∂tv + (v ·∇)v = −∇P

ρ
−∇Φ. Euler equation with gravity.(15)

If the field is externally imposed then Φ is a given function of x and
t; if on the contrary the field is generated by the fluid itself, it must be
computed self-consistently.

Other forces of astrophysical interest can arise because of the effects
of magnetic fields and viscosity. These will be considered below.

1.5 The choice of the equation of state

Consider the continuity equation (6) and the Euler equation (14). These
two equations alone are not enough to evolve the system in time. In
other words, if one is given ρ0(x) = ρ(x, t = t0) and v0(x) = v(x, t = t0)
at t = t0, they are not enough to determine uniquely what they are at
at t > t0. There are many possible solutions ρ(x, t), v(x, t = t0) that
satisfy them, and one does not know which one to choose. People say
that the continuity and Euler equations do not form a complete system
of differential equations, so we need one more.

From the mathematical point of view, this can be understood because
we have three unknowns functions (ρ,v, P ) and only two equations (6
and 14).2 From the physical point of view, this can be understood if we
consider that to find the time evolution of a fluid element we need to
know the forces acting on it, but so far we have said nothing on how to
determine P !

It is common to relate pressure and density through an equation
of state. For most astrophysical applications, it is usually a very good

2We have five unknowns and four equations if v is considered as three scalar
functions vx, vy, vz. The Euler equation is a vector equation and counts as three
scalar equations.
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approximation to consider the equation of state of an ideal gas

P =
ρkT

µ
,Ideal gas (16)

where T is the temperature, k = 1.38 × 10−23JK−1 is the Boltzmann
constant, µ is the mass per particle.

The addition of Eq. (16) does not complete our system of equations,
because we have introduced a new equation but also a new unknown, the
temperature T (x, t). We have just exchanged one unknown quantity (P )
for another (T ). The following are common ways of closing the system
of equations of astrophysical importance:

• Assume that T = constant in Eq. 16. This is called an isothermal
gas. In this case P is proportional to ρ. Note that the quantity
kT/µ has dimensions of a velocity squared and Eq. (16) can be
rewritten as

P = c2
sρIsothermal gas (17)

where

c2
s = kT/µ = constant. (18)

cs is called the isothermal sound speed, for reasons that will become
clear later in the course (see Section 5.2).

• In general, if we follow a fluid element, it changes shape and volume
during its motion. It can therefore perform work by expansion or
receive work by compression from its surroundings. An adiabatic
fluid is one in which this work is converted into internal energy of
the fluid in a reversible manner and there are no transfers of heat or
matter between a fluid element and its surroundings. The temper-
ature of each fluid element is allowed to change, but only as a result
of compression and expansion. We will see later how to consider
processes able to add or subtract heat from a fluid element, such as
exchanges of heat due to thermal conduction between neighbouring
fluid elements, viscous dissipation, and extra heating and cooling
due to radiative processes.

We can find the equations governing an adiabatic gas as follows.
The internal energy per unit mass of an ideal gas is

U =
P

ρ(γ − 1)
Internal energy per unit

mass of an ideal gas
(19)
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where γ = 1 + 2/N is the adiabatic index and N is the number
of degrees of freedom per particle (N = 3 for a monoatomic gas,
N = 5 for a diatomic gas). Note that an isothermal gas corresponds
to the limit N → ∞ in which the number of degrees of freedom
goes to infinity. In this case, the internal degrees of freedom act
like a heat bath that keeps the temperature constant. This is also
why U → ∞ as γ → 1.

Consider again a small fluid element of volume dV , mass dM =
ρdV and internal energy is dMU . As it moves through the fluid,
this parcel of gas changes volume, doing work by expansion and
exchanging heat with the surroundings, just like the ideal gas sys-
tems you studied in your first thermodynamics course. The first
law of thermodynamics says that

DU = DQ−DW (20)

where DU is the change in internal energy, DQ is the heat added
to the system and DW is the work done by the system (all per
unit mass). We use the big D to emphasise that these are changes
tracked following the fluid. Differentiating (19) yieldsDU = (DP )/ [ρ(γ − 1)]−
(Dρ)P/[ρ2(γ − 1)]. The expansion work done by the fluid element
due to its volume change is DW = PDυ = −(Dρ)/ρ2, where
υ ≡ 1/ρ is the specific volume, i.e. the volume per unit mass. In
an adiabatic fluid, by definition, DQ = 0. Hence for an adiabatic
fluid the first law becomes

1

ρ(γ − 1)
DP − P

ρ2(γ − 1)
Dρ =

P

ρ2
Dρ (21)

rearranging and dividing by Dt we find

D log (Pρ−γ)

Dt
= 0 Adiabatic ideal fluid(22)

This last equation together with equations (6) and (14) are the
equations of motion of an adiabatic gas. They are a complete sys-
tem of equations that fully specifies the time evolution given the
state of the fluid at t = 0. Note that this implies that the entropy
per unit mass of a fluid element, which up to an unimportant
additive constant is given by

s =
k

µ(γ − 1)
logPρ−γ (23)
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does not change in adiabatic flow, i.e. the following equation is
valid:

Ds

Dt
= 0. (24)

Note also that this equation implies that s is a constant for a par-
ticular fluid element. It does not preclude different fluid elements
having different values of s, it just implies that each such element
will retain whatever value of s it started with. For example, a
medium which is initially isothermal with a non-uniform density,
such as an isothermal sphere (see Section 3.2), has s which is ini-
tially not uniform in space, hence one must be careful in not con-
fusing ∂t log(Pρ−γ) with D log(Pρ−γ)/Dt. The particular case in
which s is the same for all fluid elements is called isentropic fluid.
In an isentropic fluid the pressure is related through density by
P = Kργ where K is a constant which is the same for all fluid
elements and therefore is a particular case of barotropic fluid (see
below), and in this case ∂ts = Ds/Dt = 0. But in the general
case of adiabatic flow, K is not a constant and may be different for
different fluid elements.

• An incompressible fluid is one in which fluid elements do not
change in volume as they move. A liquid like water can usually
be considered incompressible, because extremely high density are
required to achieve significant compressions. Air is highly com-
pressible, but it can behave as an incompressible fluid if the flow
speed is much smaller than the sound speed. For an incompressible
fluid the density of a fluid element is constant,

Dρ

Dt
= 0. (25)

Since the continuity equation (6) can be rewritten as

Dρ

Dt
+ ρ∇ · v = 0, (26)

it implies that for an incompressible fluid

∇ · v = 0Incompressible fluid (27)

Indeed, it can be shown (see problem 2) that the Lagrangian deriva-
tive of a volume element is

D(dV )

Dt
= (dV )∇ · v (28)
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This means that in a time dt the volume of a fluid element changes
as dV → dV (1 + (∇ ·v)dt), and ∇ ·v is its rate of change. Hence,
∇ · v = 0 means that the volume does not change, i.e. the fluid is
incompressible.

Equation (27) together with equations (6) and (14) form a com-
plete system of equations. They are the equations of motion of an
incompressible fluid. The density is usually a given constant, so we
do not need to solve for it, while the pressure P simply assumes
the value needed to sustain the flow, much like the normal reaction
of a frictionless surface is as high as it needs to be to sustain an
objects moving over it. Note that according to Eq. (25) the density
does not need to be the same everywhere, i.e. all fluid elements,
although this is often the case.

• An important case in astrophysics is that of a barotropic equation
of state, in which the pressure is a function of density only:

P = P (ρ). Barotropic fluid(29)

A subclass of barotropics model often used in astrophysics is poly-
tropic models, in which P = Kρ(n+1)/n, where K is a constant
and the constant n is the polytropic index. Examples of poly-
tropic fluids are an isothermal gas (n = ∞), an isentropic gas
(γ = (n+ 1)/n), and a degenerate gas of electrons (n = 3/2 for the
non relativistic case, n = 3 for the relativistic case).

1.6 Manipulating the fluid equations

When dealing with the fluid equations there are several tricks and tech-
niques that can make your calculation faster and your life easier.

1.6.1 Writing the equations in different coordinate systems

Suppose that you want to write down the continuity and Euler equations
in a cylindrical or spherical coordinate system. There are several possi-
ble ways to approach this problem. You could calculate them by brute
force by writing down the new variables as a function of the old ones,
calculating the old derivatives as a function of the new ones using the
chain rule and then substitute them in the Cartesian equations, but this
is the lengthy route. A least action route is to look up on Wikipedia
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the expressions of the various differential operators in your coordinate
system.3

The most instructive route, which allows you to derive most expres-
sion without the need to look them up, is probably as follows:

1. Start from expressions in vector form, which are valid in all coor-
dinate systems.

2. Manipulate these expressions by expanding vectors using unit vec-
tors in the coordinate system of interest. This requires knowledge
of the unit vectors derivatives and how to write down the gradient
operator, but these are generally easy to derive or remember.

For example, let us find ∇ ·v in cylindrical coordinates (R, φ, z). We
write

∇ = êR
∂

∂R
+ êφ

1

R

∂

∂φ
+ êz

∂

∂z
(30)

and

v = êRvR + êφvφ + êzvz (31)

where vR is the R component of velocity, and so on. Putting these
together we write the divergence as:

∇ · v =

(
êR

∂

∂R
+ êφ

1

R

∂

∂φ
+ êz

∂

∂z

)
· (êRvR + êφvφ + êzvz) (32)

Note that the derivatives must operate on the unit vectors ! In cartesian
coordinates the unit vectors are constant so this does not matter, but in
other coordinate systems the unit vectors generally change with position.
Using the relations in Section 1.6.3 we find:

∇ · v =

(
êR

∂

∂R
+ êφ

1

R

∂

∂φ
+ êz

∂

∂z

)
· (êRvR + êφvφ + êzvz) (33)

=
∂vR
∂R

+
1

R

∂vφ
∂φ

+
∂vz
∂z

+
vR
R

(34)

where the last term originates because of the nonvanishing derivatives of
the unit vectors.

As another example, let us find (v ·∇)v in cylindrical coordinates.
The radial component of this vector is not (v ·∇)vR, because again we

3https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_

coordinates
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have to take the derivatives of the unit vectors. Instead we should write:

(v ·∇)v =

[
(êRvR + êφvφ + êzvz) ·

(
êR

∂

∂R
+ êφ

1

R

∂

∂φ
+ êz

∂

∂z

)]
(35)

(êRvR + êφvφ + êzvz) (36)

and take all the derivatives and the scalar products according to relations
in Section 1.6.3. The result should be (exercise)

(v ·∇)v =

(
vR
∂vR
∂ρ

+
vφ
ρ

∂vR
∂φ

+ vz
∂vR
∂z
− vφvφ

ρ

)
êR (37)

+

(
vR
∂vφ
∂ρ

+
vφ
ρ

∂vφ
∂φ

+ vz
∂vφ
∂z

+
vφvR
ρ

)
êφ (38)

+

(
vR
∂vz
∂ρ

+
vφ
ρ

∂vz
∂φ

+ vz
∂vz
∂z

)
êz (39)

1.6.2 Indecent indices

Vector notation is nice because it is coordinate independent, thus the
same expression is valid in Cartesian, Spherical or Cylindrical coordi-
nates. However it is often useful to switch to index notation in calcula-
tions, for example in proving vector identities. The index i,j and k here
will represent any of the Cartesian coordinates x, y and z. For example,
vi is the ith component of v, which may be any of the three (x, y or z).
The gradient operator ∇ is written ∂i.

We also use the Einstein summation convention: when an index
variable appears twice in a single term it implies summation of that term
over all the values of the index (unless otherwise specified).

For example, the dot product between two vectors A and B is written

A ·B = AiBi. (40)

The term “v dot grad v” is written

(v ·∇)v = (vi∂i)vj, (41)

where the term on the right represents the component in the direction
j = x, y or z. The continuity equation (6) is rewritten in index notation
as follows:

∂tρ+ ∂i(ρvi) = 0, (42)

and the Euler equation (14):

∂tvj + (vi∂i)vj = −∂jP
ρ
. (43)
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Note that these are three scalar equations, one for each possible value
of j = x, y or z.

The cross product and the curl can be written using the Levi-Civita
symbol εijk. This is defined as

εijk =


+1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2),

−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3),

0 if any two indices are equal to one another

(44)

Then we can write for example

∇×A = εijk∂iAj, (45)

and
A×B = εijkAiBj. (46)

In expressions involving two cross products we have two εijk symbols.
In those cases, the following identity is very useful:

εijkε
imn = δj

mδk
n − δjnδkm (47)

Here the position of the index (subscript or superscript) has no mean-
ing and different arrangements are only used for clarity. Such distinction
is instead important general relativity, but we do not discuss that here.

As an exercise, you can use (47) to prove the following identities:

A× (B×C) = (A ·C) B− (A ·B) C (48)

∇× (∇×A) = ∇(∇ ·A)−∇2A (49)

∇× (A×B) = A (∇ ·B)−B (∇ ·A) + (B · ∇)A− (A · ∇)B (50)

1.6.3 Tables of unit vectors and their derivatives

Cylindrical unit vectors:

êR = (cosφ, sinφ, 0) (51)

êφ = (− sinφ, cosφ, 0) (52)

êz = (0, 0, 1) (53)

Spherical unit vectors:

êr = (sin θ cosφ, sin θ sinφ, cos θ) = sin θêR + cos θêz (54)

êθ = (cos θ cosφ, cos θ sinφ, sin θ) = cos θêR − sin θêz (55)

êφ = (sinφ, cosφ, 0) (56)
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Nonvanishing derivatives of cylindrical unit vectors

∂φ(êR) = êφ (57)

∂φ(êφ) = −êR (58)

Nonvanishing derivatives of spherical unit vectors

∂θ(êr) = êθ (59)

∂φ(êr) = sin θêφ (60)

∂θ(êθ) = −êr (61)

∂φ(êθ) = cos θêφ (62)

∂φ(êφ) = −(sin θêr + cos θêθ) = −êR (63)

More comprehensive list of properties can be found for example at:
http://mathworld.wolfram.com/CylindricalCoordinates.html

http://mathworld.wolfram.com/SphericalCoordinates.html

1.7 Conservation of energy

A useful equation related to the conservation of kinetic energy can be
obtained by taking the dot product of v with the Euler equation (14).
The LHS becomes

v · [∂tv + (v ·∇)v] =
1

2

[
∂tv

2 + (v ·∇)v2
]

(64)

=
1

2

Dv2

Dt
(65)

The first step can be proved easily by switching to index notation (see
Section 1.6.2). Putting this back together with the RHS we find

1

2

Dv2

Dt
= v ·

[
−∇P

ρ

]
(66)

The interpretation of this equation is simple. Consider a small fluid
element of mass dM . Its kinetic energy is dMv2/2. Then this equation
simply states that the change in kinetic energy of a fluid element is the
dot product between the force, −dM∇P/ρ, and the velocity, i.e. it
is the fluid mechanics equivalent of the familiar Newtonian mechanics
statement that d(mv2/2)/dt = F · v.
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We can rewrite (66) in another useful way. After multiplying both
sides by ρ, the LHS can be rewritten

1

2
ρ
Dv2

Dt
=

1

2
ρ
(
∂tv

2 + v ·∇v2
)

(67)

=
1

2
ρ
(
∂tv

2 + v ·∇v2
)

+
1

2
v2 [∂tρ+ ∇ · (ρv)] (68)

= ∂t

(
ρv2

2

)
+ ∇

(
ρv2

2
v

)
(69)

where in the second step we have used the continuity equation (6). The
RHS can be rewritten as

− (v ·∇)P = −∇ · (Pv) + P (∇ · v) (70)

Putting all together and rearranging we find

∂t

[
ρv2

2

]
+ ∇ ·

[(
ρv2

2
+ P

)
v

]
= P (∇ · v) (71)

We have only used the continuity and Euler equation to derive this result,
so it applies both to incompressible fluids and to compressible gases.

For an incompressible fluid ∇ · v = 0 so the RHS side vanishes, and
this constitutes a statement of the conservation of kinetic energy,4 i.e. the
total kinetic energy is a conserved quantity in an incompressible inviscid
fluid.

For an adiabatic gas, the term P (∇ · v) represents the expansion
work done by the gas, and kinetic energy is not a conserved quantity.
To discuss the conservation of energy in this case one must consider the
internal energy of the gas. The continuity equation can be rewritten (see
Eq. 26) as

∇ · v = −D log ρ

Dt
(73)

4Any statement of the type

∂tQ+ ∇ ·F = 0 (72)

is a conservation law where Q is the conserved quantity and F is the associated flux.
To see this, integrate over a finite volume and use the divergence theorem (4). This
shows that the change in the amount of

∫
V
Qdt inside the volume is related to the

outflux quantified by F . Integrating over the whole space and assuming that F = 0
at infinity, which is usually the case, you get that ∂t

(∫
QdV

)
= 0, hence the quantity

between parentheses is constant in time, i.e. it is globally conserved. What gets out
of one volume just enters into an adjacent one.
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From equation (22) for an adiabatic gas,

D log ρ

Dt
=

1

γ

D logP

Dt
(74)

Eliminating D log ρ/Dt from these last two equations we find

∇ · v = −1

γ

D logP

Dt
(75)

= − 1

Pγ
[∂tP + (v ·∇)P ] (76)

= − 1

Pγ
[∂tP + ∇ · (Pv)− P (∇ · v)] (77)

where in the last step we have used (70). Isolating ∇ · v from this last
equation we find

∇ · v = − 1

P (γ − 1)
[∂tP + ∇ · (Pv)] (78)

Substituting this into (71) and rearranging we finally find:

Conservation of energy for
an adiabatic fluid.

∂t

[
ρv2

2
+

P

γ − 1

]
+ ∇ ·

[(
ρv2

2
+ P +

P

γ − 1

)
v

]
= 0 (79)

which is a statement of the conservation of energy for an adiabatic gas.
The terms between the first bracket parentheses are respectively the ki-
netic energy per unit volume and the internal energy per unit volume.
Neither mechanical nor internal energy is separately conserved, but their
sum integrated over all space is conserved. The three terms between the
second square brackets are the fluxes of energy due to advection of kinetic
energy, to pressure forces exchanged between adjacent fluid elements, and
to advection of internal energy respectively. Since we are considering an
adiabatic gas, there are no other fluxes of energy related to, for example,
viscous forces or thermal conduction. The sum of kinetic plus internal
energy must be conserved even if the gas is viscous, since dissipation does
not constitute an external heat source (see Section 1.13).

What about energy conservation in an isothermal fluid? Well, energy
is not conserved in an isothermal fluid.5 One must imagine that any
excess/lack of heat is removed/provided as needed by an external heat

5If one tries to see an isothermal gas as the γ → 1 limit as discussed in Sect. 1.5,
Eq. (79) diverges so it cannot be applied! Note however that it is possible to derive
an “energy conservation” theorem similar to Eq. (79) for an isothermal fluid. This
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bath to each fluid element, in such a way that the temperature is constant
during its motion. In an astrophysical context, it is sometimes a useful
approximation to treat the interstellar medium as an isothermal fluid, in
which the thermal balance is maintained for example by external heating
sources and collisional cooling.

1.8 Conservation of momentum

Conservation of momentum can be proved starting from the continuity
(6) and Euler (14) equations. Multiplying (14) by ρ and considering the
ith component we can rewrite the LHS as

ρ
Dvi
Dt

= ρ [∂tvi + (v ·∇) vi] (81)

= ρ [∂tvi + (v ·∇) vi] + vi [∂tρ+ ∇ · (ρv)] (82)

= ∂t(ρvi) + ∇ · [(ρvi)v] (83)

= ∂t(ρvi) + ∂j [(ρvi)vj] (84)

where in the second step we have added a term which vanishes thanks
to the continuity equation. The RHS can be rewritten as

−∂iP = −δij∂jP (85)

Putting all together and rearranging we find

Conservation of
momentum.

∂t(ρvi) + ∂j [(ρvi)vj + δijP ] = 0 (86)

This equation is valid both for an incompressible and compressible fluid
and is a statement of the conservation of momentum. To see this, just
integrate over all space. If all the fluid quantities vi, P and ρ vanish at
infinity, then the integral of the second term in Eq. (86) disappears and
we are left with

∂t

(∫
V

dV ρvi

)
= 0 (87)

which means that the quantity between parentheses, i.e. the total mo-
mentum in the ith direction, is constant in time.

reads:

∂t

[
ρv2

2
+ ρH − P

]
+ ∇ ·

[(
ρv2

2
+ ρH

)
v

]
= 0 (80)

where H = c2s log(ρ/ρ0) and ρ0 is an arbitrary constant. The steps to derive this
equation are similar to those to derive Eq. (79). The conserved quantity (i.e. the
integral over all space of the terms within the first bracket parentheses on the LHS)
is similar but not exactly the same as what you would normally call the energy.
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1.9 Lagrangian vs Eulerian view

In astrophysics you often hear talking about “Lagrangian view” as op-
posed to “Eulerian view”. What is meant exactly may depend on who
you are speaking to. In practice, most of the time it is referred to equiv-
alent ways of solving the equations of hydrodynamic. Since they are
equivalent, one should choose the most convenient for the problem at
hand.

• In a Eulerian description, quantities are written as a function of
fixed spatial coordinates. For example, ρ = ρ(x, t) is the density
at a fixed location in space x. If we write the continuity equation
as ∂tρ(x, t) + ∇ · (ρ(x, t)v(x, t)), it is meant that ∂t takes the time
derivatives by comparing quantities at different times but at the
same location in space, and ∇ are derivatives obtained comparing
quantities at neighbouring locations in space at the same time.

• In a Lagrangian description, quantities are written as a function of
coordinates that move with the flow. For example, suppose that we
label all fluid elements by the position x0 they had ad time t = t0.
Then we can write ρ = ρ(x0, t) meaning “what is the density at
time t > t0 of the fluid element that was at x = x0 at time t = t0”?
In general the position of such a fluid element changes with time, so
ρ(x0, t) is not the density of a fixed point in space. It is the density
that we would see by following a given fluid element in time. Since
the convective derivative (12) follows the flow, it is also called the
Lagrangian derivative. Equations of motion written in terms of
D/Dt are sometimes said to be in “Lagrangian form”.

1.10 Vorticity

In fluid dynamics it often useful to consider the vorticity

ω = ∇× v. Definition of vorticity.(88)

The physical meaning of this quantity can be obtained considering two
short fluid line elements which are perpendicular at a certain instant
and move with the fluid (see Fig. 4). The vorticity is twice the average
angular velocity of two such short fluid elements. In this sense, the
vorticity is a measure of the local degree of spin, or rotation, of the fluid.
Note that this may not always be the same of our intuitive notion of
rotation; if the two lines rotate in opposite directions with equal angular
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velocity the vorticity is zero. Note also that ω is not directly related to
global rotation. Velocity configurations are possible for which there is
no global rotation but ω 6= 0. As an exercise, consider for example the
vorticity of the flow fields defined by v = βyêx, where β is a constant,
and v = (k/R)êφ.

