
5 Instabilities

5.1 Gravitational instability

• In our study of sound waves, we considered what happens when you introduce small
perturbations to a uniform fluid that is initially at rest, but deliberately ignored the
e↵ects of the self-gravity of the gas. We now relax this assumption, and ask what
happens to these perturbations when gravitational e↵ects are included.

• With the gravitational term included, our perturbed version of Euler’s equation be-
comes
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where �0 is the gravitational potential of the unperturbed fluid, and �1 is the pertur-
bation to the potential arising from the density perturbation in the gas. We determine
the potential from the density via Poisson’s equation:

r2(�0 + �1) = 4⇡G(⇢0 + ⇢1), (482)

and so
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• We now encounter our first problem: what to do about �0? In a truly infinite, uniform
medium, �0 is also uniform everywhere and we can therefore set it to zero. However, we
have known since the time of Newton that this situation is unstable, with the slightest
perturbation away from uniformity leading to gravitational collapse. In addition, �0 is
not zero if we consider a uniform but finite system.

• In his original analysis of this problem, Sir James Jeans assumed that we could never-
theless disregard the �0 term, a procedure that has subsequently become known as the
Jeans swindle. Although it is not strictly justified in the present case, there are many
physical situations in which this approach is justified: e.g. in a rotating body that is
in equilibrium, such as a disk, the force from the unperturbed potential is simply the
centripetal force required to balance the centrifugal force arising from the rotation, and
hence can be neglected in our perturbation analysis.

• If we apply the Jeans swindle, then our perturbed versions of the continuity and Euler
equations can be reduced to the following form
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These are the same equations as we saw previously in our study of sound waves, with
the addition of one extra term on the right-hand side of the momentum equation,
corresponding to the force due to the self-gravity of the perturbations.

• Taking the time derivative of the first of these equations and the spatial derivative of
the second, and then combining them, we obtain
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We can then use the perturbed form of Poisson’s equation to write this as
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We see that once again, we have a wave equation, but that the self-gravity of the
perturbation provides an additional driving term.

• If we now consider a plane wave solution of the form e
�i(~k·~x+!t), then we obtain the

dispersion relation
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• When k is very large (i.e. our perturbations are physically small), the gravitational
term is unimportant and this expression reduces to the dispersion relation for a simple,
undamped sound wave. On the other hand, when the perturbations are very large, so
that c2

s
k
2 ⌧ 4⇡G⇢0, we can write the dispersion relation approximately as
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which implies that
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and hence that the perturbation grows exponentially as
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We see therefore that in this limit, the gas is gravitationally unstable: any tiny
perturbation away from uniformity will amplify exponentially on a timescale tgrav =
(4⇡G⇢)�1/2, comparable to the gravitational free-fall time of the gas.

• The critical wavenumber at which we move from the oscillatory regime to the gravita-
tionally unstable regime is given by
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Using this, we can define a corresponding critical length scale, known as the Jeans
length
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and a critical mass scale, known as the Jeans mass
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(Note that this value for MJ is the same, to within a small numerical factor, as we
would get if we asked what mass we need in order for the magnitude of the gravitational
energy of a perturbation to exceed its thermal energy).

• Perturbations that have sizes larger than the Jeans length or masses larger than the
Jeans mass are gravitationally unstable, and hence will undergo gravitational collapse.
For � ⇠ �J and M ⇠ MJ, pressure forces remain important and collapse proceeds
slowly, while for � � �J and M � MJ, pressure forces are unimportant and collapse
proceeds as if the gas were in free-fall.

• This scale-dependence of the collapse rate can be see more clearly if we rewrite the dis-
persion relation in terms of a dimensionless growth rate ⌦ = i!tgrav and a dimensionless
wave-number ⌫ = k/kJ. In these dimensionless units, we have

⌦2 = 1� ⌫
2
, (496)

demonstrating very clearly that ⌦ increases for decreasing ⌫ (i.e. increasing physical size
of the perturbation) and is a maximum for ⌫ = 0 (i.e. an infinitely large perturbation).
In practical terms, this means that in three dimensions, the fastest growing mode of
the gravitational instability is the one which corresponds to the overall collapse of the
medium.