A B

C

D

∂vy
∂x

−∂vx
∂y

Figure 4: Physical meaning
of vorticity. ω is taken to
point out of the page. The
angular velocity of the two
perpendicular fluid element
lines AB and CD is ∂xvy and
−∂yvx respectively. Hence
their average angular veloc-
ity is (∂xvy−∂yvx)/2 = ω/2.

1.10.1 The vorticity equation

To obtain an equation for the evolution of vorticity, consider the following
identity:

v × (∇× v) =
1

2
∇v2 − (v ·∇) v (89)

which can be proved using (70). Using this we can rewrite the Euler
equation (14) as

∂tv − v × ω +
1

2
∇v2 = −∇P

ρ
(90)

Taking the curl of this equation and using that the curl of a gradient
vanishes, we obtain

∂tω −∇× (v × ω) =
1

ρ2
(∇ρ×∇P ) . (91)

Using identity (50) with A = v and B = ω, and remembering that the
divergence of the curl vanishes we can rewrite it as:

∂tω + (v ·∇)ω = (ω ·∇) v − ω (∇ · v) +
1

ρ2
(∇ρ×∇P ) . (92)

Now substitute ∇ · v from the continuity equation in the form (73):

Dω

Dt
= (ω ·∇) v + ω

D log ρ

Dt
+

1

ρ2
(∇ρ×∇P ) . (93)

which can be rewritten as

D

Dt

(
ω

ρ

)
=

[(
ω

ρ

)
·∇
]

v +
1

ρ3
(∇ρ×∇P )Vorticity equation. (94)

This is the vorticity equation, which describes the evolution of vor-
ticity. The quantity ω/ρ is called potential vorticity. Note that in
the presence of a gravitational field the vorticity equation would be ex-
actly the same since the extra term vanishes in the step in which we take
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the curl of the Euler equation (the curl of a gradient is zero, and the
gravitational force is the gradient of Φ).

Now assume that
∇ρ×∇P = 0. Barotropic condition.(95)

This is called barotropic condition and it means that surfaces of con-
stant density are the same as surfaces of constant pressure. It is satisfied
for barotropic fluids (29), which include isothermal and isentropic fluids
as particular cases, and for incompressible fluids (27), for which the den-
sity is constant. Under this assumption the vorticity equation becomes

D

Dt

(
ω

ρ

)
=

[(
ω

ρ

)
·∇
]

v. (96)

If the flow is two-dimensional, so that ω is always perpendicular to v,
the term on the right hand side vanishes which implies that the potential
vorticity is conserved, i.e. it is constant for a given fluid element. In
the case of an incompressible flow, we can simplify ρ and the vorticity
itself is conserved. These are powerful constraints: suppose for example
that we know that the flow is steady, so that it does not change with
time, and consider a streamline. If ω/ρ or ω is zero at some point
along the streamline, it will be zero at all points along the streamline.
Often we know that the potential vorticity (or the vorticity) vanishes at
special points, for example at infinity, and we can use this condition to
conclude that it is zero at all points reached by streamlines, which could
be everywhere.

In the presence of viscosity (Section 1.13) the vorticity is not con-
served anymore, even for an incompressible fluid. In this case it is pos-
sible to study how the vorticity is diffused, but we will not do it in this
course (if you are interested, see for example [1]).

1.10.2 Kelvin circulation theorem

Consider a closed curve that moves with the fluid, see Fig. 5. The
integral of the component of the velocity parallel to the curve around the
closed curve

C =

∮
γ

v · dl (97)

is called the circulation. Kelvin circulation theorem states that, in an
inviscid fluid in which the barotropic condition (95) is valid, this integral
is constant in time if we follow the fluid, i.e. C(t1) = C(t2).

C(t1)
C(t2)

Figure 5: Kelvin circulation
theorem.

To prove Kelvin’s theorem, let us consider a slightly more general
situation, which will be useful later when we consider flux freezing in
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magnetohydrodynamics. Suppose you have an equation of the following
form

∂tA = v × (∇×A) + ∇f (98)

where f is a generic function. We will now prove that

Γ(t) =

∮
γ

A · dl, (99)

calculated following the fluid, is constant in time, i.e. Γ(t1) = Γ(t2).
First, take the Lagrangian derivative of Γ(t):6

DΓ(t)

Dt
=

∮
γ

(
D

Dt
A

)
· dl +

∮
γ

A ·
(
D

Dt
dl

)
(100)

We need to show that this is zero. (98) can be rewritten with the help
of identity (47) as:

DAi
Dt

= vj∂iAj + ∂if (101)

Using this equation the first term on the RHS of (100) can be rewritten
as: ∮

γ

(
D

Dt
A

)
· dl =

∮
γ

(vj∂iAj + ∂if) dli (102)

Next, use the result of problem 2, equation (??)

D

Dt
dl = (dl ·∇) v (103)

to rewrite the second term on the RHS of (100) as:∮
γ

A ·
(
D

Dt
dl

)
=

∮
γ

Ajdli∂ivj (104)

Adding (102) and (104) gives∮
γ

D

Dt
(A · dl) =

∮
γ

dli∂i (Ajvj + f) =

∮
γ

dl ·∇ (A · v + f) = 0 (105)

which vanishes because the integral of a gradient over a closed loop is
zero, which proves the theorem.

6as an exercise, you can show that it is allowed to take the derivative inside the
integral.
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Note that using Stokes theorem, which states that

Stokes theorem.

∮
γ

A · dl =

∮
S

(∇×A) · dS (106)

where S is an open surface7 bounded by the curve γ, we can rewrite (99)
as

Γ(t) =

∮
S

(∇×A) · dS. (107)

This can be interpreted as if the vector ∇×A is “frozen” into the fluid.
A small patch of fluid will retain during its motion the amount of flux of
this vector that was given initially.

To see how this theorem applies with A = v and recover Kelvin
theorem, consider the Euler equation in its form (90):

∂tv − v × ω +
1

2
∇v2 = −∇P

ρ
(108)

To bring this equation in the form (98), note that if the barotropic con-
dition (95) holds, then our fluid is either barotropic or incompressible.
In both cases we can define a function H such that

∇P

ρ
= ∇H (109)

For a barotropic fluid this is

H(ρ) =

∫
dρ
P (ρ)

ρ
(110)

while for an incompressible fluid it is

H(ρ) =
P

ρ
(111)

hence, (108) is of the form (98) with f = −H − v2/2 and A = v. The
vorticity ω is frozen into the fluid.

7Note that this need not to be flat, it can be any of the infinite possible surfaces
that have γ as boundary. This implies that the integral of a curl over a closed surface
is zero.
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1.11 Steady flow: the Bernoulli’s equation

A flow is said to be steady when all quantities do not depend on time
(∂t = 0). Of course, by this we do not mean that the fluid does not move,
but only that the velocity and all other quantities do not change with
time at each fixed point in space. A useful theorem for this type of flow
can be derived as follows. Consider Euler equation in the presence of a
gravitational field (15):

∂tv + (v ·∇)v = −∇P

ρ
−∇Φ (112)

Then assume that the flow is steady so that ∂tv = 0 and then use the
identity (89) to rewrite this equation as:

1

2
∇v2 − v × (∇× v) = −∇P

ρ
−∇Φ (113)

Now assume that the flow is either barotropic, P = P (ρ), or incompress-
ible, so that the function H given by (110) or (111) can be defined. Then
the Euler equation becomes

1

2
∇v2 − v × (∇× v) = −∇H −∇Φ (114)

The term v × (∇× v) is perpendicular to v at each point in the flow.
Hence, if we take the scalar product of with v, we find that

v ·∇
(

1

2
v2 +H + Φ

)
= 0 (115)

Since the direction of v is the same as the tangent to streamlines, this
means that the quantity

1

2
v2 +H + Φ = constantBernoulli’s theorem. (116)

is constant along each streamline. This is known as Bernoulli’s theo-
rem. It is valid if the flow is steady, barotropic or incompressible, and
nonviscous. For an incompressible fluid, H = P/ρ, and the theorem says
that where velocity goes up, pressure goes down.

Note that this theorem says nothing about the constant being the
same on different streamlines, only that it remains constant along each
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one. The constant is the same if we make one further assumption, namely
that the flow is irrotational, which means that

∇× v = 0. (117)

In this case, we do not need to take the scalar product with v in the
derivation above, and the constant is the same throughout the whole
fluid.

1.12 Rotating frames

In astrophysics it is often useful to work in a frame rotating with constant
angular speed Ω. This may be the frame in which a binary system is
stationary, a rotating fluid is at rest, or a spiral pattern is stationary. In
a rotating frame, we simply add the Coriolis and Centrifugal forces to
the RHS of the Euler equation (14), which gives the forces acting on fluid
elements, just as we would do for Newtonian point-particle mechanics.
Thus the Euler equation in a rotating frame is:

∂tv + (v ·∇)v = −∇P

ρ
− 2Ω× v −Ω× (Ω× x) Euler equation in a rotating

frame.
(118)

where −2Ω × v is the Coriolis force, −Ω × (Ω× x) is the centrifugal
force and velocities are measured in the rotating frame and are related
to those in the inertial frame by

vinertial = v + Ω× x. (119)

Note that if Ω = Ωêz we can rewrite the centrifugal force as −Ω ×
(Ω× x) = RΩ2êR.

1.13 Viscosity and thermal conduction

The fact that the mean free path is small but finite has the consequence
that particles can be exchanged between adjacent fluid elements, which
creates transfers of momentum and energy in addition to those that we
have studied in the previous sections. This is the origin of dissipative
processes such as viscosity and thermal conduction (see Fig. 6).

Viscosity creates forces that tend to prevent velocity gradients, i.e.
it is a force that opposes layers moving relative to each other. These
are not contained in the equations considered so far. To obtain the
equation of motion of a viscous fluid we need to modify our equations.
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The continuity equation (6) is unchanged. We need to add other terms
to the Euler equation (14). To do this, it is convenient to start from
the version written as conservation of momentum of an inviscid fluid,
equation (86):

A B

x
l l

S

Figure 6: Particles ex-
changed between adjacent
fluid elements A and B
are the origin of viscosity.
Molecules are exchanged
between layers whose thick-
ness is of the order of the
mean free path l. Fluid ele-
ments are much bigger than
l. If A and B are moving in
the y direction with differ-
ent velocities, particles es-
caping from the faster fluid
element will accelerate the
slower one and viceversa.

∂t(ρvi) + ∂j [Πij] = 0 (120)

In this equation, the term

Πij = ρvivj + δijP (121)

represents the flux of the ith component of momentum in the j direction.
The equations of motion for a viscous flow are obtained adding to Πij an
additional term σij that accounts for the transfer of momentum due to
viscous processes:

Πij = ρvivj + δijP + σij. (122)

The form of σij is derived “heuristically”, i.e. it is not a derivation
from first principles, much like the description of friction in first year
mechanics. We do not go through the whole derivation here, and the
reader is referred for example to [2] or [1]. The derivation proceeds along
the following lines. σij is required to satisfy the following properties:

1. σij = 0 when there are no relative motions between different parts
of the fluid. This means that σij must depend only on the space
derivatives of the velocity.

2. We assume that σij depends only on the first derivatives of the
velocity and that it is a linear function of these first derivatives.
This is a heuristic reasonable approximation. It is true for example
if an expression for the momentum transfer is obtained from the
simple picture sketched in Fig. 6.

3. We require that σij does not look special in any inertial frame of
reference. If this weren’t the case, that frame would be different
from the other frames and Galilean invariance would not be sat-
isfied. Thus we require that when we change frame of reference
(i.e. we perform a translation, rotation or add a constant relative
motion) σij transforms as a second-rank tensor.8

8For example, the expression σij = v1 cannot be true in all inertial frames. Hence
the frames in which it is true would be special. The expression σij = ∂(i+1)vj is also
not allowed, while the expression σij = ∂ivj is allowed because it has the same form
in all inertial frames.
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4. We require σij to vanish when the whole fluid is in rigid rotation
since in such a motion no internal friction occurs, i.e. σij = 0 if
v = Ω× x where Ω is a constant vector.

5. We require σij to vanish for uniform expansion. This is not a nec-
essary requirement and there is a type of friction called second
viscosity, which we do not consider in this course, which arises
from such a term. This is important for example when internal de-
grees of freedom are slow in being excited, so that a fast expansion
can result in instantaneous thermodynamic equilibrium not being
satisfied (see for example [2] and [8] for more information), but will
not be important in this course.

The most general second rank tensor satisfying the above conditions is

σij = η

(
∂jvi + ∂ivj −

2

3
δij∂kvk

)
Viscous stress tensor(123)

where η is a parameter called dynamic viscosity and in general may
be a function of fluid quantities such as density and pressure, η =
η(ρ, P, . . . ). Its dimensions are

[η] =
mass

length× time
. (124)

Other properties of the viscous stress tensor worth mentioning are that
it is symmetric, σij = σji, and that it has zero trace, σii = 0, which is
a consequence of condition (5) above (the trace of σij is proportional to
∇ · v, which is associated with expansions).

Substituting (122) where σij is given by (123) back into (120) and
performing a few steps9 one arrives at:

∂tvi + vj∂jvi = −∂iP
ρ

+
1

ρ
∂j (σij) (125)

This equation replaces the Euler equation for a fluid in which viscous
processes occur. If we further assume that η = constant so that we can
take it out of the derivatives we obtain the Navier-Stokes equation10

∂tv + (v ·∇) v = −∇P

ρ
− η

ρ
∇2v +

η

3ρ
[∇ (∇ · v)] Navier-Stokes equation(126)

9You will need to use the continuity equation (6).
10Sometimes what is called the Navier-Stokes equation is (126) for an incompressible

fluid, i.e. assuming ∇·v = 0, while some other times it is (126) including an additional
term that accounts for the second viscosity briefly mentioned above.
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where ∇2v = ∂j∂jvi and ∇ (∇ · v) = ∂i (∂jvj).
We have seen in Section 1.5 that the continuity and Euler equations

alone are not enough to form a complete system of equations that deter-
mine the evolution in time of the fluid. Analogously, the continuity equa-
tion plus the Navier-Stokes equation are not a complete system of equa-
tions. Among the possible ways to complete the equations discussed in
Section 1.5, the incompressible approximation and the isothermal one re-
main valid possibilities.11 However, the adiabatic approximation cannot
be valid anymore because viscous processes will dissipate energy which
according to the first law will be converted into internal energy. For a
viscous fluid the conservation of entropy equation (23) (or equivalently
22) cannot hold anymore. To see how these should be replaced, we need
to find out what is the dissipation due to viscous processes and then use
the first law of thermodynamics to equate them with the increase in the
internal energy of fluid elements.

Dissipation means loss of mechanical energy. For a non-viscous fluid
the change in mechanical energy was expressed by (71). We can derive
an analogous equation for the case of a viscous fluid. Taking the dot
product between v and (125) and after manipulations similar to the non
viscous case (exercise) one finds that

∂t

[
ρv2

2

]
+ ∇ ·

[(
ρv2

2
+ P

)
v −T

]
= P (∇ · v)−D (127)

where the new terms with respect to (71) are coloured in red and are
given by

Ti = σijvj. (128)

and

D = σij (∂ivj) (129)

It can be shown that D ≥ 0 (Problem 3). To interpret the various
terms, consider what happens when we integrate (127) over some arbi-
trary closed volume V that is fixed in space and bounded by a surface S.
After using the divergence theorem we obtain

∂t

(∫
V

dV
ρv2

2

)
= −

∮
S

dS·
[(

ρv2

2
+ P

)
v −T

]
+

∫
V

dV P (∇ · v)−
∫
V

dV D.
(130)

11In the isothermal case one must assume that the processes that keep the temper-
ature constant are faster than any other process that may change the temperature of
fluid elements, such as viscous dissipation.
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The term on the LHS is the total change of kinetic energy inside the
volume. The first term on the RHS is the contribution to this change
due to fluxes through the surface S, which is zero when integrated over
all space. Kinetic energy that outflows due to this term, partly because
of T, is not lost, but is simply gone into an adjacent volume. The second
term on the RHS is the same as in the non viscous case and has been
interpreted as the contribution due to the expansion work done by the
gas. The last term containing D can be interpreted as energy lost due to
viscous dissipation. Note that in contrast to the energy lost due to T,
the energy lost due to D does not go into a neighbouring fluid element,
because D has always the same sign, D ≥ 0. Integrating over adjacent
volumes does not cancel what happens in a given one, only adds up.
Therefore, we interpret D as the energy dissipated per unit volume due
to viscous dissipation. Note that this is not a “theorem”, in the sense
that this interpretation cannot be derived purely mathematically, it is an
extra physical assumption that we make based on the equations.

dV

Figure 7: During the mo-
tion of a fluid element in
a viscous fluid, its temper-
ature changes because of
three distinct effects: i) adi-
abatic compression and ex-
pansion ii) dissipation due
to viscosity (red swirls)
iii) thermal conduction with
neighbouring fluid elements
(red arrows). Schematic
blue lines represent stream-
lines.

Now that we know how to quantify viscous dissipation, we need to use
the first law to equate it to the heat gained by a fluid element. Consider
a small fluid element of volume dV , mass dM = ρ dV , internal energy
U dM and entropy s dM , and follow it as it moves through the fluid. The
second law of thermodynamics states that for a reversible process

Ds =
DQ
T

(131)

where DQ is the heat per unit mass absorbed by the fluid element. In
the presence of viscous dissipation this is DQ = (D/ρ)Dt, so one should
replace (22) with

ρT
Ds

Dt
= D. (132)

It this all? No. There is still one process that is closely related to
viscous dissipation that we have not accounted for. This is thermal
conduction. With the physics we have included so far in our equations,
a fluid element can heat up because it is compressed, or because energy
is dissipated within it. The only way it has to to transfer energy gained
because of viscous dissipation to an adjacent fluid element is through
adiabatic expansion. But if a fluid element is much hotter than the one
next to it, and the fluid is at rest, it will remain hotter forever according
to our equations! Not very sensible. Thermal conduction takes care of
this and provides a way to transfer energy between neighbouring fluid
elements without involving macroscopic fluid motion. Hence we will not
need to modify (125) or the Navier-Stokes equation (126) to include it.
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Let us call F the heat flux density due to thermal conduction, i.e.
the energy transferred per unit area and time. We expect it to be re-
lated to temperature variations through the fluid. It is usually a good
approximation to assume that F is proportional to the gradient of T :

F = −κ∇T (133)

Where κ > 0 is a coefficient called thermal conductivity, and in general
κ = κ(T, ρ, . . . ). The minus sign comes from the requirement that heat
must flow from hotter to colder fluid elements. By considering a small
fluid element dV , you can show that the amount of heat conducted into
it per unit time and volume is given by ∇ · (κ∇T ). Hence in presence of
both viscous dissipation and thermal conduction, equation (22) should
be replaced with

General equation of heat
transfer.

ρT
Ds

Dt
= D + ∇ · (κ∇T ) (134)

This equation replaces (22) for a fluid with viscous dissipation and ther-
mal conduction (see Fig. 7). The first term on the RHS is the heat dis-
sipated into the fluid element by viscosity, the second is the heat driven
into it by thermal conduction. It is possible to show that this equation
together with the equation of motion (125), (123) and the continuity
equation (6) imply that the total entropy of the whole fluid always in-
creases (see for example [2]). Using the same three equations, one can
show that

∂t

(
1

2
ρv2 +

P

γ − 1

)
+ ∇ ·

[(
ρv2

2
+ P +

P

γ − 1

)
v + T + κ∇T

]
= 0

(135)
Which is a statement of the conservation of energy for a viscous fluid
with thermal conduction. Note that we have not derived energy con-
servation, we have imposed it by requiring that energy dissipated must
go into internal energy of fluid elements according to the first law of
thermodynamics.

Thermal conduction is important in the interior of stars. Is viscosity
important in astrophysics? Rarely, and usually not quite in the sense in
which we discussed it in the previous section. ISM has substructure, and
we can average over this substructure and treat it phenomenologically as
some kind of viscosity. However this behaves differently from microscopic
viscosity in, say, air, and discussed in this section. We will see this when
we study accretion discs.
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1.14 The Reynolds number

When is viscosity important? To find out, we need to compare viscous
forces to other forces that are present in the fluid. Consider (125) where
σij is given by (123). The second term on the RHS are viscous forces,
while the LHS represents the total force acting on the fluid. Without fur-
ther information about the particular situation at hand, there is no way
to know which one is bigger. However, for a given situation we can often
estimate the relative contribution of these two terms and decide whether
we can neglect one of them. Suppose that in a particular situation fluid
quantities vary on a typical length scale L and the flow has a typical
velocity V ; for example, if we have an object moving in the fluid with
certain size and velocity this would give us some characteristics values.
Then we can crudely approximate the spatial derivatives as ∇ ' L−1.
The order of magnitude of the second term on the RHS of (125), which
represent viscous forces, is then

ηV

ρL2
, (136)

while the order of magnitude of the term on the LHS is

V 2

L
. (137)

The ratio between the latter and the former is a dimensionless quantity
called the Reynolds number:

Reynolds number.Re =
V L

ν
(138)

where ν ≡ η/ρ is called kinematic viscosity, while η was called dy-
namic viscosity. The Reynolds number quantifies the relative impor-
tance of viscous forces and total (also called inertial, because they are
related with the total acceleration) forces.

A high Reynolds number corresponds to a flow in which viscous forces
are negligible. Such a flow may be smooth and steady, but, perhaps
counter-intuitively, is more often turbulent. Turbulence occurs almost
certainly if Re & 104. A low Reynolds number, on the other hand,
corresponds to a viscosity-dominated flow, in which dissipational effects
damp out turbulence before it can become established.

In the vast majority of astrophysical flows, the Reynolds number is
very high, and viscosity can be neglected. For example, in the interstel-
lar medium the typical range is Re ∼ 105 to 1010. However, in certain
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situations a somewhat different type of viscosity plays a role. Astrophys-
ical flows usually show a great deal of substructure. We sometimes want
to average over this substructure and consider fluid elements that are
much bigger than it (note that this violates one of the assumption that
we made at the beginning for the validity of the fluid approximation!).
For example, in accretion discs, the fluid is turbulent on small scales,
but can be considered smooth when averaged over larger scales. Thus we
can consider fluid elements that average out this small scale turbulence,
and account for the effects of this small-scale turbulence through a phe-
nomenological viscosity which is created not by single particles crossing
fluid elements, as was the case in the picture of Section 1.13, but by
“macro-particles” formed by clouds and subclouds. This type of viscos-
ity is not completely equivalent to viscosity as discussed in the previous
section, and care must be taken.