• An important consequence of this result is that in am approximately spherically sym-
metrical collapse, it is di�cult for gravitational instability to cause fragmentation of
the gas unless it is seeded on small scales by large density perturbations, since other-
wise the small-scale perturbations grow slowly in comparison to the collapse timescale
of the gas as a whole.

• Let us now examine what happens if, instead of an infinite uniform medium, we have
an infinite thin sheet of matter with initially uniform surface density ⌃0.

• For a thin sheet, the fluid equations take the form
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where ⌃ =
R
+1
�1 ⇢dz is the surface density of the sheet and the gravitational potential

� satisfies the thin-disk version of Poisson’s equation:

r2� = 4⇡G⌃�(z), (499)

where � is the Dirac delta function.



• If we apply first-order perturbation theory to this set of equations, we obtain the
following equations for our perturbed surface density ⌃1, velocity ~v1 and potential �1:
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r2�1 = 4⇡G⌃1�(z). (502)

Note that to derive the last of these equations, we have again used the Jeans swindle
to allow us to disregard the unperturbed potential.

• The continuity and momentum equations have a very similar form to their 3D ana-
logues, and thus it is natural to adopt similar trial solutions for ⌃1 and ~v1, namely
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where ⌃a and ~va are constants.

• The appropriate solution to use for the potential perturbation requires a little more
thought. Our solution must satisfy the perturbed version of Poisson’s equation, which
motivates the functional form
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where �a = 2⇡G⌃a/|k|.

• Substituting these solutions into the perturbation equations and solving for the dis-
persion relation linking ! and k yields
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Again, we see that when k is small, gravity dominates and the sheet becomes grav-
itationally unstable, while if k is large, thermal pressure dominates and the sheet is
stable. However, the presence of k in the gravitational term does lead to a qualitative
di↵erence in the behavior of the instability in this case.

• This change in behavior can be seen more clearly if we once again write the dispersion
relation in dimensionless units. If we define a characteristic length scale
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and use this to define a dimensionless growth rate ⌦ = i!H/cs and a dimensionless
wavenumber ⌫ = kH, then we can show that
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In order for the perturbation to grow, we require that ⌦2
> 0, which implies that ⌫ < 2.

The critical wavenumber at which we first see the instability is therefore kcrit = 2/H.
If we now consider what happens as we increase the size of the perturbations (i.e.
decrease k and ⌫), we see that while initially the grow rate increases, it soon reaches a
maximum value, when ⌫ = 1, and thereafter decreases. We see therefore that, unlike
the 3D case, the fastest growing mode in the 2D case occurs when k = 1/H = kcrit/2,
and that this mode grows much more rapidly than the collapse timescale of the sheet
as a whole.

• Consequently, fragmentation in a 2D thin sheet tends to produce fragments with a
single characteristic mass Mchar = 4Mcrit, where Mcrit is the critical mass required for
fragmentation.

• Note also that although in our analysis here, we have considered an infinitely thin sheet,
a similar result can be shown to apply for the more realistic case of a self-gravitating
isothermal sheet.

5.2 Toomre instability

• The original version of the type of instability that has become known as the Toomre
instability was derived by Toomre in 1964 for a stellar disk, i.e. a rotating disk of
(collisionless) stars. However, a very similar instability exists in the gas of a rotating
disk of gas, and it is the latter case that we examine here.

• Consider a rotating thin disk, with constant surface density ⌃ and constant angular
velocity ⌦0. How does the disk respond to the presence of small perturbations?

• A rotating thin disk is a relatively simple generalization of the case of a non-rotating
thin sheet that we considered in the previous section. In the rotating case, and in the
frame that is co-rotating with the fluid, the fluid equations become

@⌃

@t
+r · (⌃~v) = 0, (509)

@~v

@t
+ ~v ·r~v = �rp

⌃
�r�� 2~⌦⇥ ~v + ⌦2(x~̂ex + y~̂ey), (510)

r2� = 4⇡G⌃�(z). (511)

The e↵ect of the rotation is to introduce two additional terms in the momentum equa-
tion, corresponding to the Coriolis and centrifugal forces, respectively.