What about the opposite regime, i.e. very low Reynolds numbers?
This gives us the chance for a little excursus. You may have never thought
about it, but there is a whole world where this regime is relevant. Since
microorganisms such as bacteria are small, their Reynolds numbers are
extremely small. For a bacteria, swimming through water is like for a hu-
man swimming in a pool of molasses while only being allowed to move at
1 cm/min, like the hands of a clock. The equations approximated for this
regime are completely different from the equations that are appropriate
in most astrophysical applications. In water, we can assume incompress-
ibility and at bacteria scales we can through away the LHS in Eq. (126)
to obtain

0 = −∇P + η∇2v (139)

Note that time does not appear in this equation! The forces on a bacteria
will be determined entirely by the instantaneous velocity patterns on the
surface of its body. It is a very interesting branch of modern physics
(and biology) to study how these microorganism can swim and move. If
you want to take a break from astrophysics and are looking for a treat,
you can read the wonderful article that popularised it all: Life at low
Reynolds number by E.M. Purcell, American Journal of Physics (1977).

1.15 Adding radiative heating and cooling

The most common reason why a fluid absorbs or releases heat in astro-
physics is not viscosity or thermal conduction. Instead, it is radiative
processes. For example, if nearby a fluid element is a massive star,
its strong UV radiation will heat it. Cosmic rays permeate the universe
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and can be absorbed by fluid elements, heating them up. In the inter-
stellar medium, molecules collide, get excited and then release a photon,
which then leaves the fluid element, leaving it cooler; this photon could
be catched later by another fluid element, but if the system is optically
thin it escapes from the entire system. Electrons revolving around mag-
netic fields are accelerated charged particles, and as such emit radiation
called synchrotron radiation, cooling the system. Many other radiative
processes play a role in astrophysics.

To take into account these processes, we define a heating rate per
unit volume, with units

Q̇ =
energy

time× volume
(140)

which is usually divided into heating and cooling terms

Q̇ = Γ− Λ (141)

Note that Γ and Λ here are the heating and cooling rates per unit vol-
ume, while Γ/ρ and Λ/ρ are their counterparts per unit mass. Different
conventions are used in the literature, so one must be careful.

For a system in which radiative processes are present, (22) cannot
hold anymore, and according to the first law of thermodynamics must be
replaced by

ρT
Ds

Dt
= Q̇ (142)

In case viscous dissipation and thermal conduction are also important,
one should also add all the corresponding terms that are present on the
RHS of (134).

Often, but not always, the system can be considered optically thin
(after all, most of the things we can see are optically thin: we cannot
see inside optically thick things, like the interior of the Sun! So we are
strongly biased towards seeing optically thin things). This simplifies
things a lot, because we do not need to keep track of all photons to see if
they are eventually reabsorbed or – in case they come from an external
source – whether they can reach the inner parts of a system which are
better shielded from the outside world. Accounting for both these things
usually depends in a complicate way on the geometry of the system.

Sometimes, if radiative processes are very fast and act on a much
shorter timescale the dynamical processes, they may effectively keep the
medium isothermal. In that case, we may simply replace (142) with the
isothermal equation of state (17).
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As a simple example of the form the heating and cooling rate can
take, consider the interstellar medium as heated by an external energy
source to which our medium is optically thin (for example, cosmic rays)
and cooled by collisions which excite internal energy states of molecules
which then emit photons that escape the system. In this case one can
say Γ = ρ× constant, where the constant is the strength of the external
heating, and Λ = ρ2f(T ), where f(T ) is a function of temperature and
the factor of ρ2 comes from the fact that the number of collisions per unit
volume is proportional to the density squared (the number of collisions
increases if there are more particles, and if particles are closer).

1.16 Summary

The equations of fluid motion are

∂tρ+ ∇ · (ρv) = 0 (143)

∂tv + (v ·∇)v = −∇P

ρ
−∇Φ− ∂j (σij) (144)

where

σij = η

(
∂jvi + ∂ivj −

2

3
δij∂kvk

)
(145)

These alone are not enough to uniquely specify the time evolution and
must be complemented by another equation. Possible choices include:

∇ · v = 0 incompressible (146)

P = P (ρ) barotropic (147)

ρT
Ds

Dt
= D + ∇ · (κ∇T ) + ρQ̇ equation of heat transfer (148)

For an ideal adiabatic fluid with no viscosity, no thermal conduction and
no radiative heating and cooling processes the equation of heat transfer
reduces to

D

Dt

(
logPρ−γ

)
= 0. (149)

2 Magnetohydrodynamics

2.1 Basic equations

Most of the fluids in the universe are electrically conductive. For exam-
ple, stars are made of hot, almost completely ionised gas. The interstellar
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medium can often be considered as composed almost entirely of neutral
particles, plus a small population of charged particles which is enough to
make it an effective conductor (after all, salty water is a good conduc-
tor despite only a small fraction of ions being present). The interior of
planets, such as the Earth, is often made of molten metals.

It may seem at first sight that all these different situations should
be treated differently. A fully ionised gas should be treated as a two-
component fluid, while a weakly ionised gas (a mix of negative, positive
and neutral particles) should be treated as a three-component fluids.
This is because the Lorentz force acts differently on positive, negative
and neutral particles, so these should be treated as different components.
Remarkably, under the assumption that mean free path is small enough,
collisions redistribute the effects of the Lorentz force so that its effects on
one component are shared among all other components within the same
fluid element, and all these different situations can be treated under the
same one-component theory. This theory is called magnetohydrody-
namics, and is obtained by coupling the fluid equations to the equations
of electromagnetism. It is a theory of electrically conducting fluids.

To derive such a theory an obvious starting point is Maxwell’s equa-
tions. A difficulty arises because Maxwell’s equations are Lorentz invari-
ant, while the equations of hydrodynamics considered so far are Galilean
invariant. To couple the two consistently, we either need to make the for-
mer Galilean invariant, or the latter Lorentz invariant. Here, we consider
a non relativistic theory, and choose the first option. Therefore in our
equations we neglect all the terms of order (v/c)2, where v is the speed
of the fluid. It is possible to derive a theory of relativistic magnetohy-
drodynamics, but we will not consider it in this course.

We assume that the fluid is almost neutral, i.e. the net charge density
is very small,12 but large currents can be present because charges of
opposite sign can flow in different directions. This condition can be

12Why don’t we assume that the net charge is exactly zero? Recall from courses in
elementary electromagnetism that a wire which looks neutral in one frame does not
look exactly neutral in another frame which moves with respect to the first. More
precisely, consider an infinitely long wire and assume that in a certain frame there are
positive charges with charge density per unit length λ and velocity v+ and negative
charges with charge density per unit length −λ and velocity v−, so that the total
current is I = λ(v+ − v−). The wire is neutral in this frame. The wire is not neutral
in another frame which moves with respect to the first in a direction parallel to the
wire. The reason is that relativistic length contraction changes the average distance
between charges and so it changes their densities per unit length. Therefore in our
fluid we cannot expect the charge to be exactly zero, but only to be small according
to (150).
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written

|ρev| ∼
(
v2

c2

)
|J| � |J| (150)

where ρe is the electric charge, v is the typical velocity of the fluid and
J is the current density, which has units of current per unit area. This is
the same situation that we have in familiar conductors, such as electrical
wires in our houses. This assumption is reasonable because any local net
charge would be soon neutralised in a good conductor. One of the con-
sequences of this assumption is that electric fields generated by charges
are much smaller than magnetic fields generated by currents. This is
why we talk about magneto hydrodynamics rather than electromagneto
hydrodynamics. Thus, if an astrophysical object displays large magnetic
fields, it is an indication that one should magnetohydrodynamics rather
than hydrodynamics.

Enough said, let’s start with writing down some equations. Maxwell’s
equations in CGS units are:

∇ · E = 4πρe (151)

∇ ·B = 0 (152)

∇× E = −1

c
∂tB (153)

∇×B =
4π

c
J +

1

c
∂tE (154)

First, we need to see which terms can be neglected in our non relativistic
approximation. In a highly conducting fluid, we expect the fields to vary
on the same typical length L and time T of the fluid, where L/T = v is the
typical speed of the fluid, because any variation on smaller scales would
be quickly smeared out by a rearrangement of charges, while changes
on the typical scales of the fluid are maintained by the fluid motions.
Approximating ∇ = L−1 and ∂t = T−1 the third Maxwell equation (153)
says that the electric field is a factor v/c smaller than the magnetic field:

E ∼ v

c
B (155)

Using this we see that the term (1/c)∂tE in the fourth Maxwell equation
(154), called the displacement current, can be neglected, because is of
order v2/c2 compared to the term on the LHS of the same equation.
Hence (154) can be approximated as

∇×B =
4π

c
J (156)
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Which implies B ∼ (L/c)J and one can check that under our assump-
tion ρv ∼ (v/c)2J the first Maxwell equation is consistent with these
approximations.

Now we need to couple Maxwell’s and the fluid equations. First, let
us find the force due to electromagnetic fields on a fluid element. The
total Lorentz force per unit volume in the non relativistic case is

FL = ρeE +
1

c
J×B (157)

This is obtained by summing the contributions on the positive and nega-
tive charges separately. These contributions acts on the charge carriers,
which may only constitute a small part of the mass of a fluid element
(for example in a gas whose mass is mostly in a neutral component, as
is often the case for the interstellar medium), not on the fluid element
as a whole. Moreover, the forces on the different components have in
general different directions! For example, the electric force is in opposite
directions for negative and positive particles. Why then do we treat the
total force as if it’s acting on the fluid element as a whole? As mentioned
at the beginning of the section, it is thanks to collisions. For the fluid
approximation to be valid, the mean free path of the charges must be
small compared to the size of a fluid element. Hence, charge carriers
must share their momentum before leaving a fluid element. The net re-
sult is that we can treat the total Lorentz force as if it’s acting on the
fluid elements as a whole.

Note also that in a magnetised plasma, charged particles revolve
around magnetic fields with a radius given by the Larmor radius. If
this radius is small enough this might give a fluid-like behaviour even
in absence of collisions. Hence, when you read “mean free path” in a
magnetised fluid, sometimes people mean the minimum between the one
given by collisions and the Larmor radius. However the Larmor radius
only applies to the direction perpendicular to the magnetic field lines,
and charges are free to move in the direction parallel to the magnetic
field, so one must be careful (see for example [9] for more details).

Thanks to our assumption (150) and using (155) we see that the
electric term in (157) is of order (v/c)2 compared to the magnetic term,
hence the Lorentz force can be approximated by

FL =
1

c
J×B (158)

Thus, the Euler equation (15) with the addition of this force becomes:

ρ
Dv

Dt
= −∇P − ρ∇Φ +

1

c
J×B (159)
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using equation (156) and the following identity which can be proved using
(47):

(∇×B)×B = −1

2
∇B2 + (B ·∇) B (160)

we can rewrite (159) as

MHD Euler equation. ρ
Dv

Dt
= −∇

(
P +

B2

8π

)
−∇Φ +

1

4π
(B ·∇) B (161)

This replaces Euler equation (15) in magnetohydrodynamics. The term
B2 clearly acts like a sort of pressure. We will analyse the physical
meaning of the magnetic force in more detail in the next section.

We have seen how the conducting fluid reacts to the presence of the
fields, but we have said nothing about how the fields are affected by the
motion of the fluid. Fields respond to J. We need to relate J to motions
of the fluid. To do this, we assume that the (non relativistic) Ohm’s law
is valid:13

J = σ

(
E +

1

c
v ×B

)
Ohm’s law. (162)

where σ is the electrical conductivity. Note that in this equation v is
the velocity of the fluid! Substituting this into (156) we find14

E =
c

4πσ
∇×B− 1

c
v ×B (163)

then substituting into (153) we find:

∂tB = ∇× (v ×B)−∇×
(
c2

4πσ
∇×B

)
Induction equation. (164)

13If the electrons are the charge carriers, then one should not put v in Ohm’s law,
but v−, the velocity of the electrons, which is slightly different because they have
drift velocities (if the positive and negative charges had exactly the same velocity,
there would be no current!). For example, considering the case ni = ne = n where n
is the number of carrier particles, (i.e., the number of ions is the same as the number
of electrons) and using J = nq(v+ − v−) where q is the charge of one particle and
assuming that v ' v+, i.e. the positive charges constitute the bulk of the mass (or
move with the bulk of the mass if the latter is made by a neutral component), one
obtains J = σ(E + (v−/c)×B) = σ(E + [v + (v− v−)/c]×B) = σ(E + (v/c)×B +
[J/(nqc)]×B). The extra term is called Hall effect. If furthermore one assumes that
also the ions can move differently from the neutrals, then one obtains an additional
term called ambipolar diffusion. These extra terms are usually small and we neglect
them in this course.

14Note that to be consistent with the approximation E ∼ (v/c)B we need
σ & c2/(vL). The conductivity cannot be too small.
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which for historical reasons15 is called the induction equation.
In the limit of σ → ∞ we obtain the so called ideal magnetohy-

drodynamics, and the induction equation becomes:

∂tB = ∇× (v ×B) Induction equation (ideal
MHD).

(165)

This corresponds to the limit in which our fluid is a perfect conductor.
Taking the limit the limit σ →∞ in equation (163) we find:

E +
1

c
v ×B = 0 (166)

The interpretation of this equation is simple. Recall from elementary
courses in electromagnetism that the electric field E vanishes in a con-
ductor at rest. In a conductor that moves, the total Lorentz force, not
the electric field, must vanish, which is what this equations says.

A word of caution. In astrophysics σ is often large enough that ideal
MHD is a useful approximation. Note however that in simple models
like the Drude model of electric conduction σ is essentially related to
collisions between electrons and more massive particles. σ → ∞ is then
the limit of no collisions, which means infinite mean free path. This is
in tension with our assumption that the mean free path is small with
respect to the size of a fluid element. Thus one must be careful in the
way one takes this limit, and what is kept constant.16 As remarked above
one may consider the mean free path to coincide with the Larmor radius

15A similar equation was used to describe the generation of voltages by changing
magnetic fields in coils.

16For example, in a simple Drude–like model there is a friction force due to collisions
proportional to their relative velocity. The friction force per unit volume is given by:

Ffr = −αnme

τ
(v+ − v−) (167)

where me is the mass of the electron, τ is the time between collisions, n is the electron
number density and α is a dimensionless parameter of order unity. In the same model
the conductivity is:

σ =
ne2τ

αme
. (168)

Using J = ne(v+ − v−) and imposing that the friction force must be of the order of
J×B/c, which is required for efficient coupling between the various species and the
MHD approximation to be valid, one obtains

nec

σ
∼ B (169)

If we want B to remain finite in the σ →∞ limit, we need to take n to infinity!
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rather than with the value derived from collisions, but since this only
works in the direction perpendicular to the magnetic field it is less clear
that the theory remains valid and it is also less clear how the momentum
transfers works in this case. Another way by which electron and ions can
transfer energy between them and with a possible neutral component
is through collective effects (think of the sea of electrons in a metal),
discussion of which is outside the scope of the present notes. Thus while
it is useful to consider ideal MHD in situations in which the timescale
associated with magnetic diffusion is small compared to the dynamical
timescale of interest, the limit of pure ideal MHD must be considered
with caution.

The Euler MHD equation (159), the continuity equation (6) and the
induction equation (164), plus one further condition, for example the
incompressibility condition (27), or a barotropic condition (29), or an
energy equation analogous to (22), form a complete system of equations
for the quantities ρ, v, B. In ideal MHD it can be shown (see Section
2.6) that there are no dissipations related to B, and therefore one could
take (22) to be valid. In the presence of a finite σ instead, one must
account for the associated dissipations and write an equation analogous
to (134) (see equation 202).

Note that B is the only new quantity that appears in the final set
of equations with respect to the hydrodynamics case. The electric field
never enters the final set of equations. However it does not mean that
there isn’t an electric field, or that it is negligible. But it is given by
(163) and therefore can be always written in terms of B. The electric
field is important in the transfer of energy between fields and fluid (see
Section 2.7). The current J also does not appear explicitly, but can be
calculated once we know B from (156).

What about the second Maxwell equation, ∇ · B = 0? Note that
if this condition is satisfied at the initial time, taking the divergence of
(164) shows it will be always satisfied. Hence we only need to impose it
in our initial conditions, and it constitutes a constraint on how we can
set them up.

We can check the self–consistency of our approximations by using the
electric field given by (163) and then the first Maxwell equation (151) to
calculate the electric charge and see whether (150) is satisfied. Taking
the divergence of (163), the first term vanishes because the divergence
of the curl is identically zero, so we find ρe ∼ ∇ · E ∼ vB/(Lc). Then
using (156) we find B ∼ LJ/c, hence ρev ∼ (v/c)2J , which is (150), and
everything is ok. Note that apart from such checks, the first Maxwell
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equation (151) is not used in MHD to derive any conclusion and can be
taken as a definition of the charge density. From a purely mathematical
point of view, the electric field can be considered as defined by (163).

2.2 Magnetic tension

We have seen that the magnetic force in the MHD Euler equation (161)
is

FL =
1

c
J×B = − 1

8π
∇B2 +

1

4π
(B ·∇) B (170)

The first term clearly acts like a sort of magnetic pressure. The second
term vanishes when the magnetic field does not change along its own
direction.

There is a way to rewrite (170) that makes its interpretation more
clear. Write the magnetic field as

B = Bŝ (171)

where ŝ(x, t) is the unit vector in the direction of B. Then one can
rewrite the Lorentz force as

− 1

8π
∇B2 +

1

4π
(B ·∇) B = − 1

8π
∇B2 +

1

8π
ŝ
(
ŝ ·∇B2

)
+
B2

4π
(ŝ ·∇)ŝ

(172)

= − 1

8π
∇⊥B2 +

B2

4π
(ŝ ·∇)ŝ (173)

where ∇⊥ = ∇− ŝ(ŝ ·∇) is the projection of the gradient operator in

B

n̂

R

ŝ

Figure 8: Magnetic tension.the direction perpendicular to ŝ. The vector (ŝ ·∇)ŝ is perpendicular to
ŝ. This is clear since all the other terms in the same equation, the total
Lorentz force and the term ∇⊥B2, are perpendicular to ŝ.17 Since (ŝ ·∇)
is the projection of the gradient operator along ŝ, (ŝ ·∇)ŝ is the rate of
change of ŝ along its own direction. Since ŝ cannot change in modulus
but only in direction, this must be related to the local curvature of the
magnetic field line. It can actually be taken to be the definition of such
curvature. For a circle of radius R, ŝ = êφ, so (ŝ ·∇)ŝ = êφ(1/R) ·∂φêφ =
−1/RêR. Hence one finds that

(ŝ ·∇)ŝ =
1

R
n̂ (174)

17It can also be proved by showing that the scalar product between ŝ and (ŝ ·∇)ŝ
is zero. Deriving ŝ · ŝ = sjsj = 1 we find sj∂isj = 0. Hence ŝ · [(ŝ ·∇)ŝ] = sj [si∂isj ] =
si[sj∂isj ] = 0.
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where R is the radius of the circle that has the same curvature as the
magnetic field line at the given point and n̂ is the direction perpendicular
to ŝ in the direction “inside” the curvature (see Fig. 8). Thus in summary
the Lorentz force can be rewritten:

FL = − 1

8π
∇⊥B2 +

B2

4πR
n̂ (175)

Now it is clear how we should interpret these terms. The first term is
a magnetic pressure that acts only in the direction perpendicular to
the magnetic field. A bundle of magnetic field lines does not like to be
squeezed. The second term says that the magnetic field does not like to
be curved, and there is a restoring force which tries to bring it straight.
It is a sort of magnetic tension. It is similar to the force that restores a
violin string under tension. Waves can propagate along these “magnetic
strings”, and they are called Alfvén waves (see Section 5.6).

2.3 Magnetic flux freezing

One of the most useful concepts to intuitively visualise what happens
to the magnetic field during the flow is that of flux freezing. In ideal
MHD, the induction equation is given by (165):

∂tB = ∇× (v ×B) (176)

to prove flux freezing we need to “uncurl” this equation to bring it to the
form (98). Recall from the electromagnetism course that thanks to the
fact that ∇ · B = 0 one can always represent B as the curl of a vector
field:

∇×A = B (177)

where A is called vector potential. This is not defined uniquely. Many
possible equally good choices are possible for the vector potential. All
the possible vector potentials are related by an equation of the type:

A′ = A + ∇f (178)

This freedom in the choice of A is known as gauge invariance. We choose
the gauge in the following way. Pick any A that satisfies (177) at the
initial time. Then define A to be the one that satisfies the following
equation:

∂tA = v × (∇×A) + ∇f (179)

where f is a given function. Is this a legit choice? Yes, because if
∇ ×A = B at t = 0, taking the curl of (179) implies that this will be
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satisfied at all times (by comparison with 176 the evolution of ∇×A and
B is the same). Hence this defines a good possible gauge for A. Actually
by varying f you can obtain all the possible gauges. Equation (179)
is exactly the same as (98), hence the theorem proved in that section
applies. Therefore we obtain that the magnetic flux (equation 107)

ΦB(t) =

∮
S

(∇×A) · dS (180)

=

∮
S

B · dS. (181)

is constant as the open area S moves with the fluid, i.e.

DΦB(t)

Dt
= 0. (182)

It is intuitively useful to consider a bundle of magnetic field lines.
Since ∇ · B = 0, field lines never end or start at any point, but they
either extend to infinity or form closed loops. One can follow such lines
either until they close or to infinity, and divide space into a collection
of flux bundles. These flux bundles move as if they are“frozen” in the
fluid. If two fluid elements are connected by a field line, they will always
remain connected by a field line in the limit of ideal MHD. The induction
equation is the one that describes how such bundles move with the flow.

(a)

(b)

(c)

Figure 9: Illustration of flux
freezing. (a) A straight col-
umn of magnetic field lines.
(b) Magnetic configuration
after bending the column.
(c) Magnetic configuration
after twisting the column.

When the conductivity is finite, (182) does not hold. In this case,
an extra term will describe the “diffusion” of magnetic field due to the
finite conductivity of the fluid. Field lines “diffuse” out of flux bundles,
and flux bundles cannot be labeled in a time-independent way anymore.
If two fluid elements are connected by a field line at a certain time, it is
not true anymore that they will always remain connected by a field line.
This allows the topology of magnetic field to change in ways that are not
possible in ideal MHD, and this is related to the phenomenon of mag-
netic reconnection. In astrophysics, the conductivity is high enough
that intuition based on ideal MHD is often useful as a first step, but
there are processes in which magnetic diffusion plays an important role,
for example magnetic reconnection processes are believed to be behind
the sudden releases of energy during solar flares.

2.4 Magnetic field amplification

According to equation (164), if B is zero everywhere at the beginning, it
will always remain zero. What if there is a small magnetic field at the
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beginning? Can it be amplified? Consider the induction equation in the
limit of ideal MHD (165). Using identity (50) and then substituting ∇ ·v
from the continuity equation in the form (73) we can rewrite it as18

D

Dt

(
B

ρ

)
=

[(
B

ρ

)
·∇
]

v (183)

since B ·∇ projects the gradient operator multiplied by |B| along the
magnetic field lines, this equation means that if v increases in the di-
rection of the magnetic field then B/ρ increases. Consider for simplicity
the incompressible case in which ρ = constant, so that we can simplify
it from equation (183). It is not difficult to devise examples in which a
given v(x, t) leads to magnetic field amplification (see Problem 2).

In a situation in which the fluid is in turbulent motion, magnetic
fields entrained in the fluids are stretched and folded by the fluid motion,
and are amplified in the process. Mechanical energy is converted into
magnetic fields. This is the basic principle of magnetic dynamos. This
is how it is believed that the Earth maintains its magnetic field. Magnetic
dynamos are thought to be widespread in the universe, for example inside
stars, in the interstellar medium, and in the launching of astrophysical
jets. The ability of the magnetic fields to “feed” on the fluid flow energy
explains why magnetic fields are so ubiquitous in the universe.19

18These are similar to the steps used in going from equation (91) to (94).
19Magnetic fields are indeed ubiquitous in the universe. Most planets, including the

Earth, possess magnetic fields. In the Solar system, the intensities of these magnetic
fields have been measured by sending spacecrafts carrying magnetometers near every
planet. The intensities range from ∼ 3.5 × 10−3 gauss at the poles for Mercury to
∼ 0.6 gauss at the poles for Earth to ∼ 8 gauss at the poles for Jupiter. The Sun
has long been known to possess magnetic fields, with intensity ∼ 1 gauss at the
poles, which rises to ∼ 3000 gauss at sunspots. Other main sequence stars also have
magnetic fields, which can be measured through the Zeeman effect: when the atoms
in their atmospheres are within a magnetic field, their aborption lines become split
into multiple, closely spaced lines, and the spacing depends on the intensity of the
magnetic field. White dwarfs have magnetic fields of ∼ 107 to 108 gauss, pulsars of
∼ 1012 gauss and magnetars, a type of neutron star with particularly strong magnetic
fields, can reach 1015 gauss. Magnetic fields are present in the interstellar medium.
The disk of our Galaxy is permeated by a field which is about ∼ 1–100× 10−6 gauss
near the Sun and increases to ∼ 10–1000× 10−6 in the Galactic centre regions. This
is known i) more indirectly through the observation that dust grains can polarise the
light from stars behind them, and can emit themselves polarised infrared light ii)
more directly through the observations of the Zeeman splitting of some radio lines,
like the 21 cm line of hydrogen iii) through the observation of synchrotron emission,
which is produced by electrons revolving around magnetic fields. A number of other
astrophysical objects, including supernovae remnants, jets, accretion discs, external
galaxies quasars, cluster of galaxies are also known to possess magnetic fields.
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Magnetic dissipation, due to finite conductivity, opposes amplifica-
tions and damps fields down. Thus in general one has to compare dissi-
pation with amplification to see whether fields will increase or decrease.
An equilibrium may be reached, in which dissipation balances amplifi-
cation in a turbulent medium. Finally, note that we have not discussed
how an initial magnetic field is generated. This is the topic of Astro-
physical batteries. We will not discuss this topic here, but we merely
point out that, when even the tiniest current is present, fields can be
amplified. A state with no current does not seem a particularly stable
one in a turbulent medium.

2.5 Conservation of momentum

Recall from your course in electrodynamics that, using only the Maxwell
equations and nothing else, one can prove the following relation:

∂t([pfields]i) = ∂jMij − [FL]i (184)

where

FL = ρeE +
1

c
J×B (185)

is the Lorentz force per unit volume,

Mij =
1

4π

[
EiEj +BiBj −

1

2

(
E2 +B2

)
δij

]
(186)

is known as the Maxwell stress tensor and

pfields =
1

4πc
E×B (187)

is interpreted as the momentum stored in electric and magnetic fields.
Equation (184) is a statement of the conservation of momentum of

electromagnetic fields. If you integrate it over a volume V , it says that
the change in momentum of the fields, ∂t(pfields), is due to two things i)
outflow of momentum through the surface bounding the volume, which
can be calculated from the Maxwell stress tensor ii) momentum that has
been given to the charges through the Lorentz force. This equation is
derived from the Maxwell’s equation alone, and therefore it must be valid
in MHD.

We can neglect some terms. Under our approximations we have al-
ready seen that we can approximate the Lorentz force as FL ' (1/c) J×B
(equation 158). Using E ∼ (v/c)B (equation 155) and throwing away

48



terms that are of order (v/c)2 we can approximate the Maxwell stress
tensor as:

Mij '
1

4π

[
BiBj −

1

2
B2δij

]
(188)

We also note that pfields is of order (v/c)2 compared to other terms in
(184). Thus we can rewrite this equation as

∂jMij =
1

c
[J×B]i (189)

which can also be proved directly using (156) and that ∇ ·B = 0. Now
take the Euler MHD equation (161) and rewrite it as (follow similar
passages as in Section 1.8):

∂t(ρvi) = −∂j [(ρvi)vj + δijP ] +
1

c
[J×B]i (190)

Using (189) we can rewrite this as:

∂t(ρvi) = −∂j [(ρvi)vj + δijP ] + ∂jMij (191)

which is a statement of momentum conservation for the fluid. Note
that under our approximations the momentum contained in the fields is
negligible, but might be present in a more general theory.

2.6 Conservation of energy

Recall from your course in electrodynamics that, using only the Maxwell
equations and nothing else, one can prove the Poynting theorem, which
states that:

∂t (ufields) = −∇ · S− J · E (192)

where

ufields =
1

8π

(
E2 +B2

)
(193)

is the energy of the fields per unit volume, J ·E is the rate at which the
fields do work on charges per unit volume and

S =
c

4π
(E×B) (194)

is the Poynting vector.
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Under our approximations and neglecting terms of order (v/c)2, we
can rewrite Poynting theorem as (use 156 to substitute J and then the
expression for E given by 163):

∂t

(
1

8π
B2

)
= −∇ · S− J · E (195)

= −∇ · S−
( c

4π

)2 1

σ
|∇×B|2 + vi∂jMij (196)

This equation describes how the energy stored in the magnetic field
changes with time. It can also be proved directly by using (156) and
(163). The energy stored in the electric field is negligible.

Now let’s find the equation that describes how the kinetic energy of
the fluid changes. Taking the scalar product between v and the MHD
Euler equation (161), assuming Φ = 0 for simplicity, after some manipu-
lations and using the continuity equation one arrives at:

∂t

[
ρv2

2

]
+ ∇ ·

[(
ρv2

2
+ P

)
v

]
= P (∇ · v) +

1

c
v · (J×B) (197)

= P (∇ · v)− v ·∇
(
B2

8π

)
+ v · 1

4π
(B ·∇) B

(198)

= P (∇ · v)− vi∂jMij (199)

where Mij is given by (188) and in the last step we have used ∇ ·B = 0.
Summing (196) and (199) the term vi∂jMij cancels out and we find

∂t

(
ρv2

2
+

1

8π
B2

)
+∇·

[(
ρv2

2
+ P

)
v + S

]
= P (∇·v)−

( c

4π

)2 1

σ
|∇×B|2

(200)
The interpretation of the various terms is now clear. The term vi∂jMij

appears with opposite signs in the change of energy of the fields and in
the change of kinetic energy of the fluid. What one gains, the other loses.
Hence it is the transfer of energy between these two components. The
term ∇ · S, when integrated over a finite volume, denotes the energy
stored in fields that outflows from the bounding surface and goes into an
adjacent volume.

The term ( c

4π

)2 1

σ
|∇×B|2 (201)

has always the same sign and therefore represents a loss of magnetic
energy. It doesn’t go into kinetic energy. Hence it must go into internal
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energy, and represents the energy dissipated per unit volume due to finite
electric conductivity. Using the first law of thermodynamics then one sees
that the replacement of (134) in case there is resistive dissipation is (note
that we do not derive this equation, we impose it):

MHD equation of heat
transfer.

ρT
Ds

Dt
=
( c

4π

)2 1

σ
|∇×B|2 (202)

Using this last equation one can finally obtain a statement of the total
conservation of energy:

∂t

(
ρv2

2
+

P

γ − 1
+

1

8π
B2

)
+ ∇ ·

[(
ρv2

2
+ P +

P

γ − 1

)
v + S

]
= 0

(203)
There are three types of energy in MHD: the kinetic energy of the fluid
elements, the internal energy of the fluid elements, and the energy stored
in the magnetic field. The three terms in the time derivative on the LHS
are these three contributions respectively. Of course, this equation and
(202) and therefore (203) are not valid in case we consider an incom-
pressible or isothermal gas, while the equations preceding (202) in this
section are always valid.

2.7 How is energy transferred from fluid to fields if
the magnetic force does no work?

A magnetic field exerts on a charged particle a force that is directed
perpendicular to the velocity of the charged particle. This means that
the force exerted by the magnetic field cannot do work on the particle. In
our calculations, we have approximated the Lorentz force by keeping only
the magnetic contribution, which arises from magnetic forces exerted on
charged particles. Since this is the only way that matters interacts with
the fields, one might come to the conclusion that fields cannot exchange
energy with the fluid. This conclusion is wrong. Indeed, we have found
that field and fluids can exchange energy, even in the limit of ideal MHD.
The rate at which kinetic energy is converted into magnetic fields is given
by (equation 197):

1

c
v · (J×B) = −vi∂jMij (204)

This transfer happens through the magnetic force, J × B. How is this
possible if the magnetic force does no work on particles?

To understand this, let us first consider the situation depicted in Fig.
10 which may be familiar from your electromagnetism course. A circuit
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is made by a U-shaped conducting wire and a conducting rod of length
L which can slide without friction. A uniform, external magnetic field B
points inside the page. The rod is pulled to the right by you at constant

vB I L

Figure 10: A closed circuit
with a conducting rod that
slides at constant velocity
v immersed in a constant
magnetic field pointing into
the page.

velocity v = vêx. The way to deal with this situation that might look
familiar from your EM course is something like the following. You say
that there will be an induced current I in the circuit. Hence there will be
a “magnetic force” of magnitude F = BLI directed to the left. This force
is directed parallel to v, so it certainly looks like it is doing work. But
the magnetic force is perpendicular to the velocity of moving charges, so
it cannot do work! What’s going on here? Is the magnetic force doing
work or not? If not, what is it?

For simplicity, we assume that the moving charges are negative elec-
trons, while positive charges are glued to the bulk of the rod and move
with it. The important point to realise is that there are two compo-
nents to the electrons velocity u = vêx − vdriftêy: a horizontal compo-
nent v to the right and a vertical velocity vdrift which gives the current
along the rod. This means that the magnetic force FB = eu × B =
−evBêy − evdriftBêx where e > 0 is the charge of an electron points
down and to the left as shown in the diagram in Fig. 11. The other
forces acting on an electron are the force that you exert on the rod Fyou

(which we assume the rod can transmit to the electrons as if it has some
kind of “frictionless walls”) and the resistive force FR that the electrons
feel because they are moving at a different velocity with respect to the
bulk of the rod and to the positive charges. There must be such a force,
because the electrons are moving at a constant velocity, hence the total
force on them must be zero.

u

Fyou

FB

FR

Figure 11: Forces acting on
an electron inside the rod.

Which forces do work? The magnetic force clearly does no work
because it’s perpendicular to u. The force you exert and the resistance
force both do work, and if the total force is zero the two rates must be
equal and opposite. Thus you do the work, which is entirely dissipated
within the rod by the resistive force. The magnetic field only acts as
a “mediator”, exactly like the normal force is a mediator if you push
with a horizontal force a block up a frictionless inclined plane in the
presence of gravity, Fig. 12. The normal force does no work, and you are
pushing the block horizontally, yet it goes up thanks to the mediation
of the normal force which converts your horizontal push into a vertical
push against gravity. In the wire, you push the electrons to the right,
and they “climb” against the resistive force, vertically down the rod. In
this analogy, N corresponds to FB and Fg to FR.

u
Fyou

Fg

N

Figure 12: Analogy between
forces on electrons in the
rod and an inclined plane.

If you now make the MHD connection and imagine that the rod is
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actually a fluid element immersed in a MHD fluid, and your push is
actually the push of neighbouring fluid elements, you see that in this
example all the push the fluid element gets from his neighbours would
be dissipated and would go into heat. However, in MHD you also have
electric fields although they never enter explicitly into the final equations.
In ideal MHD, you know that this is given by equation (166). If you
extend the rod example and add this electric field acting on the rod and
repeat the analysis, you see that the electric force FE = −eE = ev×B =
evBêy acting on an electron exactly balances the vertical component of
the magnetic force! So you don’t need the resistive force anymore to
keep the total force on an electron to be zero. In this case, the push on
a fluid element by its neighbour does work against the electric field, and
therefore this energy goes into energy of the fields. This is exactly the
same as the inclined plane analogy, by pushing the block horizontally you
are actually increasing its gravitational potential energy, where gravity
plays the role of the electric field! This is how energy is transferred from
the fluid kinetic energy to the fields energy in MHD. Magnetic forces do
no work, only acts as mediators.

In the case of finite conductivity and in the presence of electric fields
you have a mixed situation in which part of your work will go into in-
creasing the energy stored in the fields, and part will be dissipated.

Note that the presence of the electric field it is essential for trans-
ferring energy between fields and matter, although it never appears ex-
plicitly in the MHD equations. While the electric part of the Lorentz
force can be neglected on the fluid element as a whole, because the net
charge is negligibly small, the electric force cannot be neglected when we
consider positive and negative charges separately.

In the above we assumed that Fyou can transmit the force you exert
on the rod to the electrons as if it has some kind of “frictionless walls”. In
a fluid, this is the same as assuming that one fluid element exerts forces
(such as pressure) on the one adjacent to it only through electrons, which
of course is not really true. In the rod, charges can accumulate on the
sides giving rise to a horizontal electric field who does this force (this is
the Hall effect). In a fluid, one must model how the electrons and ions
exchange momentum between them, and possibly with the neutral par-
ticles (if present). For example, if one assumes that there is some kind of
friction between different components proportional to their relative ve-
locity (as in Drude model of electric conduction), one finds that electrons
must have a horizontal component of vdrift which must be accounted for,
otherwise the friction force would be zero and the force balance would

53



not be possible. Other collective forces may be present, for example in a
metal, felt by the “sea of electrons”. However, these topics lie outside the
scope of the present lecture notes, and the reader is referred to a more
specialised treatment.

2.8 Summary

The MHD equations are

∂tρ+ ∇ · (ρv) = 0 (205)

ρ
Dv

Dt
= −∇

(
P +

B2

8π

)
− ρ∇Φ +

1

4π
(B ·∇) B (206)

∂tB = ∇× (v ×B)−∇×
(
c2

4πσ
∇×B

)
(207)

Similarly to the purely hydrodynamic case, these alone are not enough
to uniquely specify the time evolution and must be complemented by
another equation. Possible choices include:

∇ · v = 0 incompressible (208)

P = P (ρ) barotropic (209)

ρT
Ds

Dt
=
( c

4π

)2 1

σ
|∇×B|2 equation of heat transfer (210)

In the limit of ideal MHD, σ →∞, the induction equation reduces to

∂tB = ∇× (v ×B) (211)

and the equation of heat transfer reduces to

D

Dt

(
logPρ−γ

)
= 0. (212)

3 Hydrostatic equilibrium

3.1 Polytropic spheres

Consider the hydrostatic equilibrium of a self–gravitating sphere with a
polytropic equation of state:

P = Kργ (213)

54



Polytropic models have been the primary models for the discussion of
stellar interiors for a long time in the early days of astrophysics, when
one of the major concerns was the internal structure of the Sun.20 This
framework has been eventually superseded by the modern equations of
stellar structure, which include the important effects of energy trans-
port within the star.21 This also happened thanks to the availability
of computers who could finally solve these equations in a practical way.
Nowadays, polytropic models are still useful in describing the structure of
white dwarfs and the dense degenerate cores that appear in some stages
of stellar evolution. They are also a reasonable approximation in fully
convective stars. The main reason why we study them is because they
are instructive, elegant and simple.

The equation of hydrostatic equilibrium is:

1

ρ
∇P = −∇Φ (214)

where Φ is the potential self–generated by the sphere, given by

∇Φ =
GM(r)

r2
(215)

and M(r) is the mass within radius r,

M(r) =

∫ r

0

ρ 4πr2dr (216)

Substituting (213) and (215) into (214) we get

γKr2ργ−2 dρ

dr
= −GM(r) (217)

and differentiating this last equation

γK
d

dr

(
r2ργ−2 dρ

dr

)
= −G 4πρr2 (218)

This equation can be reduced to dimensionless form by writing

γ = 1 +
1

n
(219)

ρ = ρcθ
n (220)

r = aξ (221)

20The theory was initiated by Lane in 1869 and reached its most complete form
in Emden’s book Gaskugeln published in 1907. Then it has continued to be be used
until the 1950s.

21Remember also that at the beginning of 1900 people believed that stars derive
their energy of radiation from work done by gravity as they contract.
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where n is the polytropic index (see also discussion below equation 29),
ρc is the central density, θ is a new dimensionless variable which replaces
ρ, a is a characteristic length to be determined and ξ is a dimensionless
radius. Substituting in (218) we find:

1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
= −

[
4πGρ

1−1/n
c a2

(n+ 1)K

]
θn (222)

To make equations look nice we choose a such that the quantity between
parentheses is unity, i.e.

a2 =
(n+ 1)K

4πGρ
1−1/n
c

(223)

note that a has dimensions of length and is the typical length-scale of
the problem. We obtain

Lane-Emden equation.
1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
= −θn (224)

this is known as the Lane-Emden equation.

This equation is usually solved under the following boundary condi-
tions:

θ(0) = 1 by the definition of θ in equation (220). (225)

θ′(0) = 0 because we require no density “cusp” at the center. (226)

where the superscript ′ indicates derivative with respect to ξ.

The Lane-Emden equation can be solved analytically only in the par-
ticular cases n = 0, 1 and 5, not for general n (see Problem 1). In all
other cases, it must be solved numerically. Fig. 13 shows the solution of
the Lane-Emden equation for a bunch of values of n. It is found that for
n < 5 the solutions decrease monotonically and have a zero at ξ = ξmax,
i.e. θ(ξmax) = 0. At this radius the density vanishes and the hypothet-
ical star “ends”. For n > 5 the solutions are infinite, i.e. ξmax = ∞,
the density never vanishes the star formally extends to infinity! Thus,
if such a star is truncated at some radius and outside there is void, the
outer layers will start expanding unless there is a confinement pressure.
The need of a confinement pressure to prevent the gas of the outer layers
from flying away is at the origin of stellar winds (see Section 4.1).
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Figure 13: Solutions of the Lane-Emden equation (224) for different val-
ues of n. From bottom to top: n = 0, 1, 2, 3, 4, 5, 10. For n < 5 the
solutions cross the line θ = 0 at increasingly large radii, while they never
cross it for n ≥ 5.

We can find a nice expression for the total mass of the star:

M =

∫ R

0

ρ 4πr2dr (227)

=

∫ ξmax

0

(ρcθ
n) 4π(aξ)2d(aξ) (228)

= 4πρca
3

∫ ξmax

0

θn ξ2dξ (229)

= −4πρca
3

∫ ξmax

0

d

dξ

(
ξ2 dθ

dξ

)
dξ By Eq. (224) (230)

= 4πρca
3ξ2

max

∣∣∣∣dθdξ

∣∣∣∣
ξ=ξmax

(231)

= 4π

[
(n+ 1)K

4πG

]3/2

ρ(3−n)/2n
c ξ2

max

∣∣∣∣dθdξ

∣∣∣∣
ξ=ξmax

(232)

The radius of the star is given by

R = aξmax =

[
(n+ 1)K

4πG

]1/2

ρ(1−n)/2n
c ξmax (233)

57



n ξ2
max |dθ/dξ|ξ=ξmax

0 4.8960
1/2 3.7884
1 3.1416

3/2 2.7141
2 2.4111

5/2 2.1872
3 2.0182

7/2 1.8906
4 1.7972

9/2 1.7378
5 1.7320

Table 1

Once we know the value of ξmax and ξ2
max |dθ/dξ|ξ=ξmax

we can calcu-
late the mass of the star and its radius as a function of its central density.
Table 1 gives values of the quantity ξ2

max |dθ/dξ|ξ=ξmax
for various values

of n (for n > 5 it is infinite!).
Eliminating ρc from (232) and (233) gives the mass–radius relation

for a polytrope:

M = 4πR(3−n)/(1−n)

[
(n+ 1)K

4πG

]n/(n−1)

ξ(3−n)/(1−n)
max ξ2

max

∣∣∣∣dθdξ

∣∣∣∣
ξ=ξmax

(234)
White dwarfs are sustained by a gas of degenerate electrons (the

pressure of the atomic nuclei is negligible in white dwarfs. The density is
not high enough to make them degenerate). A gas of degenerate electrons
has a polytropic equation of state both in the non–relativistic limit, in
which n = 3/2 (γ = 5/3), and in the ultra–relativistic limit, in which
n = 3 (γ = 4/3) (see for example the book by Shapiro & Teukolsky, The
physics of compact objects).

Imagine constructing white dwarfs by slowly increasing the value of
the central density ρc. At first the gas is non–relativistic and the larger
the value of ρc the larger the stellar massM (n = 3/2 in equation 232). At
the same time, the radius of the star decreases (equation 234). Hence the
electrons become more and more packed, until they become relativistic
and n→ 3. For this value of n, we see from (232) that the mass of a star
does not depend on the central density ρc! Hence the mass of the star
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tends to a finite value as ρc → ∞. The mass of a white dwarf cannot
exceed this value. This limiting mass is called the Chandrasekhar Mass,
and it can be evaluated using the value ξ2

max |dθ/dξ|ξ=ξmax
= 2.0182 for

n = 3 from Table (1) and that for a gas of relativistic degenerate electrons
the equation of state is:

P =
~c(3π2)1/3

4
n4/3

e (235)

where ne is the number density of electrons, ~ is the Planck constant and
c is the speed of light. The total density ρ is related to the number of
electrons by ρ = neµemp, where mp is the mass of the proton and µe is
the average molecular weight per electron in units of the proton mass,
which depends upon the chemical composition of the star. A typical
value is µe = 2. Using this we calculate the value of K as

K =
~c(3π2)1/3

4

(
1

µemp

)4/3

(236)

Hence the Chandrasekhar mass is

MCh =
(3π)1/2

2

(
~c
G

)3/2(
1

µemp

)2

ξ2
max

∣∣∣∣dθdξ

∣∣∣∣
ξ=ξmax

' 1.44M� (237)

The existence of this upper mass limit for white dwarfs is what leads to
the production of neutron stars and black holes.