• In the co-rotating frame, and in the absence of perturbations, we know that the po-
tential gradient in the x-y plane must exactly balance the centrifugal force, i.e.

r�0 = ⌦2(x~̂ex + y~̂ey). (512)

• Therefore, in this case when we apply first-order perturbation theory to this set of
equations, we do not need to rely on the Jeans swindle in order to neglect the r�0



term. Instead, we simply note that it balances the centrifugal force term, and hence
eliminate both from the resulting perturbation equations.

• To first order, we therefore have
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r2�1 = 4⇡G⌃1�(z). (515)

and using the same trial solutions as in the thin-sheet case, we can show that

!
2 = c

2

s
k
2 + 4⌦2 � 2⇡G⌃0|k|. (516)

• In order for the disk to remain stable in the presence of small perturbations, we must
have !2

> 0. We see therefore that thermal pressure and rotation both act to stabilize
the disk, while the self-gravity of the perturbation destabilizes it.

• In addition, we see that the thermal pressure term and the rotation term have very
di↵erent dependences on scale. The contribution from rotation in independent of scale,
while the thermal pressure contribution scales as k

2, and so is much larger on small
scales than on large scales. In comparison, the self-gravity term scales as k, and so
grows on small scales, although not as rapidly as the thermal pressure term.

• By comparing the thermal pressure and self-gravity terms, we can show that pertur-
bations with wave-numbers larger than
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are stable. (Note that this is the same result as in the non-rotating thin sheet case).
Similarly, by comparing the rotation and self-gravity terms, we can show that all
perturbations with wave-numbers smaller than

krot =
2⌦2

⇡G⌃0

(518)

are also stable.

• We therefore see that if krot > kJ, the disk will be stable on all scales. On the other
hand, if krot < kJ, then there is a range of wave-numbers krot < k < kJ for which the
disk is unstable to the growth of small perturbations.

• The condition that krot > kJ can also be written as
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We can rearrange this inequality to give
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which simplifies to
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Therefore, if we define the Toomre stability parameter as

Q ⌘ ⌦cs
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we see that the disk will be stable if Q � 1 and unstable if Q < 1.

• In our analysis here, we have assumed a fixed angular velocity ⌦, but a similar insta-
bility holds locally when ⌦ varies with radius in the disk. However, in this case, the
condition for instability becomes

Q ⌘ cs
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< 1, (523)

where  is the epicyclic frequency of the disk. Similarly, ⌃0 and cs may also vary with
radius, and so in general, Q is a function of radius, meaning that at some radii, the
disk may be unstable, while at others it is stable.

• As an example, consider the formation of giant planets in a protoplanetary disk. This
is believed to be a consequence of gravitational instability, but close to the star, the
disk will be strongly heated by the star, raising cs and Q and hence suppressing the
instability. The fact that we nevertheless see many giant planets at radii that are very
close to their host stars, the so-called hot Jupiters, is therefore good evidence for
some form of migration occurring in the disk.

5.3 Parker instability

• Another important instability that can occur on large scales within galactic disks is the
so-called Parker instability. For this to operate, we require the gas to be magnetized
and that the magnetic field is oriented such that the magnetic field lines are initially
parallel to the mid-plane of the galactic disk.

• The first question to address is what is the equilibrium configuration of the field and
the gas in this case? In order to analyze this, we make a couple of simplifying assump-
tions. We assume that the pressure due to non-thermal particles (cosmic rays) is zero,
and that the gas is at rest. Neither of these assumptions is strictly true in the real
ISM, but they allow us to capture the essence of the instability without unnecessary
complications.



• We assume, without loss of generality, that the magnetic field is oriented parallel to
the y axis, so that

~B0 = B0(z)~̂ey, (524)

and that the pressure and density are uniform in the x-y plane. We also assume,
following Parker, that the ratio of the thermal to the magnetic pressure, the so-called
plasma � parameter, is constant:
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• If the gas is in equilibrium, then it follows that
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where ⇢0(z) is the density of the unperturbed gas and �(z) is the gravitational poten-
tial. We can eliminate the density by using the relationship ⇢0 = P0/c
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• Solving this equation yields the following expressions for the thermal pressure and the
magnetic field strength
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When � is large, meaning that thermal pressure dominates, we therefore have the
standard exponential atmosphere, while when � is small, the scale-height of the gas is
greatly increased, thanks to the substantial magnetic pressure support.

• In this equilibrium configuration, only magnetic pressure is important; magnetic ten-
sion plays no role, because the field lines are straight. However, if we now perturb the
gas away from this equilibrium state, then the magnetic tension plays an important
role in determining its subsequent evolution.

• We can understand qualitatively what happens if we think of the magnetic field as a
“light” fluid held down by a “heavy fluid” (the gas). If we perturb the field upwards,
then the magnetic pressure remains the same (initially), but the weight of the gas
acting downwards on the field is reduced. The net force therefore acts upwards, further
displacing the field – in other words, the field is buoyant.



• As the field starts to move upwards, magnetic tension forces come into play. They
suppress the growth of short-wavelength perturbations, since in this case the field
curvature is large, and so is the tension force. For very long wavelengths, however, the
tension forces are small and are insu�cient to stop the growth of the instability.

• As the field starts to buckle, the force on the gas due to gravity is no longer perpen-
dicular to the field lines. It therefore drives a flow of gas along the field lines, allowing
the gas to drain from the “peaks” of the magnetic field into the troughs. This reduces
the weight of the gas acting to anchor the magnetic field in the peaks, allowing them
move even further upwards.

• A detailed analysis of this instability with the tools of perturbation theory shows that
the maximum growth rate is roughly the free-fall rate and occurs for perturbations
with a wavelength
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where g0 is the acceleration due to gravity at the midplane of the disk. Shorter wave-
length perturbations are stabilized by magnetic tension, while longer wavelength per-
turbations are unstable, but grow more slowly than this mode.

• If we approximate the gravitational potential close to the midplane as �(z) = g0|z|,
then the scale-height of the gas distribution implied by Equation 528 is
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and so the fastest growing mode of the Parker instability has a wavelength that is
roughly � ' 2⇡H.

5.4 Kelvin-Helmholtz instability

• The Kelvin-Helmholtz instability is an example of an instability occurring at the
interface between two fluids.

• Consider a flow in the x direction made up of two separate fluids. Fluid 1, located in
the half-plane z < 0 has velocity U1 and density ⇢1. Fluid 2, located at z > 0, has
velocity U2 and density ⇢2.

• For simplicity, we assume that the e↵ects of gravity are negligible and that the fluid is
incompressible. The latter assumption means that the continuity equation
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reduces to the constraint
r · ~v = 0. (534)

We also assume that the flow is irrotational, i.e. that its vorticity ~! = r⇥ ~v = 0.



• If r · ~v = 0 and r⇥ ~v = 0, then we can write ~v as the gradient of a scalar potential
�, provided that this potential satisfies

r2� = 0. (535)

We therefore have what is known as a potential flow.

• In the present case, we therefore have

~v2 = r�2 z > 0, (536)

~v1 = r�1 z < 0. (537)

• We next note that the Euler equation for an incompressible, constant density gas can
be written as
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Using the identity
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and the assumption that ~v is a potential flow (which implies that r⇥ v = 0), we can
rewrite this as
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which implies that
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(This is basically just Bernouilli’s equation in slightly di↵erent guise).

• In the unperturbed flow, the velocity potentials �1 and �2 are simply U1x and U2x,
respectively. However, we want to understand what happens when we perturb the
system, so let us consider perturbing the potentials to

�1 = U1x+ �1, (542)

�2 = U2x+ �2, (543)

where �i ⌧ �i for i = 1, 2. Note that the perturbing potentials must also satisfy
r2

� = 0.

• We next introduce a function ⇠(x, t) that describes the z position of the interface
between the two fluids.

• At t = 0, we have ⇠(x, 0) = 0 for all x. At t > 0, however, the interface can move
if the fluids have a non-zero velocity in the z direction. Since the flow must remain
continuous across the interface, the motion of the interface in the z direction is just
the same as the motion of the fluid immediately surrounding it, i.e. @�1/@z evaluated
at z = ⇠, or a similar expression for fluid 2.



• In a frame comoving with the fluid in the x direction, we therefore have
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while in a frame fixed in space, we instead have
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where v1,x is the velocity of the flow in the x direction.