3.2 The isothermal sphere

The analysis of Section 3.1 does not work for the particular case γ = 1,
which corresponds to n → ∞. This case must be treated separately.
γ = 1 corresponds to the T = constant in the ideal gas equation of
state (16). For this reason, the solutions obtained in this case are called
isothermal spheres.

Writing the equation of state as

P = c2
sρ (238)

where c2
s = kT/µ is a constant, substituting into the condition of hydro-

static equilibrium (214) and using the gravitational potential given by
(215) we find:

r2 c
2
s

ρ

dρ

dr
= −GM(r) (239)
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And differentiating this equation we find (use 216 for the right hand side)

c2
s

(
r2 1

ρ

dρ

dr

)
= −4πGr2ρ (240)

This equation can be reduced to dimensionless form by writing

ρ = ρc exp (−ψ) (241)

r =

[
c2

s

4πGρc

]1/2

ξ = aξ (242)

we obtain

Emden equation,
isothermal case.

1

ξ2

d

dξ

(
ξ2 dψ

dξ

)
= exp (−ψ) (243)

This is the analog of the Lane-Emden equation for the isothermal case.
The boundary conditions are

ψ(0) = 0 if ρc is the central density in equation (241). (244)

ψ′(0) = 0 if we require no density “cusp” at the center. (245)

The solution with these boundary conditions is shown in Fig. 14. It
is found that this solution has the following properties:

i ψ is monotonically increasing, so that the density is monotonically
decreasing with radius (equation 241).

ii Near the origin the solution behaves as

ψ ' ξ2

6
(ξ → 0). (246)

iii Far from the origin the solution behaves as

ψ ' log

(
ξ2

2

)
(ξ →∞). (247)
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Figure 14: Solution of the equation (243).

Proof of the properties To give you a taste of how astronomers used
to deal with such equations before computers became cheap, let us prove
these statements. Property (ii) can be proved by assuming an expansion
of the form

ψ = aξ2 + bξ3 + cξ4 + . . . (248)

in the vicinity of ξ = 0 and, after substituting in (243), equating the
coefficients of equal powers of ξ. To prove property (i) note that according
to (243) the quantity

d

dξ

(
ξ2 dψ

dξ

)
(249)

is always positive. Hence, the quantity ξ2dψ/dξ is monotonically increas-
ing and in particular if it starts positive it remains positive, which means
that dψ/dξ is always positive, which means that ψ is monotonically in-
creasing. To prove property (iii) let us first prove that ψ →∞ as ξ →∞.
Assume by absurdum that ψ → A where A is a positive number (this
is the only other possibility, ψ must tend to something because we have
just shown that it is monotonically increasing). Then it exists a ξ0 such
that for ξ > ξ0 the right hand side of equation (243) is always greater
than a positive constant B and we can write:

d

dξ

(
ξ2 dψ

dξ

)
> ξ2B (250)

Integrating this equation we find that dψ/dξ → ∞ as ξ → ∞, which
implies ψ → ∞, hence the absurdum. This proves that ψ → ∞ as
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ξ →∞. Now perform the following substitution in equation (243)

t = log ξ (251)

x = −ψ + 2t− log 2 (252)

we obtain
d2x

dt2
+

dx

dt
+ 2 expx− 2 = 0 (253)

This is just the equation of a damped one–dimensional particle which
moves in the potential V (x) = 2 exp(x)−2x. The term dx/dt is a friction
proportional to speed. The potential V (x) has one global minimum at
x = 0 and tends to +∞ as x → ±∞. As t → ∞ a particle, whatever
its initial conditions, will just sit still at the minimum of V (x). Hence as
t→∞ we have that x ' 0. Going back to the original variables through
(251) and (252) this means that ψ ' log (ξ2/2) as ξ → ∞, which is
property (iii).

Note that (247) implies that at large radii the density behaves as

ρ ' 2ρc
ξ2

(r →∞) (254)

Hence an isothermal sphere of infinite radius has infinite mass!
Note also that the function

ψ = log

(
ξ2

2

)
(255)

is a solution of (243) in itself, although it does not respect the boundary
conditions above. The density profile corresponding to this solution is
called the singular isothermal sphere. The corresponding density
profile is ρ = 2ρc/ξ

2 and diverges at the origin. Obviously in this case
ρc does not have the meaning of central density. Note that despite the
divergence, the mass in a neighbourhood of the origin is finite. As ξ →
∞ the regular solution discussed above oscillates around this singular
solution.

3.3 Stability of polytropic and isothermal spheres

In the previous two sections we have found the hydrostatic equilibrium
of polytropic and isothermal spheres. We have done this for a polytropic
index going from n = 0 to n = ∞. The limit n = 0 corresponds to an
incompressible fluid (γ =∞), n =∞ to an isothermal fluid (γ = 1).
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A natural question is whether these spheres could collapse under their
own gravity. Gravity gets stronger at small radii, and if the supporting
pressure is too weak, one may conceive a runaway collapse. If we take one
of the states calculated in the previous sections and give it a little kick,
will it just crumble under its own gravity, or will it be able to support
it? In other words, are these stable or unstable equilibrium states?

Let us start with the case of a ball of incompressible fluid. Imagine
such a ball, self–gravitating and floating in vacuum. It is intuitive that
such a ball cannot collapse. Any gravitational force, however strong, can
be compensated by the pressure force. If you give the sphere a small
blow, you will find little waves running on the surface of the sphere, but
no collapse.

When n > 0 the answer is not so clear anymore. For an incompressible
fluid (n = 0), the tiniest increase in density means an infinite increase in
pressure. As n is increased, the equation of state “softens”, in the sense
that for the same increase in density (say, a factor of 2) you get a smaller
increase in pressure.

So, what happens for our spheres? If one carries out a linear stability
analysis22 one finds that for n < 3 (γ < 4/3) the system is stable, while
for n > 3 (γ > 4/3) the system is unstable. It is assumed here that
pressure and density fluctuations are connected by the relation (213).
This result can be obtained through a rigorous analysis, but there is a
simple heuristic argument that explains it. The argument goes as follows.

In an adiabatic flow (i.e., when 22 is satisfied), in the absence of
dissipation, each fluid element is like a little hermetic bag that can be
compressed and expanded. It can store internal energy when gets com-
pressed and later release it again when is re–expanded, like a little spring.
A big ball of gas is made by many of these little springs and so in this
sense is just a giant spherical spring. If this ball–spring is stiff enough, it
can resist collapse against gravity. To find out whether a ball for a given
γ can resist let’s ask: as the gas contracts, can the decrease in gravi-
tational potential energy keep up with the increase of internal potential
energy stored in our ball–spring?

Consider a constant ball of gas of constant mass M , constant density
ρ and volume V . The gravitational energy of a ball can be roughly

22Like for any other steady state, one can find the linear stability of polytropic
and isothermal spheres by the following steps: i) linearise the fluid equations around
the equilibrium state ii) find the eigenmodes of oscillation of the system around the
equilibrium state. If at least one eigenfrequency of these modes is such that the mode
increases exponentially in time, the system is unstable.
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estimated as

Ug =
GM2

R
(256)

while the total internal energy stored in the ball (which corresponds to
the “internal energy of the spring”) as (see equation 19)

Ui =
P

γ − 1
V (257)

where V = 4/3πR3 and the pressure is given by P = Kργ. Writing
ρ = M/V and putting all together we find

Ui =
KMγ

γ − 1

[
4π

3

]1−γ

R−3(γ−1) (258)

Hence the ratio between internal and gravitational energy is

Ui
Ug
∝ R−3γ+4 (259)

You see that if γ > 4/3, the internal energy grows faster than the gravi-
tational energy as R→ 0. This means that as the ball contracts, gravity
cannot supply enough energy. There cannot be collapse. The ball–spring
bounces back. When γ < 4/3, gravity can supply all the energy needed,
and the left–over goes into kinetic energy of the collapsing gas. This
heuristic argument explains the stability results stated above.

These results have a connection with the theory of stellar pulsation.
Variable stars like cepheids and RR Lyrae are radially pulsating stars.
One can calculate the modes of radial oscillations which are analogous to
standing sound waves in an organ pipe. In a star, the pipe is analogous
to a cylinder capped at one end (the centre of the star) but open at
the other (the surface of the star). As one might suspect based on the
results of this section, it turns out that pulsating stars are stable only if
γ > 4/3, while they are unstable if γ < 4/3. If you are interested in the
topic, have a look at the book by J. P. Cox, Theory of Stellar Pulsation,
Princeton University Press, (1980).

Further discussion. We can move one step further. We have assumed
above that pressure and density of the perturbations are connected by the
relation (213), where γ and K are the same constants used to calculate
the equilibrium state. However, this need not be necessarily the case.
We can imagine setting up an isothermal sphere, and when we give it a
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little kick its subsequent evolution will be such that each fluid element
evolves adiabatically according to (22). In this case there is no global
P = Kργ relation, but the constant K will be different for each fluid
element. I.e., this is an adiabatic but not isentropic flow. Physically
this means that when the sphere starts collapsing, the temperature of
the fluid elements will increase because they are compressed. Could this
rise in temperature halt collapse? Yes, if it’s high enough. When is it
high enough? The answer is γ > 4/3. To understand why, we can in
fact use again the argument above. The only difference is that now the
ball is made by many little springs that are not all equals, because they
have different scalings K. However, they have the same γ, which is what
matters. Hence, the way in which the internal energy scales is the same,
and the argument is still valid.

One more thing. We have seen that the isothermal sphere is stable
against adiabatic perturbations if γ > 4/3. This is because, contrary
to the case of purely isothermal perturbations, when the sphere starts
contracting, the temperature of fluid elements rises and the increased
pressure is enough to halt the collapse. However, what if there was
something able to remove some heat from these fluid elements, so that
their temperature (and therefore pressure) drops a bit? Could this re-
activate the collapse even for γ > 4/3? The answer is yes. This may
happen for example when a molecular cloud collapses to make a star. In
this case, the extra heat may be removed in the form of photons that
escape the system (radiative losses). There is another interesting case
where this may happen. During a typical collapse, the central parts are
contracted more and therefore they get hotter than the outer parts. If
there is a little bit of thermal conduction, some heat will be transported
from the inner parts to the outer parts. The inner parts will contract a bit
further, they will get even hotter, and the extra heat will be conducted
to the outer parts, and so on. Eventually, this process leads to collapse.
Heat continually flows out from the central parts to the outer parts. This
type of collapse is called gravothermal catastrophe. It is thought to
be relevant in the dynamics of globular clusters, where single stars are
considered gaseous particles, although the analogy only extends so far
since the mean free path for a star is larger than the size of the system
and so the fluid approximation breaks down. In these examples, the
speed of collapse is limited by the ability to remove heat from the centre,
i.e. by how fast thermal conduction or radiative losses are. If these are
slow, the collapse may happen through a sequence of equilibrium states,
and the timescale for collapse is not a dynamical time scale, it is the scale
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of heat removal.

Finally, let us comment the following question: are the isothermal
spheres a thermodynamic equilibrium? At first, it seems to be so; an
isothermal sphere is a sphere of constant temperature. Let us refine the
question: if you release N particles interacting only through Newtonian
gravity in a spherical box with reflecting walls and let the particles relax
for an infinite amount of time, do they settle into a truncated isother-
mal sphere? The short answer is no, they will eventually collapse to a
point. So isothermal spheres are not a thermodynamical equilibrium, at
least in a strict sense. They are only metastable states even in the purely
fluid sense, essentially because of the gravothermal catastrophe explained
above: any real such fluid with a non–zero thermal conduction will end up
with a centre that contracts indefinitely while the outer parts receive the
excess heat. However the fluid model is just an approximation of the N
body problem, because it cannot address what happens on scales smaller
than fluid elements, and fluid elements cannot really exchange particles.
A careful treatment of the N body problem would require a thermo-
dynamics of self–gravitating systems. Unfortunately, such a theory
has not been successfully developed yet. One of the main problems is
that gravity is a long–range force, so if you split a system in two you
cannot neglect their interaction energy, and the majority of the results
derived in standard thermodynamics are not valid. However, it is exper-
imentally found in simulations that if you release N particle, they spend
very long times in quasi–equilibrium configurations before collapsing to
a point, and these quasi–equilibrium states are more or less independent
of the initial conditions (given the total energy). The Navarro, Frenk
& White profiles are an example in the collisionless limit. This suggests
that there should be a simple statistical argument from which these equi-
librium states can be derived. However, this is an open problem. For an
introduction to this interesting problem, you can look for example at the
review by T. Padmanabhan Statistical mechanics of gravitating systems,
Physics reports, (1990) and papers that cite this article.

4 Spherical steady flows

4.1 Parker wind

The Sun has a solar wind which blows out of its surface. Material from
the million degree outer atmosphere of the Sun, the corona, continually
expands, eventually reaching supersonic velocities of ∼ 1000 km s−1. The
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solar wind causes comets to have a tail of gas (Fig. 15) pointing away
from the Sun. When the solar wind reaches the Earth it impacts against
its magnetic field, making it flapping. The solar wind sweeps out through
the solar system, eventually being halted at distances of the order of
102 AU by the feeble pressure of the interstellar medium. What is the
mechanism responsible for the solar wind?

Gas tail

Dust tail

Figure 15: Schematic illus-
tration of a comet orbit.
Gas and dust tails have dif-
ferent directions. The gas
tail points in the direction
away from the Sun because
of the solar wind.

Biermann (1948) was the first to point out that the observed tails of
comets could be explained by gas streaming at high speed outwards from
the Sun. Astronomers thought that, if such an outflow existed, magnetic
fields could be a key ingredient for an explanation. However, observations
suggested that the solar wind blows regardless of the existence or absence
of flares or the general level of magnetic activity of the Sun. This clue
indicated that the wind in its simplest form could be understood as a
purely hydrodynamical phenomenon.

At the time, astronomers thought that the tenuous atmosphere of
a star like the Sun was essentially in a hydrostatic equilibrium without
any radial motion. Parker (1958) realised that, if the temperature does
not decrease fast enough with radius, the pressure at infinity does not
vanish and therefore an external confinement pressure is required to keep
a static atmosphere from flying away. He showed that the interstellar
medium was not dense enough to provide this confinement pressure, and
argued that the only alternative was to admit that radial motions are
present. He went on to show that these motions must become supersonic
after a certain radius. Hence, much to the surprise of his contemporaries
that initially did not really believe him, he showed that the presence
of a supersonic expanding wind is not only possible, but is dynamical
necessary. Here we review his theory. Magnetic fields refine this picture,
but are not needed to understand the solar wind in its simplest form.

During our discussion we will assume that the gas is isothermal (see
equation 17) with sound speed cs = constant. This is only approximately
true in the Sun’s corona. In reality the temperature decreases with ra-
dius. However, the essence of the physical argument can be understood
within this simple approximation.

Necessity of radial motions First, let us show that for a spherical
stellar atmosphere in vacuum radial motions are not only possible but
necessary. Assume there are no radial motions and that the gravitational
potential is dominated by the central star (in other words, the contribu-
tion of the atmosphere to the potential is negligible). Then hydrostatic
equilibrium requires
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0 = −c
2
s

ρ

dρ

dr
− GM

r2
. (260)

Integrating this equation we find

ρ = ρ0 exp

(
GM

c2
sr

)
, (261)

where ρ0 is an integration constant, which cannot be zero otherwise ρ =
0 everywhere. Taking the limit r → ∞ we see that ρ, and therefore
the pressure, does not vanish at infinity. Hence, without a confinement
pressure this type of equilibrium is not possible, and we must admit the
presence of radial motions.

We have discussed this in the isothermal case. What if we drop this
assumption? Turns out that if the temperature drops too fast with ra-
dius, the pressure can go at zero at infinity, and this result does not hold
anymore. How fast does the temperature drops in the Sun’s atmosphere?
Parker estimated this by calculating how the heat produced in the so-
lar corona is dispersed through thermal conduction within the gas, and
showed that the temperature drops slowly enough that when the Sun’s
atmosphere meets the interstellar medium, the gas pressure is still high
enough that the interstellar medium cannot contain it. Hence the result
holds even in the non isothermal case. We don’t go into details here, and
refer the reader to the original articles (see end of the section).

Parker wind solution We assume spherical symmetry and that the
gas is in a steady state (∂t = 0). All quantities are functions of r only.
We assume a velocity field of the type:

v = v(r)êr. (262)

Under steady state conditions the mass outflow rate Ṁ does not de-
pend on r and is given by ρv times the surface area of a sphere:

Ṁ = 4πr2ρv = constant (263)

The Euler equation (15) in spherical coordinates gives:

v
dv

dr
= −c

2
s

ρ

dρ

dr
− GM

r2
(264)

Isolating ρ from (263) and substituting into (264) gives:

v
dv

dr
= c2

s

(
1

v

dv

dr
+

2

r

)
− GM

r2
(265)
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Defining the radius

rs =
GM

2c2
s

(266)

and rearranging, we can rewrite (265) as

dv

dr

(
v − c2

s

v

)
=

2c2
s

r

(
1− rs

r

)
(267)

which defining the dimensionless variables

r̃ =
r

rc

, ṽ =
v

cs

, (268)

can also be written in dimensionless form

dṽ

dr̃

(
ṽ − 1

ṽ

)
=

2

r̃

(
1− 1

r̃

)
(269)

We need to study the solutions to this equation. Integrating it we
obtain

ṽ2 − log ṽ2 = 4 log r̃ +
4

r̃
− C (270)

where C is a constant of integration. Once C is known, this equation
allows us in principle to find ṽ = ṽ(r̃), the velocity as a function of
radius. Each value of C corresponds to a different solution (actually to
two solutions, as we will see in a moment). How do we determine C?

Let us plot the solutions for different values of C, see Fig. 16. Given
C, for each value of r̃ there are either two or none values of ṽ2 which
satisfy equation (270). Hence for each value of C there are two possible
“branches”, i.e. two possible solutions ṽ(r̃) with ṽ > 0.23 Indeed, we see
in Fig. 16 each value of C corresponds to two solutions.

The solutions with C = 3 form an X-shaped cross that divides the
space in Fig. 16 in four parts. Solutions with C < 3 live above and below
the cross, while solutions with C > 3 live left and right. In the figure,
C = 2 is an example of the former, while C = 4 is an example of the
latter.

Note that if a transition from subsonic to supersonic occurs (i.e.
ṽ = 1 somewhere), it must happen at r̃ = 1. This is seen considering
equation (269). At a sonic point the left hand side is zero and therefore
the right hand side must too. The only other option is that at the sonic

23There are two symmetrical branches with v < 0, but we don’t consider them here!
These are accreting solutions that correspond to the Bondi problem, see 4.2.

69



0.0 0.5 1.0 1.5 2.0 2.5 3.0

r̃

0.0

0.5

1.0

1.5

2.0

2.5

3.0
ṽ
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Figure 16: Solutions to equation (270) for different values of C. The
parker wind solution corresponds to the solution with C = 3 which starts
subsonic at low radius. The red dashed horizontal line indicates the value
of the sound speed. The blue dotted horizontal line corresponds to the
Sun’s radius.

point dṽ/dr̃ = ∞, which is what happens in the C = 4 solutions. But
this is not physical and cannot happen in a real flow. Substituting ṽ = 1
and r̃ = 1 in equation (270) we also see that the two transonic solutions
correspond to C = 3.

To proceed and see which solutions are meaningful, we need to place
the Sun’s radius in the diagram of Fig. 16. Is the Sun surface bigger or
smaller than the critical radius? Let’s estimate it. The sound speed in
the solar corona is

cs =

√
kT

mH

∼ 105m s−1, (271)

where k = 1.38 × 10−23JK−1 is the Boltzmann constant, mH = 1.67 ×
10−27 kg is the mass of a hydrogen atom and T ∼ 106 K is the tem-
perature of the solar corona. Using the gravitational constant G =
6.67 × 10−11 m3 kg−1 s−2, the mass of the Sun M ' 2 × 1030 kg and the
radius of the Sun R� ' 6.957× 108 m we find

rc =
GM

2c2
s

∼ 5R� (272)

the critical radius is a few times the radius of the Sun. Hence r̃� =
R�/rc ' 0.2. This is indicated as the vertical blue dashed line in Fig.
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16.
Solutions like the C = 4 solutions in the figure are not of interest to

us. We need solutions that extend from the Sun’s radius to infinity, while
each of them does not exist for a certain range of r̃ around the critical
radius. The only way in which these solutions could have sense is that
the Sun’s radius is bigger than the critical radius, thereby intersecting
the right branch at some radius, but this is not the case.

Solutions like the upper C = 2 solution are also not of interest to us.
At the Sun’s surface, the gas velocity must be subsonic, while in these
solutions it is highly supersonic. Hence we discard these solutions. For a
similar reason, we discard the solution with C = 3 which crosses the red
dashed line from above.

The lower solutions with C = 2 are also not ok, because the pressure
at infinity does not vanish and hence they require a pressure confinement,
the same problem of the purely hydrostatic solution. (Indeed, even if
these solutions contain some motions, these are small and their density
profile is similar to hydrostatic equilibrium, which is why they are called
settling solutions). To see this, note that in these solutions ṽ never
exceeds the sound speed. Integrating equation (264) we find:

v2

2
= −c2

s log ρ+
GM

r
+ constant (273)

If by absurdum ρ → 0 in the limit r → ∞, then the logarithm would
diverge. But no other term in this equation can diverge, because the
velocity is limited from above! Hence the density must remain finite.

The only solution left is the C = 3 solution which starts subsonic
at the Sun’s surface, becomes supersonic at r̃ = 1 and then increases
its velocity without limit. This is known as Parker wind solution.
Nowadays, we know by direct observations that the Sun’s wind is subsonic
at small radii and supersonic at large radii, which confirms this is the
correct solution.

Taking the limit r →∞ in equation (270) we see that for this solution
the velocity at infinity goes like

ṽ2 ∼ 4 log r̃ (274)

substituting into (263) we see that the density at infinity goes like

ρ ∝ 1

r2 log r
(275)

Hence this solution does not require confinement pressure. This again
confirms this is the correct solution.
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The Parker solar wind problem has an analogy with the De Laval
Nozzle. In engineering, people are interested in accelerating gas from
subsonic to supersonic velocities using tubes with varying cross-sectional
area. It is well known that an ever-narrowing tube does not work. One
needs a tube that is first converging and then diverging, and the sonic
transition must happen at the point of minimum width. Such a nozzle is
called a De Laval Nozzle. The mathematics of this problem is essentially
equivalent to the Parker wind problem. The point of minimum width of
the nozzle corresponds to the critical radius rc. A discussion of the De
Laval Nozzle can be found for example in [2].