• We know that
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Therefore, the evolution of ⇠ satisfies
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• Now, since
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we can also write this as
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Moreover, since U1 has no dependence on z, we also know that @�1/@z = @�1/@z,
implying that
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• In equilibrium, the x derivative of ⇠ is zero. It only becomes non-zero once we perturb
the potential, and if the perturbation is small, the resulting derivative will also be
small. Therefore, we can consider the term
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to be of second order in our perturbed quantities. Therefore, if we carry out our
analysis only to linear order, we can neglect this term, leaving us with
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We can apply the same chain of reasoning in fluid 2, which gives us a second equation
for ⇠:
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• Returning to the Bernouilli equation, we note that we can write it as
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where P̄ is the initial pressure. Expanding this to first order in our small perturbation,
we get
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Rearranging this then gives an expression for P1:

P1 = P̄ � ⇢1
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Similarly, in fluid 2 we have

P2 = P̄ � ⇢2
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Finally, since P1 = P2 (i.e. the system is in pressure equilibrium), we find that
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• Now that we have the governing equations for �1, �2 and ⇠, we can solve for the
dispersion relation describing the evolution of the perturbation. We consider the ansatz

�1 = �1(z) exp [i(kx� !t)] . (559)

Since r2
�1 = 0, we know that
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and hence that
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• This equation has solutions �1(z) / exp(kz) and �1(z) / exp(�kz). However, recall
that fluid 1 fills the half-plane with z < 0. A long way away from the interface, we
expect the fluid to be undisturbed, and hence require that �1 ! 0 as z ! �1. This
behaviour is satisfied by the first solution, but not the second, and so we can discard
the latter.

• A similar line of argument tells us that �2 / exp(�kz). Therefore, for a single Fourier
mode:

�1 = �̂1 exp(kz) exp [i(kx� !t)] , (562)

�2 = �̂2 exp(�kz) exp [i(kx� !t)] , (563)

⇠ = ⇠̂ exp [i(kx� !t)] , (564)

where �̂1, �̂2, and ⇠̂ are the relevant mode amplitudes.



• Substituting these into Equations 552 and 553 gives us

�i!⇠̂ + ikU1⇠̂ = k�̂1 exp(kz), (565)

�i!⇠̂ + ikU2⇠̂ = �k�̂2 exp(kz). (566)

Similarly, from Equation 558, we find that

i⇢1 [kU1 � !] �̂1 exp(kz) = i⇢2 [kU2 � !] �̂2 exp(�kz). (567)

• Combining these equations, we find that
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i⇢2

�k
(kU2 � !) (ikU2 � i!)⇠̂. (568)

This equation has a trivial solution ⇠̂ = 0, but also has a non-trivial solution if ! and
k satisfy

⇢1 (kU1 � !)2 = �⇢2 (kU2 � !)2 , (569)
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Rearranging this gives us the following quadratic equation for !:

!
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• Solving for !, we find that

! =
k (⇢1U1 + ⇢2U2)
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Consider the term inside the square root. We can expand this as
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. (573)

Therefore, the term inside the square root is always negative if U1 6= U2, implying that
! always has an imaginary part.

• Specifically, we find that

! =
k (⇢1U1 + ⇢2U2)

⇢1 + ⇢2
± i

p
⇢1⇢2k

(⇢1 + ⇢2)
|U1 � U2| . (574)

Therefore, the interface between the fluids always displays oscillatory behaviour (unless
U1 = U2 = 0, i.e. the fluid is at rest), but also has both growing and decaying modes
whenever |U1 � U2| 6= 0, i.e. whenever one of the fluids is moving relative to the other
one.

• The presence of a growing mode means that in any shear flow of this type, small wave-
like perturbations of the interface between the fluids will grow into large “billows”. The
subsequent non-linear evolution of these billows (which is not captured by our linear
analysis above) leads to them rolling up into vortex-like structures. This instability is
the Kelvin-Helmholtz instability.



• The Kelvin-Helmholtz instability grows on a characteristic timescale

tgrow =
⇢1 + ⇢2p

⇢1⇢2

1

k |U1 � U2|
. (575)

In the special case when ⇢1 = ⇢2, we have

tgrow =
2

k |U1 � U2|
. (576)

On the other hand, if ⇢1 � ⇢2, we have instead

tgrow '
p

⇢1/⇢2

k |U1 � U2|
, (577)

while if ⇢2 � ⇢1, we have

tgrow '
p

⇢2/⇢1

k |U1 � U2|
, (578)

• We therefore see that the instability grows most rapidly for fluids that have very similar
densities, while if the fluids have very di↵erent densities, the growth rate is slower by
approximately a factor of the square-root of the density contrast. We also note that
tgrow / k

�1, indicating that small modes grow faster than large ones. Consequently,
the size of the non-linear vortices created by the Kelvin-Helmholtz instability tend to
grow with time.

• Another important point to note is that

tgrow / 1

|U1 � U2|
. (579)

This means that Kelvin-Helmholtz instability occurs far more rapidly when there are
sudden changes in the velocity of the shear flow. This also allows us to reason about
the e↵ects of viscosity (which was neglected in the above analysis) on the instability.
Viscosity will act to reduce the di↵erence between U1 and U2, and we would therefore
expect the growth of the Kelvin-Helmholtz instability to occur more slowly in very
viscous fluids than in fluids with negligible viscosity.

5.5 Rayleigh-Taylor instability

• In our discussion of the Kelvin-Helmholtz instability, we assumed that the e↵ects of
gravity are negligible. Now let’s relax this assumption and see what happens.

• We consider the same initial setup as before, with two fluids with densities ⇢1 and ⇢2

and velocities U1 and U2 separated by an interface whose position is specified by ⇠(x, t).
However, this time we assume that there is a homogeneous gravitational field ~g with
strength g pointing in the negative z direction.



• In the presence of this field, Euler’s equation becomes

@~v

@t
+ (~v ·r)~v = �r

✓
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⇢

◆
+ ~g, (580)

and the Bernoulli equation becomes
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@t
+
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2
v
2 +

P

⇢
+ gz = constant. (581)

• Our derivation of the equations linking ⇠, �1 and �2 relies only on the velocity across
the interface being constant and hence is the same regardless of whether or not a
gravitational field is present. Therefore, in this case the equations
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, (582)
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(583)

remain valid.

• When g 6= 0, however, the third of our equations, derived from the Bernoulli equation,
takes the form
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, (584)

where the absence of the gravitational term on the right-hand side comes from the fact
that the interface starts at z = 0 in the unperturbed state. Expanding this to first
order as before, we get
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, (585)

and hence

P1 = P̄ � ⇢1
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Similarly,

P2 = P̄ � ⇢2
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. (587)

• Previously, we assumed that the fluid was in pressure equilibrium and hence equated
P1 and P2. Is this assumption still valid in the presence of a gravitational field? Clearly,
on large scales there must be a pressure gradient in the vertical direction when the flow
is in equilibrium, to balance the gravitational attraction. However, on small scales (i.e.
scales much smaller than the scale height), close to the interface, we can still assume
that P1 and P2 are approximately constant, and hence it is still valid to equate them.
Doing so yields
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. (588)



• If we now consider the same trial solutions as before, we find that

�i!⇠̂ + ikU1⇠̂ = k�̂1 exp(kz), (589)

�i!⇠̂ + ikU2⇠̂ = �k�̂2 exp(kz), (590)

and

i⇢1 [kU1 � !] �̂1 exp(kz) + ⇢1g⇠̂ = i⇢2 [kU2 � !] �̂2 exp(�kz) + ⇢2g⇠̂. (591)

• Combining these equations yields the dispersion relation valid in the case g 6= 0:
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�
+ (⇢2 � ⇢1)kg = 0. (592)

• Now consider the special case where the fluid is at rest, i.e. where U1 = U2 = 0. In this
case, the dispersion relation reduces to the form

!
2 (⇢1 + ⇢2) + (⇢2 � ⇢1)kg = 0. (593)

Therefore,

!
2 =

(⇢1 � ⇢2)kg

⇢1 + ⇢2
. (594)

If ⇢1 > ⇢2 (i.e. the lower fluid is denser than the upper fluid), then !
2
> 0 and so this

arrangement is stable for all k. On the other hand, if ⇢2 > ⇢1 (i.e. the denser fluid
lies on top), then !