For more details the reader is referred for example to the free article on
Scholarpedia by Parker himself, available at http://www.scholarpedia.
org/article/Parker_Wind, and to the original articles, E. N. Parker,
1958, Dynamics of the interplanetary gas and magnetic field, Astrophys-
ical Journal 128, 644–676. and E. N. Parker, 1965, The dynamical theory
of the solar wind, Space Science Reviews, 4, 666–708.

4.2 Bondi spherical accretion

Astrophysical objects can increase their mass by gravitationally attract-
ing gas from their surroundings. This phenomenon is called accretion.
It is widespread in the universe. Star formation, planet formation and
galaxy formation all occur through accretion processes. Our Galaxy still
accretes mass from the intergalactic medium, which is what is believed
to fuel its star formation rate and to prevent it from becoming a “read
and dead” elliptical galaxy, made only of reddish, old stars. In binary
systems, one of the two object often accretes mass from the other. Since
approximately 1/2 of all the stars that you see in the Sky with your
naked eye are actually binary systems,24 accretion must be a common
event. When something falls on a star or black hole during accretion,
its gravitational potential energy decreases, while its kinetic energy in-
creases. This kinetic energy is believed to be the source of energy behind
many high-energy astrophysical phenomena in the universe, such as Ac-
tive Galactic Nuclei, the most luminous objects known.

In this section we study Bondi (1952) accretion, one of the sim-
plest types of accretion flow. This is the counterpart of the Parker wind
problem in which instead of an outflow we have an inflow. The mathe-
matics of the two problem are very similar. The main difference is in the
boundary conditions: in the Parker problem we require v = 0 at r = 0,

24Hence, 2/3 of all the stars are in binaries.
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here we require v = 0 at r =∞.

Consider an extended gaseous medium whose density and pressure
at infinity are P∞ and ρ∞. Consider a point mass M immersed in this
medium. The point mass may represent for example a star or a black
hole whose gravitational field attracts gas from its surroundings. We
want to study spherically symmetric steady state accreting solutions of
the hydrodynamics equations. We assume that the point mass is at rest
with respect to the gas at infinity. Hence, our problem does not represent
an object that is moving with some velocity through a gaseous medium,
for example a star that enters a cloud.

We work in spherical coordinates and assume that all quantities are
functions of r only. The velocity field is of the type:

v = v(r)êr. (276)

The mass accretion rate Ṁ is given by ρv times the surface area of a
sphere:

Ṁ = −4πr2ρv, (277)

Under steady conditions (∂t ≡ 0), mass conservation requires that the
Ṁ is constant and does not depend on r. This result can also be derived
from the continuity equation (6). We assume that pressure and density
of the gas are related by a simple polytropic equation of state:

P = Kργ (278)

The speed of sound, which plays an important role in this problem, is
defined by:

c2(r) =
dP

dρ
= γKργ−1 (279)

(Do not confuse with the speed of light!). Using (277) it can be rewritten
as

c2 = γK

(
Ṁ

4πr2|v|

)γ−1

(280)

The Euler equation (15) in spherical coordinates gives:

v
dv

dr
= −1

ρ

dP

dρ
− GM

r2
(281)

We must treat separately the case γ = 1 and the case 1 < γ < 5/3.
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Isothermal case In the isothermal case γ = 1, equations identical as
in the Parker wind section, with K = c2

s . The only difference is that now
ṽ < 0, while in the Parker wind problem ṽ > 0. Starting from (264) and
repeating identical steps we obtain (270):

ṽ2 − log ṽ2 = 4 log r̃ +
4

r̃
− C (282)

where
r̃ =

r

rc

, ṽ =
v

vc

, (283)

and

rc =
GM

2K
, vc =

v

K1/2
. (284)

ṽ appears quadratically in (282), so any solution with ṽ > 0 can be
immediately translated into one with ṽ < 0, as one would expect since
the equations of motion are time-reversible which means that a solution
seen backwards in time is still a solution. Hence figure 16 applies identical
to the present problem!

Let us examine what figure 16 tells us for the Bondi accretion problem.
We require ṽ = 0 at r̃ = ∞. This rules out the C = 4 solutions, the
upper C = 2 solutions, and one of the two C = 3 solutions (which was
the Parker wind solution) because in these the velocity tends to infinity
as r̃ → ∞. The solutions that survive are i) the lower C = 2 solutions
ii) the C = 3 solution that starts with infinite velocity, and tends to zero
as ṽ →∞. These are all good and admissible accreting solutions.

Our problem was formulated in terms of ρ∞ and P∞ (and v∞ = 0).
What is the correct solution given these parameters? Turns out that there
are many compatible values of C, corresponding to the same values of
these two parameters but to different accretion rates.25 We cannot tell
the accretion rate only from the parameters in which the problem was
formulated. However, given ρ∞ and P∞, there is a maximum accretion
rate, which corresponds to the C = 3 solution. To see this, take the limit
r →∞ in equation (277):

Ṁ = −4πρ∞ lim
r→∞

(r2v) (285)

Taking the same limit in (282) we find

ṽ2 ' eC r̃−4 (286)

25This is not surprising since in the isothermal case the equations of motion are es-
sentially invariant under a rescaling of ρ, hence given C in the dimensionless equation
(283) we can still choose this scaling!
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which used in (285) together with (283) and (284) gives the accretion
rate:

Ṁ = exp (C/2) πρ∞c
−3
s (GM)2 (287)

Figure 16 tells us that all the accretion rates with C ≤ 3 are possible.
The maximum accretion rate is attained in the case C = 3 and is

Ṁ = exp (3/2) πρ∞c
−3
s (GM)2Maximum Bondi accretion

rate for the isothermal
case.

(288)

Polytropic case In the γ > 1 case we can rewrite the pressure term
in (281) as

1

ρ

dP

dρ
=

d

dr

(
γKργ−1

γ − 1

)
=

d

dr

(
c2

γ − 1

)
(289)

Hence equation (281) can be integrated to give

v2

2
+

c2

γ − 1
− GM

r
= C (290)

where C is an integration constant. Note that this is just Bernoulli’s
theorem (116). Substituting c2 from (280) we find:

v2

2
+

γK

γ − 1

(
Ṁ

4πr2|v|

)γ−1

− GM

r
= C (291)

Given the parameters C and Ṁ , this equation allows us in principle
to find v = v(r), i.e. the velocity profile of the gas as a function of the
distance from the central object. To study the solutions to this equation,
it is useful to rewrite it in dimensionless form as we did for the isothermal
case. What characteristic length and velocity should we use to rescale
our quantities? In the isothermal case, we used the radius at which the
flow becomes supersonic and the sound speed. Can we do the same here?
Yes. However, this time the sound speed is not constant, so we must find
both the radius at which the flow becomes supersonic and the value of
the velocity at that point. Starting from (281), using (278) and then
(277) to eliminate ρ, we find:

dv

dr

[
v − c2

v

]
=

2

r

[
c2 − GM

2r

]
. (292)

When the flow goes from subsonic to supersonic, the square bracket in
the left hand side vanishes. Hence the right hand side must vanish too if
dv/dr remains finite. Solving the system of equations that comes from
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imposing that the square brackets on both sides vanish simultaneously
and using (280) one finds the following characteristic radius and velocity:

rc = (γK)
2

3γ−5

(
GM

2

)− γ+1
3γ−5

(
Ṁ

4π

) 2(γ−1)
3γ−5

(293)

vc = (γK)−
1

3γ−5

(
GM

2

) 2(γ−1)
3γ−5

(
Ṁ

4π

)− γ−1
3γ−5

(294)

Note that in the isothermal case γ = 1 these reduce to (284). Note
also that they are singular in the case γ = 5/3, which must be treated
separately. Defining the dimensionless variables

r̃ =
r

rc

, ṽ =
v

vc

(295)

We can rewrite (291) as:

ṽ2

2
+

1

(γ − 1)r̃2(γ−1)ṽ(γ−1)
− 2

r̃
= C (296)

where the old and new integration constants are related by C = C/v2
c .

This equation depends only on one parameter, C. Equation (296) is valid
for the case of 1 < γ < 5/3. It is the analog of (282) for the polytropic
case.

Equation (296) can be solved analytically only in the case γ = 1.5.
This is the task of Problem 1. We can solve it numerically for the other
cases. The results are similar for all cases to the isothermal case studied
above, i.e.

1. Given ρ∞ and P∞ there are many acceptable solutions with differ-
ent accretion rates.

2. There is a maximum accretion rate.

For example, figure 17 shows numerical solutions of equation (296) for
the cases γ = 1.4 (corresponding to a diatomic gas) and γ = 1.6. These
diagrams have much in common with the one for the isothermal case
shown in figure 16. They both have a cross corresponding to the transonic
solution that divides different families of solutions. In the case γ = 1.4
the cross is similar to the isothermal case, with one transonic solution
such that ṽ → 0 and the other such that ṽ → ∞ as r̃ → 0. A family of
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settling solutions whose velocity tends to zero at small radii lies below
the cross. In case γ = 1.6 both transonic solutions are such that ṽ →∞
as r̃ → 0. In this case, the settling solutions have a velocity that tends
to infinity at small radii while remaining subsonic everywhere (the sound
speed also tends to infinity, faster than ṽ!). The case γ = 1.5 is what
separates these two types of behaviours.

One can calculate the accretion rate as a function of C, like we did
in the isothermal case. In the limit r̃ →∞ equation (296) gives

r̃2|ṽ| ' [(γ − 1)C]1/(γ−1) (297)

which substituted into (277) gives in the limit r →∞:

Ṁ = [(γ − 1)C]1/(γ−1) 4πρ∞r
2
cvc (298)

using (293) and (294) we have

r2
cvc = (γK)

3
3γ−5

(
GM

2

)− 4
3γ−5

(
Ṁ

4π

) 3(γ−1)
3γ−5

(299)

the constant K can be defined by the properties of the gas at infinity:

K = P∞ρ
−γ
∞ (300)

and the sound speed at infinity is

c2
∞ = γ

P∞
ρ∞

. (301)

Combining all together we can rewrite the accretion rate as

Ṁ = [(γ − 1)C]−
5−3γ
2(γ−1) πρ∞c

−3
∞ (GM)2 (302)

The value of C corresponding to the critical solution (i.e., the cross)
gives the maximum accretion rate. At the critical point, ṽ = r̃ = 1.
Substituting these into (296) one finds:

Cc = − 5− 3γ

2(γ − 1)
(303)

The maximum accretion rate is obtained when C = Cc:

Maximum Bondi accretion
rate for the polytropic case.

Ṁ =

[
5− 3γ

2

]− 5−3γ
2(γ−1)

πρ∞c
−3
∞ (GM)2 (304)
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Figure 17: Solutions to equation (296) for different values of C. Left
panel is for γ = 7/5, corresponding to a diatomic gas. Right panel is for
γ = 1.6.

Compare with (288).

Finally, let us examine the behaviour of the critical solutions as r → 0.
From (291) we see that for the critical solution26

v2 ' GM

r
(305)

which essentially means that the gas is in free fall. In the transonic solu-
tions, the gas starts subsonic at infinity, where it is essentially in hydro-
static equilibrium, and becomes supersonic at r = rc. Once it becomes
supersonic, no information can travel back, and the gas is in free fall
towards the star. Once it becomes supersonic, it can be brought to sub-
sonic levels only through the mediation of a shock (for example, because
of impact with the surface of a star). The sonic point separates these
two regimes: inside, free fall, outside, almost hydrostatic equilibrium.

The case γ = 5/3 must be treated separately (as we did for the
isothermal case γ = 1), because for this value (293) and (294) are singu-
lar. Since the results are qualitatively similar to the cases studied above,
we do not do it here. We only note that in this case the sonic point of
the critic solution occurs at r = 0.

We have seen that for the same values of the conditions at infinity,
there are many possible solutions with different accretion rates. What
determines the accretion rate? Bondi (1952) originally argued that ac-
cretion should take place at the maximum rate possible. He thought
that solutions with less than the maximum accretion rate would be un-

26One must be a bit careful in how the limit is taken and show that the middle
term on the LHS is negligible compared to the other two.

78



stable. However, subsequent linear stability analysis27 have shown that
all solutions are stable. The maximum Bondi rate should be taken as
an order of magnitude estimate of the maximum accretion rate possible.
(This means that we could have guessed this result just from dimensional
analysis! So yes, all these calculations for nothing).

We remark that while it is instructive to study Bondi’s accretion
problem, in practice accretion most often takes place not in a spheri-
cal fashion but through accretion discs (see section ??). In the Bondi
problem zero total angular momentum is assumed. However, in a real
situation even a small amount of angular momentum, which is almost
always present, can substantially change both the gas flow lines and the
value of the accretion rate.

5 Waves

5.1 Introduction

Everyone is familiar with water waves in the sea and sound waves in the
air, which we commonly call sound. Waves are disturbances in the fluid
quantities such as density and pressure that travel through space. They
can transport energy and momentum.

The study of waves in fluids is a very broad topic. The best way
to learn it is to see many examples, and construct a personal “library of
examples” which is then used to build intuition and predict what happens
in a new given situation. In these lecture notes, we start this journey by
considering some examples.

Consider a steady state solution ρ0(x), v0(x) [and possibly B0(x),
P0(x), etc]. By definition this solution does not depend on time and, if left
completely unperturbed, will remain unchanged forever. Now consider
travelling disturbances on top of this background flow, i.e. waves. Waves
can be roughly divided into three main categories:

• Linear waves. This is the case in which the disturbances are
very small compared to the corresponding equilibrium values of
the steady state solution. For example, if ρ0(x) is the unperturbed
equilibrium density and ρ(x, t) is the density with the perturba-
tion, in linear theory their difference is small, ∆ρ = ρ(x, t) −
ρ0(x)� ρ0(x).

27i.e., like for any steady state, one can linearise the equations around the steady
state solution and find the eigenmodes of the system.If among these eigenmodes there
is at least one that grows exponentially, the system is unstable

79



When linear theory is valid, we can linearise the equations of mo-
tions around the equilibrium state. We therefore obtain linear dif-
ferential equations that describe the propagation of disturbances.
Linear equations are generally much easier to solve than the full
non–linear fluid equations, because the superposition principle
applies. The typical result is that one finds a series of normal
modes of the system, each of which describes a wave with a defi-
nite frequency, and an arbitrary disturbance can be seen as a linear
superposition of these basic waves.

It can happen that one or more of the normal modes are such that
they grow exponentially in time. In this case, arbitrarily small
perturbations will grow until the linear approximation is not valid
anymore. In this case the background steady state onto which the
disturbances travel is unstable: if we prepare the system in such
a state, even an infinitesimally small disturbance will eventually
grow enough to disrupt the system. The topic of instabilities is
in itself another large topic (see Section ??).

Finally, another important thing to remember is that typically, if
you wait long enough and you have no viscosity, any wave, no mat-
ter how small, will become non-linear and develop shocks. There-
fore, linear theory is often valid only for a limited time interval. We
will study the steepening of small disturbances into shock waves us-
ing an example later in this section.

• Non linear waves. In this case, one attempts to follow perturba-
tions of finite amplitude. Thus one must go beyond the linear ap-
proximation discussed in the previous item. This case is generally
much more difficult mathematically. The superposition principle
does not apply, and no general analytical method for their solution
exists. Thus, each case must be analysed individually.

• Shock waves. A shock wave is a type of highly non linear propa-
gating disturbance characterised by an abrupt, discontinuous change
in one or more of the fluid quantities. Mathematically, these so-
lutions are possible because the laws of conservation of mass, mo-
mentum and energy that form the basis of the equations for invis-
cid flow do not necessarily assume continuity of the flow variables.
These laws were originally formulated in the form of differential
equations simply because it was assumed at the beginning that the
flow is continuous, but is possible to have perfectly valid solutions
(actually it is often unavoidable) that admit sharp discontinuities.
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In a realistic situation, discontinuities are resolved by diffusive
processes (viscosity, thermal conduction, resistivity) which become
more important at small scales, and discontinuities should be re-
garded as large but finite gradients in the flow variables across a
layer of very small thickness. The inviscid case could in principle be
obtained by solving a more complete set of equations which include
viscosity to derive the internal structure of a shock and then taking
the limit of vanishing viscosity. However, this is often difficult and
not necessary in practice, because the matching conditions do not
depend on the internal structure of the shock.

Shock waves are easy to excite when the flow velocity is supersonic,
which is often the case in astrophysics. They are therefore very
common in astrophysics.

We now examine some examples of waves.

5.2 Sound waves

One of the simplest examples of linear waves are small disturbances in a
uniform and stationary adiabatic fluid. The equations of motion are:

∂tρ+ ∇ · (ρv) = 0 (306)

∂tv + (v ·∇)v = −∇P

ρ
(307)

D

Dt

(
logPρ−γ

)
= 0. (308)

Clearly, the following is a steady state solution of these equations:

ρ = ρ0 = constant (309)

P = P0 = constant (310)

v = v0 = 0 (311)

Now let the system be slightly perturbed, so that

ρ = ρ0 + ρ1 (312)

P = P0 + P1 (313)

v = v1 (314)

where the quantities with subscript 1 are small with respect to the quan-
tities with subscript 0. We want to linearise the equations of motion
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around the steady state solution by substituting equations (312)–(314)
into (306)–(308) and neglecting quadratic and higher order terms in the
quantities with subscript 1. This is a very standard step in linear theory,
both when we consider linear waves and linear instabilities (see Section
??), and by the end of this course you should be used to linearise equa-
tions around steady state solutions.

Let us consider adiabatic perturbations, i.e. perturbations for
which the entropy (23) is the same for the perturbed and the initial
unperturbed state. Physically, this corresponds to perturbing the fluid
without locally heating it, for example it is a valid assumption if we have
a moving object generating sound, such as a tuning fork. Thus for the
perturbed state we have Pρ−γ = P0ρ

−γ
0 = constant at t = 0. Equation

(308) then implies that Pρ−γ stays constant for each fluid element, and
so Pρ−γ = P0ρ

−γ
0 everywhere at all times. Thus

P

P0

=

(
ρ

ρ0

)γ
(315)

i.e.

P0 + P1

P0

=

(
ρ0 + ρ1

ρ0

)γ
(316)

=

(
1 +

ρ1

ρ0

)γ
(317)

=

(
1 + γ

ρ1

ρ0

+ . . .

)
(318)

Neglecting quadratic and higher order terms we obtain

P1 = c2
0ρ1 (319)

where

c0 =

(
γP0

ρ0

)1/2

. (320)

This equation relates density and pressure of adiabatic perturbations.
Now substituting (312)–(314) and (319) into (306)-(307) and neglect-

ing quadratic and higher order terms in the quantities with subscript 1
we obtain the linearised version of the equation of motion of the pertur-
bations:

∂tρ1 + ρ0∇ · v1 = 0 (321)

∂tv1 = −c2
0

∇ρ1

ρ0

(322)
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To solve these equations, we look for solutions of the following form:

ρ1(x, t) = ρ̃ eik·x−iωt (323)

v1(x, t) = ṽ eik·x−iωt (324)

where ρ̃ and ṽ = (ṽx, ṽy, ṽz) are complex constants. Such solutions are
called plane waves. k = (kx, ky, kz) is the wave vector and ω is the
frequency of the wave. What we really mean when we write equations
(323) and (324) is that the physical quantities are given by the real part
of these equations. But since all equations are linear, it does not matter
if we take the real part at the beginning or at the end of the calculations.
And it is very convenient to keep everything complex.

Taking the derivatives of (323) and (324) we have

∂tρ1(x, t) = −iωρ1 (325)

∂tv1(x, t) = −iωv1 (326)

∇ρ1 = ikρ1 (327)

∇ · v1 = ik · v1 (328)

Substituting into (321) and (322) we find:

− iωρ̃+ iρ0k · ṽ = 0 (329)

− iωṽ = −i c
2
0

ρ0

kρ̃ (330)

There are two cases in which these equations are simultaneously satisfied.

Sound waves If ω 6= 0 we can divide by ω in the second equation,
isolate ṽ and substitute in the first equation. We find a solution for
which the following relations must be simultaneously satisfied:

ω2 = c2
0k

2, ṽ =
c2

0

ωρ0

kρ̃, ρ̃ arbitrary (331)

this is the case of regular sound waves with a dispersion relation

ω = ±kc0 (332)

Hence, sound waves travel with a speed

c0 =
ω

k
(333)

A sound wave is completely specified once we know ρ̃ and k: ω is obtained
from the dispersion relation, and ṽ is obtained from the second relation
in (331).
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Vortex waves If ω = 0, equations (329) and (330) admit a solution of
the following type:

k · ṽ = ω = ρ̃ = 0, k 6= 0, ṽ 6= 0 (334)

Such solutions are called vortex waves, for reasons that we will clear
up in a moment. These solutions do not evolve in time, and their density
perturbation vanishes, i.e. the density is the same as the background
state. The velocity is directed perpendicular to the direction of wave
vector k, and is also constant along these lines.

What is the physical meaning of these solutions? A velocity field
that is constant along parallel stripes in the direction parallel to them
is obviously a steady state of the equation of motions! Vortex waves
simply corresponds to this type of solutions.28 Why is it called a “wave”
if it does not evolve in time? The reason is that if you consider the
same solution in a frame moving at velocity v0, things are passing by
and what you see looks like a wave! Indeed these waves become more
relevant when we consider propagation of disturbances in a moving gas.
If we have different parts of a system moving at different velocities, not
always we can get rid of the velocity by a change of frame. Why are these
waves called vortex? Because the curl is not zero, so they carry vorticity.

5.2.1 Propagation of arbitrary perturbations

Thus we have plane waves solutions. Do we need other solutions? It turns
out that these are the only solutions that we need to know, because all
other solutions can be expressed as a linear combination of plane waves.
For example, suppose that at t = 0 you have an arbitrary perturbation
given by:

ρ1(x, t = 0) = f(x) (335)

v1(x, t = 0) = g(x) (336)

How does this perturbation evolve? Let us first do the one-dimensional
case, which is simpler, and then turn to the full three-dimensional case.

28In some sense, vortex waves are the analog of the normal mode of two masses
connected by a spring in vacuum in which the centre of mass simply translates at
constant speed.
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One dimensional case In this case, we only have sound waves, while
vortex waves (334) are not possible because the condition k · ṽ = 0 with
k 6= 0 and ṽ 6= 0 cannot be satisfied. The superposition principle says
that the sum of two solutions of (321) and (322) is still a good solution.
Hence we can superimpose an infinite number of solutions of the type
(323) and (324). The most general superposition of sound waves in one
dimension is:

ρ1(x, t) =

∫ ∞
−∞

ρ̃a(k)eikx−iωtdk +

∫ ∞
−∞

ρ̃b(k)eikx+iωtdk (337)

v1(x, t) =

∫ ∞
−∞

ṽa(k)eikx−iωtdk +

∫ ∞
−∞

ṽb(k)eikx+iωtdk (338)

where
ω = c0k. (339)

and

ṽa =
c2

0

ωρ0

kρ̃a ; ṽb = − c2
0

ωρ0

kρ̃b (340)

There are two terms on the RHS of (337) and (338), one corresponds
to the plus sign and the other to the minus sign in the dispersion rela-
tion (332). These correspond to waves travelling in opposite directions.
Now we need to show that with such a superposition we can satisfy any
possible initial condition. At t = 0 (337) and (338) take the form

ρ1(x, t = 0) =

∫ ∞
−∞

ρ̃a(k)eikxdk +

∫ ∞
−∞

ρ̃b(k)eikxdk (341)

v1(x, t = 0) =

∫ ∞
−∞

ṽa(k)eikxdk +

∫ ∞
−∞

ṽb(k)eikxdk (342)

We need to equate this to our initial conditions (335) and (336). Recall
that any function f(x) can be decomposed into plane waves using the
Fourier transform :

f(x) =
1

2π

∫ ∞
−∞

f̃(k)eikxdk ; f̃(k) =

∫ ∞
−∞

f(x)eikxdx (343)

Thus we can write our initial conditions (335) and (336) as

ρ1(x, t = 0) =
1

2π

∫ ∞
−∞

f̃(k)eikxdk (344)

v1(x, t = 0) =
1

2π

∫ ∞
−∞

g̃(k)eikxdk (345)

85



Equating (344) and (345) to (341) and (342) and using (340) we get

f̃

2π
= ρ̃a + ρ̃b (346)

g̃

2π
=

c2
0

ωρ0

k (ρ̃a − ρ̃b) (347)

This system can be easily solved to get

ρ̃a =
1

4π

(
f̃ + g̃

ωρ0

c2
0

)
(348)

ρ̃b =
1

4π

(
f̃ − g̃ ωρ0

c2
0

)
(349)

Thus, if we are given the initial conditions (335), (336), to find the evo-
lution in time all we have to do is:

1. Find the Fourier transforms f̃(k), g̃(k).

2. Use (348) and (349) to get ρ̃a and ρ̃b.

3. The solution is then given by (337) and (338).

We have thus a systematic way of solving the problem. The same method
can be generalised to pretty much all cases of linear waves, even those in
which the dispersion relation is not given by (332). This is why the linear
waves are much easier to treat than non-linear waves: the superposition
principle applies, so we only need to find plane waves solution. All other
solutions can be seen as a linear superposition of them.

Note also that using the dispersion relation (339) the general solution
(337) can be rewritten as

ρ1(x, t) =

∫ ∞
−∞

ρ̃a(k)eikx−iωtdk +

∫ ∞
−∞

ρ̃b(k)eikx+iωtdk (350)

=

∫ ∞
−∞

ρ̃a(k)eik(x−c0t)dk +

∫ ∞
−∞

ρ̃b(k)eik(x+c0t)dk (351)

≡ Fa(x− c0t) + Fb(x+ c0t) (352)

Thus, the general solution is simply the sum of two waves travelling
in opposite directions but conserving their shapes. However, this is only
true if the dispersion relation is of the type (332), because it has the spe-
cial property that all wavelengths travel at the same speed c0 = ω/k. For
a generic dispersion relation, different wavelengths propagate at different
speed, so this is not true anymore (see Section 5.4).
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Three dimensional case What about the three dimensional case?
Now, the most general solution of plane waves is not only a sum of sound
waves, but a superposition of sound waves and vortex waves:

ρ1(x, t) =

∫ ∞
−∞

ρ̃a(k)eik·x−iωtd3k +

∫ ∞
−∞

ρ̃b(k)eik·x+iωtd3k (353)

v1(x, t) =

∫ ∞
−∞

ṽa(k)eik·x−iωtd3k +

∫ ∞
−∞

ṽb(k)eik·x+iωtd3k

+

∫ ∞
−∞

ṽc(k)eik·xd3k (354)

where

ω = c0k. (355)

and

ṽa =
c2

0

ωρ0

kρ̃a ; ṽb = − c2
0

ωρ0

kρ̃b ; ṽc(k) · k = 0 (356)

ṽc is the part related to vortex waves. These waves have no density
perturbation, so ρ̃c = 0. We have also used that for vortex waves ω = 0.
How do we determine ρ̃a, ρ̃b and ṽc given the initial conditions (335),
(336)? Note that for sound waves, ṽa(k) and ṽb(k) are parallel to k,
while for vortex waves ṽc(k) is perpendicular to k. In real space this
means that for sound waves ∇ · v 6= 0, ∇ × v = 0, while for vortex
waves ∇ · v = 0, ∇ × v 6= 0. Any linear superposition will preserve
these characteristics. How do we separate the initial velocity field into a
curl-free and a divergence-free component? At this point we need a little
digression.

Helmholtz decomposition An arbitrary vector field F(x) can be
uniquely decomposed into the sum of a curl-free and a divergence-free
component:

Helmholtz Decomposition. F(x) = F‖(x) + F⊥(x) (357)

such that

∇× F‖ = 0 and ∇ · F⊥ = 0. (358)

This is called Helmholtz decomposition. F‖ is called the longitu-
dinal field and is curl-free, F⊥ is called the transverse field and is
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divergence-free. To see why these names, consider the Fourier transform
of F:

F(x) =

∫ ∞
−∞

F̃(k)eik·xd3k (359)

We can split this into two parts by separating the parts of F̃(k) that are
parallel and perpendicular to k:

F(x) =

∫ ∞
−∞

F̃‖(k)eik·xd3k +

∫ ∞
−∞

F̃⊥(k)eik·xd3k (360)

where

F̃‖(k) =
1

k2
k
[
k · F̃(k)

]
(361)

F̃⊥(k) = F̃(k)− F̃‖(k) (362)

so that

k× F̃‖(k) = 0 ; k · F̃⊥(k) = 0 (363)

Thus the first term in (360) is curl-free, while the second term is divergence-
free. Going back to real space we can identify the longitudinal and trans-
verse fields as follows:

F‖(x) =

∫ ∞
−∞

F̃‖(k)eik·xd3k (364)

F⊥(x) =

∫ ∞
−∞

F̃⊥(k)eik·xd3k (365)

It is now clear how we should proceed to solve our problem. Start
with taking the Fourier transform of the given initial conditions:

f(x) =
1

(2π)3

∫ ∞
−∞

f̃(k)eik·xd3k (366)

g(x) =
1

(2π)3

∫ ∞
−∞

g̃(k)eik·xd3k (367)

Then find the longitudinal and transverse component of g:

g̃‖(k) =
1

k2
k [k · g̃(k)] (368)

g̃⊥(k) = g̃(k)− g̃‖(k) (369)
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Then we need to match these with the general solution (353) and (354)
at t = 0:

ρ1(x, t = 0) =

∫ ∞
−∞

ρ̃a(k)eik·xd3k +

∫ ∞
−∞

ρ̃b(k)eik·xd3k (370)

v1(x, t = 0) =

∫ ∞
−∞

c2
0

ωρ0

kρ̃a(k)eik·xd3k −
∫ ∞
−∞

c2
0

ωρ0

kρ̃b(k)eik·xd3k

+

∫ ∞
−∞

ṽc(k)eik·xd3k (371)

It is clear that since ṽc(k) is perpendicular to k, it will correspond to the
transverse part g̃⊥(k), while ṽa(k) and ṽb(k) are parallel to k and will
correspond to the longitudinal part g̃‖(k). Equating (370) and (371) to
the Fourier transforms of the given initial conditions (366) and (367) we
find:

f̃(x)

(2π)3
= ρ̃a + ρ̃b (372)

g̃‖
(2π)3

=
c2

0

ωρ0

kρ̃a −
c2

0

ωρ0

kρ̃b (373)

g̃⊥
(2π)3

= ṽc (374)

which can be solved to find ρ̃a, ρ̃b and ṽc.

Remarks

• Sound waves are purely longitudinal waves. They are made by
compression of layers of fluid elements. Indeed, ∇ ·v 6= 0 for sound
waves, which is associated to change in volumes. Sound waves carry
no vorticity, ∇× v = 0.

• In the three dimensional case, the curl-free part travels in space as
sound waves, while the divergence-free part remains stationary be-
cause vortex waves do not evolve in time! A purely divergence-free
velocity field does not evolve in time, simply keeps flowing forever.
This is somewhat intuitive: if we create a vortex without any over-
density (ρ1 = 0), in absence of viscosity it just keeps circulating.

• What is the exact meaning of small amplitude waves? We have
stated above that the linear approximation is valid when distur-
bances are very small compared to the corresponding equilibrium
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values of the steady state solution. However, the background veloc-
ity was v0 = 0 so it cannot be small compared to anything. Let us
see more precisely when the approximations made in this section
are valid. When we linearised the equations of motion, we have
neglected the term (v ·∇)v compared to ∂tv in the Euler equation.
For a plane wave of the form (324) we have:

∂tv = −iωv (375)

(v ·∇)v = (v · ik)v (376)

For the RHS of the second to be much smaller than the RHS of the
first we need

v � ω

k
(377)

using the dispersion relation for sound waves this means

v � c0 (378)

Thus our approximations are valid for velocities much smaller than
the sound speed.

• Taking the ∂t derivative of equation (321) we get:

∂2
t ρ1 + ∇ · (ρ0 [∂tv1]) = 0 (379)

now substitute (319) into (322) and then the result into (379) to
obtain:

∂2
t ρ1 − a2

0∇2ρ1 = 0 Wave equation(380)

Thus, ρ1 obeys the classical wave equation.

5.3 Water waves

Let us examine two-dimensional water waves. Consider an infinite sea
of depth H in a constant downward gravitational field g (see figure 18).
The equations of motion are:

x

- -

z gz = η(x, t)

H

Figure 18: A group of water
waves.

∂tρ+ ∇ · (ρv) = 0 (381)

∂tv + (v ·∇)v = −∇P

ρ
− gêz (382)

∇ · v = 0 (383)
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where we have assumed (as is appropriate for water) that the fluid is
incompressible. In equilibrium the surface of the water is at z = 0, and
the equilibrium state for z < 0 is

ρ = ρ0 = constant (384)

P0 = −ρ0gz + Patm (385)

v0 = 0 (386)

We have assumed that at z = 0 the pressure is equal to the atmospheric
pressure Patm.

We want to study the propagation of linear waves. Since the fluid
is incompressible, the fluid motion will necessarily be accompanied by a
deformation of the water surface. We denote the surface as

z = η(x, t). (387)

Linearising the equations of motion around the equilibrium state we
get

∂tv1 = −∇P1

ρ0

(388)

∇ · v1 = 0 (389)

We have not written the continuity equation, which simply tells us that
the density does not change with time as we would expect for an incom-
pressible fluid. Note also that g disappears from the linearised equations.
Taking the divergence of equation (388) and using (389) we get

∇2P1 = 0 (390)

The pressure satisfies the Laplace equation! We want solutions that in
the x direction look like a wave. Hence we look for solutions of the form:

P1 = f(z)eikx−iωt (391)

v1 = g(z)eikx−iωt (392)

Substituting (391) into Laplace equation (390) we get

d2f(z)

dz2
= k2f(z) (393)

The general solution to this equation is

f(z) = Aekz +Be−kz (394)
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where A and B are constants. We can find the relation between A and B
imposing that at the bottom of the ocean, z = −H, the vertical velocity
vanishes. Substituting (391) and (392) where f(z) is given by (394) into
(388) we obtain

v1 =
1

iωρ0

[ikf(z)êx + f ′(z)êz] e
ikx−iωt (395)

Requiring that v1z(x, z = −H) = 0 implies f ′(z = −H) = 0. We find

B = e−2kHA (396)

we can therefore rewrite f as

f(z) = Aekz +Be−kz (397)

= A
[
ekz + e−2kHe−kz

]
(398)

= Ae−kH
[
ek(z+H) + e−k(z+H)

]
(399)

= A2e−KH cosh [k(z +H)] (400)

≡ P̃ cosh [k(z +H)] (401)

Thus pressure perturbation has the form

P1 = P̃ cosh [k(z +H)] eikx−iωt (402)

and the associated velocity is

v1 =
P̃ k

iωρ0

[i cosh [k(z +H)] êx + sinh [k(z +H)] êz] e
ikx−iωt (403)

To derive the dispersion relation, we need one more boundary con-
dition. This condition is that at the surface the pressure always equals
the atmospheric pressure Patm. We also assume, and we will check later
that is actually the case, that points of the surface remain on the surface.
Hence if we follow a fluid element on the surface, its pressure is always
equal to the atmospheric pressure. This condition is written

DP

Dt
= 0 at z = 0 (404)

i.e.
∂tP + v ·∇P = 0 at z = 0 (405)

Linearising this condition we get

∂tP1 + v1 ·∇P0 = 0 at z = 0 (406)
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√
gH

v p
H 10H

Figure 19: The phase speed c = ω/k for water waves given by (408) as a
function of wavelength λ = 2π/k.

Substituting (402), (403) and (385) into (406) we get

ω2 = gk tanh(kH) (407)

This is the dispersion relation for small gravity waves in water. The
pattern of a wave proportional to eikx−iωt moves with a phase velocity
vp = ω/k given by

v2
p(k) = gH

(
tanh(kH)

kH

)
(408)

vp depends on k so these waves are dispersive, unlike sound waves stud-
ied in the previous section. Waves with different wavelengths travel with
different speed. Figure 19 plots the phase speed as a function of wave-
length. Longer waves travel faster. Moreover, as λ → ∞ (k → 0) the
phase velocity tends to a constant, vp →

√
gH, so very long waves have

a speed independent of water, like sound waves studied in the previous
section. Long water waves are not dispersive.

An actual wave in the sea will never be an infinitely extended plane
wave in all directions. A real “wave packet” is composed of many Fourier
components. At small wavelengths, a wave packet composed of many
different wavelengths spreads out over time, because the different waves
that compose the packet have different speeds. At long wavelengths, a
wave packet will retain its shape. This has important and sometimes
catastrophic consequences.

Tsunami In the sea, earthquakes can create “wave packets” with a
typical wavelength of 200 km (while wind-generated waves have a typical
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length of 100 metres). These are called tsunamis. The wavelength of
the tsunami is far greater than the depth of the ocean (which is typi-
cally 2-3 km). Initially, tsunamis have relatively small amplitude (one
meter is typical), which would seem to render them harmless. In fact,
tsunamis often pass by ships in deep ocean without anyone on board
even noticing. However, since it is made by long waves, and the phase
speed is independent of wavelength at long wavelengths, a tsunami can
retain its power while travelling without spreading its amplitude. When
the tsunami approaches the coast, the depth H of the water decreases,
while the frequency ω is approximately conserved. Since ω2 ' gHk2

for long waves, k must become larger, so the distance between succes-
sive wave crests decreases. The wave “piles up” and inevitably grows in
amplitude. The velocity of the waves greatly decreases, typically from
∼ 500km/h when the depth is ∼ 4 km to ∼ 50km/h when the depth is
∼ 20 m. Tsunami waves can grow up to 30 meters in height as they hit
the shoreline, causing disasters as in the 2011 tsunami in Japan.

Particle paths What is the path followed by a fluid element in a water
wave? To find out, let us define the lagrangian displacement ξ. This
is defined as the displacement of a fluid element from its position at t = 0.
In other words, assume that at t = 0 a fluid element is at the position x.
At the time t its position will be

x + ξ(x, t) (409)

and by definition ξ(x, 0) = 0. It follows from its definition that ξ satisfies
the following equation:

Dξ

Dt
= v(x + ξ, t) (410)

In the water waves that we have studied, v = v1 is small, and ξ is also
small. Hence neglecting second order terms we can approximate this
equation as

∂tξ ' v1(x, t) (411)

Expanding this in components and using the expression (403) for the
velocity, we have:

∂tξx =
P̃ k

ωρ0

cosh [k(z +H)] eikx−iωt (412)

∂tξz =
P̃ k

iωρ0

sinh [k(z +H)] eikx−iωt (413)
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Solving this we find (apart from an unimportant constant that would be
needed to satisfy the boundary condition Re[ξ(x, 0)] = 0):

ξx(x, z, t) = − P̃ k

iω2ρ0

cosh [k(z +H)] eikx−iωt (414)

ξz(x, z, t) =
P̃ k

ω2ρ0

sinh [k(z +H)] eikx−iωt (415)

Taking the real part to get the actual paths we find:

ξx(x, z, t) = − P̃ k

ω2ρ0

cosh [k(z +H)] sin(kx− ωt) (416)

ξz(x, z, t) =
P̃ k

ω2ρ0

sinh [k(z +H)] cos(kx− ωt) (417)

This means that particles path are ellipses of axis ratio tanh[k(z + H)].
The ellipses become flatter with depth, and at z = −H particles os-
cillate along horizontal segments. Hence particles are not moving very
far from their original positions, despite the wave being travelling and
transporting energy.

Equation of the surface The surface η(x, t) is defined as the surface
at constant pressure P = Patm. We have from (385) and (402) that total
pressure in a water wave is given by:

P = P0 + P1 = −ρ0gz + Patm + P̃ cosh [k(z +H)] eikx−iωt (418)

To find the equation of the surface we use that for points on the surface
z = η(x, t) and P = Patm. Hence

Patm = −ρ0gη + Patm + P̃ cosh [k(η +H)] eikx−iωt (419)

Since η is small and P̃ is also small, we can approximate cosh [k(η +H)] '
cosh [kH] in the second term on the RHS. Solving for η we then obtain

η(x, t) =
P̃

ρ0g
cosh [kH] eikx−iωt (420)

Thus, as expected, the shape of the surface oscillates with the usual factor
eikx−iωt.
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Something at the surface stays on the surface We can check our
assumption that something at the surface stays at the surfaces. A particle
on the surface at time t and position x has z = η(x, t). In a small interval
dt this particle moves to the point

x→ x+ vxdt, z → z + vzdt (421)

If this particle is still on the surfaces, this means that

η(x+ vxdt, t+ dt) = z + vzdt (422)

Expanding we obtain
(∂xη)vx + ∂tη = vz (423)

Note that this equation is valid also in the case of non linear waves.
For linear water waves, velocities are small and η is also small, so we
can neglect the first term on the LHS. Thus we can approximate to first
order to

∂tη = vz (424)

We can check whether this equation is satisfied by our solutions (420)
and (403). Substituting these into (424) we obtain again the dispersion
relation (407), and everything is OK.

Exact meaning of “small” waves We have assumed that our waves
are “small”. Small with respect to what? We can derive a geometrical
meaning for “small amplitude” by looking at equation (423). In this
equation, we have neglected the term (∂xη)vx compared to vz. Since vx
and vz are of the same order of magnitude according to (403), for our
approximation to be valid we need

∂xη � 1 (425)

In other words, the slope of the free surface must be small.

5.4 Group velocity

A dispersion relation
ω = ω(k) (426)

relates the frequency ω to the wavenumber k of plane waves solutions
proportional to eik·x−iωt. We have seen that for sound waves the disper-
sion relation (332) is linear in the wavenumber k, while for small water
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Figure 20: (a) An infinite plane wave with wavenumber k0. (b) A typical
wave packet. The dashed curve is the envelope of the wave packet. (c)
The absolute value |f̃(k)| of the Fourier transform of the packet. Repro-
duced from [7].

waves ω is related to k through the relation (407). If ω(k) is linear in k,
then the phase velocity

vp(k) =
ω(k)

k
(427)

is constant. If ω(k) is not linear in k, waves with different wavelengths
travel at different phase velocities, so if they start together after a while
they “disperse”, and the medium is said to be dispersive.

Any real signal is not an infinite plane wave like that shown in Fig.
20 (a), which is unphysical since it extends through all space, but a
wave packet like that shown in 20 (b), which describes a wave whose
amplitude is non-zero over a finite region of space.

How do we find the time evolution of a wave packet in a dispersive
medium? Suppose you are given the shape f(x, t = 0) of the packet at
t = 0. Any packet can be seen as a sum Fourier components:

f(x, t = 0) =

∫ ∞
−∞

dk

2π
f̃(k)eikx (428)

Each component of wavenumber k evolves with its own frequency ω(k).
Hence the packet at time t is:

f(x, t) =

∫ ∞
−∞

dk

2π
f̃(k)eikx−iω(k)t (429)

This general procedure allows us to find the time evolution for any
type of linear disturbance once we know the dispersion relation. In the
most general case, there isn’t any restriction on the shape of the wave
packet. This solution is valid for any shape. However, let us analyse the
particular case in which the Fourier components that make up the wave
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packet are all localised around a wavenumber k0, as in the example of
Fig. 20 (b). In this case, we may expand ω(k) in a Taylor series,

ω(k) ' ω(k0) + (k − k0)vg (430)

where

vg =

(
dω(k)

dk

)
k0

(431)

Substituting back into (429) and writing k = k0 + u we have

f(x, t) =

∫ ∞
−∞

dk

2π
f̃(k)eikx−iω(k)t (432)

'
∫ ∞
−∞

dk

2π
f̃(k)ei(k0+u)x−i(ω(k0)+uvg)t (433)

= eik0x−iω(k0)t

∫ ∞
−∞

du

2π
f̃(k0 + u)eiu(x−vgt) (434)

≡ eik0x−iω(k0)tF (x− vgt) (435)

where we have defined

F (x) =

∫ ∞
−∞

du

2π
f̃(k0 + u)eiux (436)

The function F (x) describes the envelope of the wave packet, dashed lines
in Fig. 20 (b). To see this, note that the expression (435) is composed by
a factor eik0x−iω(k0)t and by F . eik0x−iω(k0)t describes a perfect monochro-
matic wave with wavenumber k0. F , on the other hand, is essentially
composed of Fourier components of wavenumbers |u| � k0, because our
original wave packet was made was made by Fourier components localised
around k = k0, so f̃(k0 +u) is non-zero only in a neighbourhood of u = 0
in the integral that defines F . Thus F (x) varies much more slowly than
eik0x. Therefore, (435) at a given time describes a rapidly varying wave
proportional to eik0x modulated by an envelope given by F (x). It also
shows that the envelope propagates with a velocity given by vg, which
is known as group velocity. The group velocity represents the true
velocity of a localised physical disturbance. If the original wave packet is
not localised in k space, then the envelope of a wave packet will become
distorted as it travels.

In the case of a linear dispersion relation ω = ±c0k, such as in the
case of sound waves, the phase velocity and the group velocity coincide
and are constant. A wave of any shape will travel undistorted at this
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velocity. In case of dispersive waves, phase and group velocities are gen-
erally different. For example, in the case of small water waves the phase
velocity is higher than the group velocity (see 407). Therefore, in packet
like that shown in 18, wave crests may be seen continually appearing at
the back of wave packet and disappearing at the front. A stationary ob-
server would count more crests than one can count in a frozen snapshot
like 18 as the whole wave packet passes by.29

Although we have not shown it, the group velocity is often thought
of as the velocity at which energy is transported by waves of wavelength
2π/k, and at which information is conveyed along a wave. In most cases
this is accurate, however if the wave is travelling through a dissipative
medium and waves are damped, the group velocity may not be a mean-
ingful quantity or may not even be a well-defined quantity.

5.5 Analogy between shallow water theory and gas
dynamics

There is a remarkable analogy between the equations that describe the
flow of shallow water in a constant gravitational field and the equations
of adiabatic gas dynamics for γ = 2. This powerful analogy can be used
for example to understand what happens in an astrophysical situation by
picturing the flow of water on a surface with a given shape that mimics an
external gravitational field. You can simulate gas flow in spiral galaxies
in a bathtub with a spiral shape.

z

h h0

g

Figure 21: Shallow water
waves.

In the shallow water approximation, we consider again the equa-
tions of motion for water waves (381)-(383). This time we do not assume
that waves are small compared with the depth, so linear theory does not
apply, but we assume that the typical depth (h− h0) is small compared
to typical length-scale L of waves (see Fig. 21):

(h− h0)� LShallow water
approximation

(437)

where z = h0(x, y) is a given function describing the bottom of the ocean,
and z = h(x, y, t) describes the surface of the water. We also assume that
these functions are slowly varying:

∂xh ∼
h

L
� 1 (438)

∂xh0 .
h0

L
� 1 (439)

29see for example the nice animation at https://en.wikipedia.org/wiki/

Dispersion_(water_waves).
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As we shall see, in the shallow water approximation vertical motions
can be neglected with respect to horizontal motions, and horizontal mo-
tions are considered independent of depth. As a result, the fluid can be
considered a two-dimensional medium characterised at each point by a
horizontal velocity v(x, y) and a height h(x, y).

We now derive the equations of shallow water theory. Written out in
full, equations (382)-(383) read:

∂tvx + (vx∂x + vy∂y + vz∂z)vx = −∂xP
ρ

(440)

∂tvy + (vx∂x + vy∂y + vz∂z)vy = −∂yP
ρ

(441)

∂tvz + (vx∂x + vy∂y + vz∂z)vz = −∂zP
ρ
− g (442)

∂xvx + ∂yvy + ∂zvz = 0 (443)

We do not need to write down the continuity equation which simply tells
us that density is constant. First, we neglect all terms on the LHS of
(442), that is Dvz/Dt. We will check the validity of this approximation
a posteriori. (442) reduces to:

0 = −∂zP
ρ
− g, (444)

which means that the pressure as a function of depth is the same as
in hydrostatic equilibrium. We impose that at the surface, defined by
z = h(x, y, t), we have P = Patm. Solving (444) with this condition we
obtain

P = Patm + ρg [h(x, y, t)− z] (445)

Substituting this into (440) and (441) we find

∂tvx + (vx∂x + vy∂y + vz∂z)vx = −g∂xh (446)

∂tvy + (vx∂x + vy∂y + vz∂z)vy = −g∂yh (447)

Now we make one further assumption, namely that vx and vy are indepen-
dent of z at the initial time. This assumption is satisfied if for example
the fluid is initially at rest. Since h does not depend on z, the right
hand side of equations (446) and (447) does not depends on z. Hence,
whatever the function h might be, these equations imply that vx and vy
remain independent of z for all t. Thus we may simplify (446) and (447)
as

∂tvx + (vx∂x + vy∂y)vx = −g∂xh
∂tvy + (vx∂x + vy∂y)vy = −g∂yh

(448)

(449)
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Since vx and vy are independent of z, we can integrate (443) to give

vz = − (∂xvx + ∂yvy) z + f(x, y, t) (450)

where f(x, y, t) is an arbitrary function. We can determine it by imposing
that at the bottom of the ocean the component of velocity perpendicular
to the surface of the bottom vanishes. To find the vector perpendicular
to this surface consider the function

F (x, y, z) = h0(x, y)− z (451)

the surface of the bottom is one of the surfaces defined by

F (x, y, z) = constant (452)

and ∇F = ∂xh0êx+∂xh0êy−êz is perpendicular to these surfaces. Hence
the vector

N = ∂xh0 + ∂yh0 − êz (453)

is perpendicular to the bottom of the ocean. Thus, at the bottom of the
ocean we must have

v ·N = 0 at z = h0(x, y) (454)

Expanding this becomes

vx∂xh0 + vy∂yh0 − vz = 0 at z = h0(x, y) (455)

the expressions for vz given by (455) and (450) must coincide at z =
h0(x, y). Imposing this we obtain

f(x, y, t) = ∂x(vxh0) + ∂y(vyh0) (456)

and substituting back into (450) we obtain

vz = − (∂xvx + ∂yvy) z + ∂x(vxh0) + ∂y(vyh0). (457)

This equation gives vz as a function of vx and vy. To find an equation
for the evolution of the surface, we must impose as we did in Section 5.3
that elements at the surface stay at the surface, so they always feel same
pressure, which is the atmospheric pressure Patm. Hence

DP

Dt
= 0 at z = h(x, y, t) (458)
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Using (445) this becomes

∂th+ (vx∂x + vy∂y)h− vz = 0 at z = h(x, y, t). (459)

The expressions for vz given this equation and by (457) must coincide at
z = h(x, y, t). Hence we obtain

∂th+ ∂x [vx (h0 − h)] + ∂y [vy (h0 − h)] = 0 (460)

Equations (448), (449) and (460) are the equation of shallow water theory
and form a complete system of equations. Given the state of the system
at t = 0, we can evolve it in time. It remains to check our approximation
of neglecting the LHS in (442). Equations (448) and (449) tell us that
typical values for the acceleration of fluid elements are a ∼ g∂xh ∼ gh/L.
Since a ∼ vx,y/T and vx,y ∼ L/T where T is a typical timescale over
which vx,y vary, this implies that typical horizontal velocities are

vx,y ∼ (gh)1/2 (461)

Then from (457) we have that

vz ∼
(
h

L

)
vx,y (462)

hence, vertical velocities are much smaller than horizontal velocities. Us-
ing these results, we can see that all the terms on the LHS of (442) are of
order (h/L)2g. For example ∂tvz ∼ (1/T )vz ∼ (1/T )(h/L)vx,y and using
T ∼ L/(gh)1/2 we obtain ∂tvz ∼ (h/L)2g. Hence the terms on the LHS
of (442) can be safely neglected, as assumed.

Now introduce the following quantities:

ρ̄ = ρ(h− h0) (463)

v̄ = vxêx + vyêy (464)

ρ̄ is simply the surface density of water. Rewriting (460), (448) and (449)
in terms of these yields

∂tρ̄+ ∇ · (ρ̄v̄) = 0 (465)

∂tv̄ + (v̄ ·∇)v̄ = −g∇ρ̄

ρ
−∇h0 (466)

These are just the equation of a gas with the following equation of state

P =

(
g

2ρ

)
ρ̄2 (467)

flowing in an external gravitational potential Φ = h0 i.e., the equations
of an adiabatic and isentropic gas with γ = 2.
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5.6 MHD waves

Consider waves propagating in a uniform magnetised medium at rest.
The only difference between this setup and the sound waves studied in
Section 5.2 is the presence of a uniform magnetic field. The equations of
motions are the ideal MHD equations (205), (206), (207) and (212). The
background steady state is

ρ = ρ0, P = P0, v = 0, B = B0 = B0êz (468)

where ρ0, P0 and B0 are constants, and without loss of generality we have
taken the magnetic field parallel to the z axis. Now as usual we linearise
the equations of motions around the background state by writing

ρ = ρ0 + ρ1, P = P0 + P1, v = v1, B = B0 + B1 (469)

We consider adiabatic perturbations, i.e., perturbations in which the en-
tropy of the background state is the same as the entropy of the perturbed
state (so they are also called isentropic). Following the same steps as in
Section 5.2 (cf equation 319) we then find that (212) implies

P1 = c2
0ρ1 (470)

where

c0 =

(
γP0

ρ0

)1/2

. (471)

Linearising the equations (205), (206), (207) and using (470) we find:

∂tρ1 = −ρ0∇ · v1 (472)

∂tv1 = −c2
0

∇ρ1

ρ0

+
1

4πρ0

(∇×B1)×B0 (473)

∂tB1 = ∇× (v1 ×B0) (474)

Now we look for solutions of the form

ρ1 = ρ̃1e
i(k·x−ωt) (475)

v1 = ṽ1e
i(k·x−ωt) (476)

B1 = B̃1e
i(k·x−ωt) (477)

We need to do quite some algebra to get to the dispersion relation, so
in the following we drop the ˜ to make notation shorter. Substituting
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(475)-(477) into (472)-(474) we obtain

−ωρ1 = −ρ0k · v1 (478)

−ωv1 = −c2
0

kρ1

ρ0

+
1

4πρ0

(k×B1)×B0 (479)

−ωB1 = k× (v1 ×B0) (480)

Isolating ρ1 and B1 from the first and last equation we have30

ρ1 = ρ0
(k · v1)

ω
(481)

B1 = − 1

ω
k× (v1 ×B0) (482)

= − 1

ω
[(k ·B0)v1 − (k · v1)B0] (483)

where in the second step we have used the identity

A× (B×C) = (A ·C) B− (A ·B) C . (484)

Substituting (481) and (483) into (479) (so that we get an equation in
which the only unknown is v1) we obtain

−ω2v1 = −c2
0(k · v1)k− 1

4πρ0

{k× [(k ·B0)v1 − (k · v1)B0]} ×B0 .

(485)

Now using the following identities

(A×B)×C = (A ·C) B− (B ·C) A (486)

(k× v1)×B0 = (k ·B0)v1 − (v1 ·B0)k (487)

(k×B0)×B0 = (k ·B0)B0 −B2
0k (488)

and rearranging a bit, we can rewrite (485) as[
ω2 − (k ·B0)2

4πρ0

]
v1 + (k · v1)

[
(k ·B0)

4πρ0

B0 −
(
c2

0 +
B2

0

4πρ0

)
k

]
+

(k ·B0)(v1 ·B0)

4πρ0

k = 0

(489)

We now assume without loss of generality that k = kxêx + kzêz (because
the x and y direction are physically identical). Introducing the Alfvén
speed

v2
A =

B2
0

4πρ0

Alfvén speed(490)

30Note that we are dividing by ω, so we are assuming ω 6= 0. Thus we are losing
possible vortex modes such as those discussed in Section 5.2.
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and recalling that we have also assumed B0 = B0êz, we have

(k · v1) = kxv1x + kzv1z (491)

(k ·B0)2

4πρ0

= k2
zv

2
A (492)

(v1 ·B0) = v1zB0 (493)

Hence we can rewrite (489) as[
ω2 − k2

zv
2
A

]
v1 + (kxv1x + kzv1z)

[
kzv

2
Aêz −

(
c2

0 + v2
A

)
k
]

+ kzv1zv
2
Ak = 0

(494)
Or equivalently asω2 − k2v2

A − k2
xc

2
0 0 −kxkzc2

0

0 ω2 − k2
zv

2
A 0

−kxkzc2
0 0 ω2 − k2

zc
2
0

v1x

v1y

v1z

 = 0 (495)

This system admits a non-trivial solution for v1 (i.e., a solution different
from v ≡ 0) if and only if the determinant of the big square matrix is
zero. Imposing this we obtain the dispersion relation(

ω2 − k2
zv

2
A

) [
ω4 − ω2k2

(
c2

0 + v2
A

)
+ c2

0k
2k2
zv

2
A

]
= 0 (496)

There are three different types of solutions of this equation, corresponding
to three different types of waves.

Alfvén waves The first solution has

ω2 = k2
zv

2
A (497)

let us first consider the case kx = 0, kz 6= 0, i.e. a wave propagating along
z, parallel to the magnetic field. Then any vector of the following form
is an eigenvector of the square matrix in (495)

v1 = v1xêx + v1yêy (498)

From (481) and (483) we see that ρ1 = 0, so there are no density and
pressure perturbations associated with this wave, and that B1 ∝ v1, so
the directions of velocity and magnetic perturbation coincide. Thus we
have waves that propagate with velocity vA parallel to the unperturbed
magnetic field, fluid elements that oscillate perpendicular to the direc-
tion of propagation, and the magnetic field that bends like a string under
tension. These waves are in fact very similar to waves on a string, such
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as a violin string. The restoring force is not pressure (the pressure per-
turbation vanishes!), but the magnetic tension that we studied in Section
2.2. Since ∇ · v1 = 0 there is no associated compression, and this wave
bends magnetic field-lines without squeezing them together.

If we now allow for kx 6= 0, eigenvectors of the square matrix in (495)
are of the following form

v1 = v1yêy (499)

Now the wave can propagate along x too, and the magnetic field lines
bend in the y direction. The bending has a phase which depends on x,
resulting in a pattern travelling in the x direction. Physically, this case
is similar to the previous one. The velocity of propagation along z is vA

as before, while the velocity of propagation along x is arbitrary and does
not carry information, as one would expect since it is not associated with
any restoring force but is just the result of a “phase tuning”.

Fast and slow waves the other two solutions of the dispersion relation
can be written

ω2 = k2v2
± (500)

where

v2
± =

1

2

[
v2

A + c2
0 ±

√
(v2

A + c2
0)

2 − 4v2
Ac

2
0(kz/k)2

]
(501)

The eigenvector of the square matrix in (495) for these waves are of the
form

v1 = v1xêx + v1zêz (502)

From (481) and (483) we then see that ρ1 6= 0 (since (k · v1) 6= 0), so
these waves are associated with density and pressure perturbations. To
interpret these waves, let us introduce the angle θ between k and B0 and
consider the particular case cos θ = kz/k � 1. Then (501) simplifies to

v2
+ ' v2

A + c2
0; v2

− '
v2

Ac
2
0

v2
A + c2

0

cos θ; (503)

The first is called fast wave, the second slow wave. These are pressure
waves, analogous to the sound waves studied in section (5.2). In the
fast wave, also called a magnetosonic wave, the pressure and magnetic
pressure work together reinforcing each other, while in the slow wave,
pressure and magnetic forces work in opposition. This can be also seen
by comparing the signs of the perturbations to the standard pressure P1

and magnetic pressure B0 ·B1/4π that are associated with the wave.
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5.7 Steepening of sounds waves and the formation
of shocks

In Section 5.2 we have studied sound waves propagating in a uniform
medium, and we have seen that in the linear approximation a small
perturbation travels without changing its shape. However, this result
rests on neglecting second order terms in the perturbed quantities. In
reality, when the equations are solved exactly, any perturbation in an
inviscid fluid, no matter how small, will eventually distort and become a
shock. This process is called non-linear “steepening” of the wave, and is
what we are going to study in this section.

Consider a one-dimensional inviscid isentropic fluid (see Section 1.5
for the definition of isentropic). The equations of motions are

∂tρ+ ∂x(ρv) = 0 (504)

∂tv + v∂xv = −∂xP
ρ

(505)

Pρ−γ = P0ρ
−γ
0 (506)

where P0 and ρ0 are constants. We are going to analyse these equations
exactly, i.e. without making any approximation. This is possible thanks
to a brilliant mathematical transformation due to Riemann, one of the
greatest mathematicians of the nineteenth century (the same person of
the Riemann hypothesis, which many consider to be the most important
unsolved problem in pure mathematics).

Let us rewrite the continuity equation (504) as:

∂tρ+ v∂xρ+ ρ∂xv = 0 (507)

Now let us replace ρ with P in this equation. Differentiating Eq. (506)
we find

dP

P
= γ

dρ

ρ
. (508)

Hence

∂tρ =
1

c2
∂tP ; ∂xρ =

1

c2
∂xP , (509)

where

c2 =
γP

ρ
(510)

is the local sound speed (which now is a function of x and t, not a
constant!). Using (509) and multiplying by c/ρ we can rewrite (507) as

1

ρc
∂tP +

v

ρc
∂xP + c ∂xv = 0 . (511)
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Adding and subtracting (505) and (511) we find

[∂tv + (v + c)∂xv] +
1

ρc
[∂tP + (v + c)∂xP ] = 0 (512)

[∂tv + (v − c)∂xv]− 1

ρc
[∂tP + (v − c)∂xP ] = 0 (513)

The equations of motion written in this form can be interpreted as fol-
lows. Recall that the time derivative of a generic function f(x, t) along
an arbitrary curve x = ϕ(t) in the (x, t) plane can be written as:

df

dt ϕ
=
∂f

∂t
+
∂f

∂x

dϕ

dt
. (514)

Therefore Eqs. (512) and (513) contain derivatives of the quantities v and
P only along the curves C±(t) such that dx/dt = (v ± c) respectively.
This means that the fluid equations can be interpreted as propagation
of two signals that move with velocities dx/dt = (v ± c) from any given
point in the fluid. The curves C± are called characteristics (see for
example Chapter 1 in [8] if you want to know more).

Now to proceed further let us express P and c as a function of ρ (use
Eqs. 506 and 510):

P = P0

(
ρ

ρ0

)γ
, (515)

c = c0

(
ρ

ρ0

) γ−1
2

, (516)

where c0 = (γP0/ρ0)1/2. Using these expressions we find

dP

ρc
=

2

(γ − 1)
dc . (517)

Using (517) we can rewrite Eqs. (512) and (513) as

[∂tJ+ + (v + c)∂xJ+] = 0 (518)

[∂tJ− + (v − c)∂xJ−] = 0 (519)

where

J± = v ± 2

(γ − 1)
c (520)

Or in other words

dJ+

dt
= 0 along the curve C+ :

dx

dt
= v + c , (521)

dJ−
dt

= 0 along the curve C− :
dx

dt
= v − c . (522)
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This is the clever way in which Riemann recast the equations. The quan-
tities J± are called Riemann invariants. The meaning of Eqs. (521)
and (522) is as follows. The first equation shows that the quantity J+ is
constant along a trajectory x(t) in the (x, t) plane such that dx/dt = v+c.
The second equation similarly shows that J− is constant along the curve
dx/dt = v − c.

We are now ready to use the equations to understand the non-linear
development of waves. Consider initial conditions ρ(x, t = 0) and v(x, t =
0) such that J−(x, t = 0) = J0 = constant. Equation (522) tells us that
J− is invariant along characteristic lines, and since it is initially constant,
it will stay constant to the same value at all times. Therefore we have
that at all times the following relation holds:

v − 2

(γ − 1)
c = J0 (523)

Since in isentropic flow c is a function of ρ (Eq. 516), this means that the
velocity is a function of density only, v = v(ρ) (at all times!). Now let’s
see what the other equation (Eq. 521) tells us. Since both the velocity
(Eq. 523) and the sound speed (Eq. 516) are functions of ρ only, also
J+ = J+(ρ) is a function of ρ only (Eq. 520). Eq. (521) says that J+ is
constant along the lines dx/dt = v+c. But since we have just shown that
J+ is a function of ρ only, this means that also the density is constant
along the lines dx/dt = v+ c. Moreover, since v = v(ρ), also the velocity
is constant along the lines dx/dt = v + c! Hence the characteristic lines
originating from each point are straight lines:

x(t) = [v + c(v)]t . (524)

This also implies that if the velocity is positive everywhere at t = 0,
then it will stay always positive at all times, so we have a wave travelling
in one direction only. In general, a solution of the equations of motion
in which one of the Riemann invariants is constant (and therefore the
characteristics that are straight lines) is called a simple wave.

(a)

(b)

(c)

shock

x− c0t

x− c0t

t = 0

t = t1

t = t2

x− c0t

A

A

A

B C
D

B C
D

B C
D

Figure 22: Steepening of an
acoustic wave into a shock.
The black line represent the
velocity profile at successive
instant of times.

To understand the meaning of Eq. (524), consider a wave whose v
profile at t = 0 is as shown in Fig. 22(a). We want to find the v profile
at a later time t1. Consider point A. This point initially has v = 0
and c = c0. Therefore, according to Eq. (524) we find that the point
xA(t) = c0t will always have v = 0. Loosely speaking, we can say that
at t = t1 the point A has “moved” to xA(t1), but note that this is not
the motion of the actual fluid element that was initially at A. What we
really mean is that the point with constant velocity v = 0 has moved
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from its initial position to x = xA(t1). The fluid element at A follows a
different trajectory: indeed, this point initially has v = 0 and so initially
does not move. What we are doing here is mathematical construction to
find the solution at later times, we are not following fluid elements.

Now consider pointsB,C,D. According to Eq. (524), point B “moves”
(in the sense above) the fastest because it has the highest initial v (c(v) is
an increasing function of v, see Eq. 523). Point C moves slightly less fast,
and point D is the slowest of the three. The points get closer with time
and the shape of the wave is distorted. If we continue our mathematical
construction long enough, at some time t2 (Fig. 22c) point C will surpass
point B. At t2 our solution is double valued, which is physically impossi-
ble. What actually happens is that instead of becoming double valued,
the solution develops a discontinuity (a shock). As can be seen from this
argument, this always inevitably happens whenever there is a segment of
the wave in which the velocity decreases in the direction of wave propa-
gation. Thus, the exact “simple wave” solution that we derived in this
section is generally valid only for a limited amount of time.

How long does it take for a wave to become a shock? We can estimate
the time of shock formation as follows. Consider two points, say C and
D in Fig. 22 that are initially separated by a distance ∆x and whose
velocity difference is ∆v = vC − vD. The shock will form when point
C reaches point D (time t2 in Fig. 22). Using Eqs. (524) and (523) this
happens after a time interval

∆t =
∆x

[vA + c(vA)]− [vB + c(vB)]
(525)

=

(
2

1 + γ

)
∆x

∆v
. (526)

Therefore, the time of shock formation is related to the slope of the
velocity profile. The steeper the profile, the sooner the shock will form.

Figure 23: Photograph of a
bullet in supersonic flight,
published by Ernst Mach in
1887

The idea of shock waves is now familiar, but it was not readily ac-
cepted at first. In a paper titled “On a difficulty in the theory of sound”
published in 1848, Stokes noted that waves of finite amplitude distort, as
in Fig. 22. Stokes hesitantly suggested that “Perhaps the most natural
supposition to make for trial is, that a surface of discontinuity is formed,
in passing across which there is an abrupt change of density and veloc-
ity”. The actual proof that shocks exist in nature was given later by
Ernst Mach, which was fascinated by the fact that one usually perceives
two “bangs” when a bullet is flying by. Shock waves are normally invis-
ible to the naked eye, but Mach devised a special optical arrangement
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(called a shadowgraph) that allowed him to photograph shock waves.
In 1887, he presented a photograph to the Academy of Sciences in Vi-
enna of a bullet moving at supersonic speeds (see Fig. 23). The bow
shock and trailing edge shock are visible in the figure. This historic pho-
tograph allowed scientists to actually see shock waves for the first time
(see for example https://history.nasa.gov/SP-4219/Chapter3.html
for more historical info).
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