2
< 0 and the arrangement is unstable for all k. This instability,

which is driven by the buoyancy of the lighter fluid, is known as the Rayleigh-Taylor
instability.

5.6 Thermal instability

• The final instability that we consider here has nothing to do with the gravity of the gas,
but instead is driven entirely by the interplay between thermal pressure and radiative
heating and cooling. This is the thermal instability.

• Suppose that the net cooling rate of a parcel of gas is given by

Q̇ = n
2⇤� n�, (595)

where ⇤ is the cooling rate per unit volume and � is the heating rate. [NB. We use
this form for Q̇ because most heating processes are proportional to a single power of
the density (e.g. cosmic ray heating or the photoelectric e↵ect), while most cooling
processes are proportional to the density squared].

• In thermal equilibrium, heating balances cooling and so we simply have Q̇ = 0.

• Now consider what happens when we perturb this equilibrium state. We will consider
two types of perturbations: isochoric perturbations, in which we hold the density
constant while changing the temperature, and isobaric perturbations in which we
hold the pressure constant while changing the temperature.



• Suppose we increase the temperature. For our equilibrium to be thermally stable, this
must lead to Q̇ > 0, so that the gas cools back to the equilibrium state. If, on the
other hand, it leads to Q̇ < 0, the gas will continue to heat up, moving further and
further from equilibrium – it will be thermally unstable.

• Similarly, if we decrease the temperature, then we need Q̇ < 0 in order for the gas to
return to equilibrium. Our condition for thermal instability is hence that:

@Q̇

@T
< 0. (596)

For an isochoric perturbation, we have the Parker criterion:
"
@Q̇

@T

#

⇢

< 0. (597)

On the other hand, for isobaric perturbations we have the Field criterion:
"
@Q̇

@T

#

P

< 0. (598)

• To see what this implies in terms of the temperature dependence of the cooling function,
let us suppose that we can approximate ⇤ and � as power-laws:

⇤ = ⇤0T
↵; � = �0T

�
. (599)

• The Parker criterion then becomes:

↵
n
2⇤

T
� �

n�

T
< 0. (600)

We can rearrange this to obtain:

↵
�
⇤n2 � �n

�
+ (↵� �)�n < 0. (601)

• In equilibrium, the term in the first set of brackets is zero, and hence the condition for
isochoric thermal instability becomes:

(↵� �)�n < 0. (602)

Since �n > 0, this implies that the medium will be isochorically unstable whenever
↵ < �.

• In the local ISM, � ' 0, and our condition for isochoric thermal instability becomes
a constraint on the temperature dependence of our cooling rate. If we assume that
at temperatures T ⌧ 104 K this is dominated by fine structure emission from C+,
then ⇤ / T

0.1
e
�92/T when C+–H collisions dominate and ⇤ / T

�1/2
e
�92/T when C+–

electron collisions dominate. Below a few hundred K, we therefore always have ↵ > 0
and the medium is isochorically stable. However, at higher temperatures, it can be
isochorically unstable if collisions with electrons dominate the C+ cooling rate.



• What about isobaric instability? If we ignore any changes in composition, then P =
const implies that n / T

�1. Therefore, the Field criterion is:

(↵� 2)
n
2⇤

T
� (� � 1)

n�

T
< 0 (603)

Hence we have:
(↵� 2)

�
⇤n2 � �n

�
+ (↵� 2� � + 1)n� < 0, (604)

which for a gas initially in thermal equilibrium reduces to the condition:

↵� � � 1 < 0. (605)

For � = 0, we therefore have thermal instability if ↵ < 1, i.e. if the cooling function
increases with increasing temperature more slowly that ⇤ / T .

• In the local ISM, this condition is generally satisfied for all temperatures in the range
100 < T < 6000 K, regardless of whether electron collisions or hydrogen collisions
dominate. Therefore, the gas is always isobarically unstable in this regime.

• What is the size of the structures created by isobaric thermal instability? For the gas
to be isobaric, it must be able to maintain pressure equilibrium internally. This means
that these structures have a maximum size that is approximately:

Liso = cstcool, (606)

where tcool is the cooling time of the gas. For a gas with T = 100 K, we have ⇤C+ =
1.1 ⇥ 10�27 erg cm3 s�1 (where we have assumed solar metallicity and that hydrogen
collisions dominate), and hence the cooling time is approximately

tcool =
1.5nkT

⇤C+n2
, (607)

=
2.1⇥ 10�14

1.1⇥ 10�27
n
�1
, (608)

= 0.6n�1 Myr. (609)

The sound speed for T = 100K is approximately 1kms�1, and the isobaric length scale
is thus

Liso ' 0.6n�1 pc. (610)

• The minimum size of the isobaric perturbations is set by another physical e↵ect, ther-
mal conduction. As the perturbation cools, it becomes colder than the surrounding
gas. Heat will therefore flow into it via thermal conduction. If the heat flow into the
perturbation balances the radiative losses then the perturbation will not cool and the
instability will be suppressed.

• To estimate the length scale on which this becomes important, we start by recalling
the heat flow equation:

~q = �~rT. (611)

Here, ~q is the flow of heat through the surface of the perturbation and  is the thermal
conductivity of the gas.



• We can write this equation in integral form as:

Q̇ = �

I
~rT · d~S. (612)

We can get a crude estimate of the value of Q̇ by noting that rT ⇠ T/L, where L is
the size of the perturbation. Hence:

|Q̇| ⇠ ⇥ T

L
⇥ L

2 ⇠ TL. (613)

• For thermal conduction to balance cooling, we must have n2⇤L3 ⇠ TL. From this, we
can derive an estimate for the minimum length scale that our perturbation can have:

Lmin =

✓
T

n2⇤

◆1/2

. (614)

This minimum length scale is known as the Field length, and is often written as LF.

• When the ionization of the gas is low (or the magnetic field is strong), the dominant
contribution to the thermal conductivity comes from atomic hydrogen. In this case,
we have

 = 2.5⇥ 103T 1/2 cm�1 K�1 s�1
. (615)

If the gas temperature is 100 K, as before, then this implies that LF ⇠ 0.02n�1 pc,
significantly smaller than Liso.

• The isobaric thermal instability can therefore create dense structures in the gas with
a wide range of scales, LF < L < Liso. However, these structures are generally not
self-gravitating. To see this, note that in order for a density perturbation to be grav-
itationally unstable, its size must be larger than the Jeans length LJ. Therefore, in
order for the initial small isobaric perturbation to be gravitationally unstable, it must
have L > LJ, which is possible only if Liso > LJ. To within a small numerical factor,
we have Liso = cstcool and LJ = cst↵ , where t↵ is the gravitational free-fall timescale.
Therefore, the initial perturbation is unstable only if tcool > t↵ .

• Typically, in conditions where thermal instability is important, cooling is e�cient and
tcool ⌧ t↵ . Therefore, in these conditions, the initial isobaric perturbations are not
gravitationally unstable.

• As the perturbations evolve, their temperatures decrease and their densities increase.
As LJ / T

1/2
n
�1/2, this leads to a decrease in the Jeans length. However, their physical

dimensions also decrease, scaling as L / n
�1/3 if the perturbation is roughly spherical.

The ratio of the Jeans length to the size of the perturbation therefore scales as

LJ

L
/ T

1/2
n
�1/6

. (616)



Since n / T
�1 for an isobaric perturbation, this implies that

LJ

L
/ T

2/3
. (617)

Therefore, if LJ ⌧ L initially, the perturbation will become unstable only if the change
in temperature is very large. However, in most circumstances in which gas is susceptible
to thermal instability, the temperature changes by no more than a factor of 100, and
often by much less. Since 1002/3 ⇠ 20, this implies that if tcool < 0.05t↵ initially, then
L > LJ throughout the evolution of the isobaric perturbation. To give some concrete
numbers, for the local ISM, we have tcool < 0.01t↵ in the CNM, and an even smaller
ratio in warmer gas, and so in this case, the perturbations remain stable.

• On other other hand, isochoric perturbations can become gravitationally unstable,
since they are not constrained to have sizes L < Liso. In addition, the strong pressure
gradients that are created during the initial cooling phase can have a large e↵ect on the
dynamics of the gas, and in particular can be an e�cient way of generating turbulence
in the cold gas.


