
4.4 MHD shocks

4.4.1 Single fluid shocks

• So far, we have considered the properties of shocks in the case where there is no mag-
netic field in the fluid. We now explore what happens when we relax this assumption.
To begin with, we assume that ideal MHD applies everywhere but within the shock-
front itself, and that the velocities of the ions and the neutrals are the same (i.e. we
can treat them as a single fluid).

• We can use the MHD version of the fluid equations to derive jump conditions relating
conditions in the pre-shock gas to those in the post-shock gas. In the absence of a
magnetic field, the conditions that we arrive at simply require that the flux of mass,
momentum and energy is conserved across the shock. In the MHD case, however, we
also need to consider what happens to the magnetic field, and so it is useful to look at
the full derivation.

• We start by noting that the continuity equation has the same form regardless of whether
or not a magnetic field is present. Therefore, the associated shock jump condition in
the MHD case is the same as in the hydrodynamical case:

⇢1v1,? = ⇢2v2,?. (422)

• The momentum equation, in the form that we derived it in lecture 2, is given by
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In component form, this can be written as
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• The left-hand side of this equation can be rewritten as
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The final term on the right-hand side of this expression is simply v
i

times the continuity
equation, and hence is zero. Therefore, the momentum equation becomes
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• The magnetic pressure term on the right-hand side can be written as
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Since the magnetic field satisfies r · ~B = 0, we have @
j

B
j

= 0, and hence can write the
momentum equation as
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Finally, collecting terms together and using the identity @
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, where �
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is the
Kronecker delta, we arrive at the following form for the MHD momentum equation:
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where T
ik

is the Maxwell stress tensor
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• Now consider a small cylindrical volume with cross-sectional area A oriented perpen-
dicular to the shock, with one end in the pre-shock gas and the other in the post-shock
gas. From the above form of the momentum equation, we see that
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where V is the volume of the cylinder. If we allow the volume of the cylinder to tend
to zero, then the integral of the time derivative term vanishes, and we have simply
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Applying Gauss’ theorem then yields
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where ~n is the vector normal to the area element dA, and S is the closed surface of
the cylinder. Since we can make the length of the cylinder as short as we like, the only
surfaces we need consider are the two ends. We therefore find that
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where the subscripts denote that the contents of the brackets are evaluated in the pre-
shock and post-shock gas, respectively. From this, our desired jump condition follows
trivially:
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• To translate this from component notation back into something more useful, note that
we can locally decompose the fluid velocity into two components, v? and vk, where v? is
oriented perpendicular to the magnetic field and vk is ordered parallel to it. Similarly,
~B can also be decomposed into perpendicular and parallel components, B? and Bk.

• If we let both i and j represent the perpendicular component, then i = j and the jump
condition tells us that
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Alternatively, if we let i represent the perpendicular component and j represent the
parallel component, then i 6= j and the momentum jump condition yields

⇢1v1,?v1,k �
1

4⇡
B1,?B1,k = ⇢2v2,?v2,k �

1

4⇡
B2,?B2,k. (438)

• A similar analysis applied to the constraint that r · ~B = 0 gives us another jump
condition for the magnetic field

B1,? = B2,?, (439)

and allows us to simplify the first of the momentum jump conditions to
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We therefore see that if the flow of the gas is perfectly parallel to the field lines, so
that the shock is oriented perpendicularly to them and Bk = 0, then the momentum
jump condition that we obtain is the same as in the hydrodynamical case. This makes
sense on physical grounds – in this scenario, the field exerts no net force on the gas,
so it is not surprising that the jump conditions remain unaltered. We also see that
when the parallel component of the field is non-zero, then our jump condition for the
momentum in the perpendicular direction does depend on the magnetic field, which
provides an additional source of pressure.

• A further jump condition on the velocity and the magnetic field comes from the induc-
tion equation
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If we consider the same small cylindrical volume as before and require the time deriva-
tive of the magnetic field to vanish within it, then it follows that
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This can be converted to the following surface integral
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where ~n is the normal to the surface, and the vector identity

~a⇥ (~b⇥ ~c) = (~a · ~c)~b� (~a ·~b)~c (444)

then allows us to write this as
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• As before, we can choose our volume V and surface S so that the only parts of the
surface integral that we need to worry about are the ends of the cylinder, and hence
can simply take ~n to be perpendicular to the shock front. We therefore have
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From this, we obtain the jump condition

v1,?B1,k � B1,?v1,k = v2,?B2,k � B2,?v2,k. (447)

(Taking the other component of the vector simply yields the trivial result that v?B?�
B?v? = 0, and hence tells us nothing new).

• Finally, it is possible to write the energy equation for the flow in conservative form as10
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from which a final jump condition follows:
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where C = B1,?v1,k � B1,kv1,? = B2,?v2,k � B2,kv2,? is conserved through the shock.

• The full set of jump conditions for an MHD shock is therefore

⇢1v1,? = ⇢2v2,?, (450)

B1,? = B2,?, (451)
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v1,?B1,k � B1,?v1,k = v2,?B2,k � B2,?v2,k, (454)

⇢1v1,?

✓

h1 +
1

2
v21

◆

� 1

4⇡
CB1,k = ⇢2v2,?

✓

h2 +
1

2
v22

◆

� 1

4⇡
CB2,k. (455)

10In the interests of brevity, we leave proof of this statement as an exercise for the reader.



• It is clear from the form of these jump conditions that MHD shocks are considerably
more complicated than their hydrodynamical equivalents. On reflection, however, this
should not be surprising. In a hydrodynamical flow, we have only a single characteristic
velocity, the sound speed cs, at which signals can propagate. In an MHD flow, however,
there are three characteristic velocities: the sound speed, and also vF and vS, the speeds
of the fast and slow MHD waves. Shocks are associated with the jump of the flow
velocity from above the phase velocity of a given wave to below, and hence there are
six possible types of MHD shock.

• The first type of MHD shock is known as a fast shock. In this case, we have v1,? > vF
and vF > v2,? > vA,?, where vA,? is the Alfven velocity in the perpendicular direction.
The flow therefore jumps from above to below the velocity of the fast MHD wave, but
remains faster than the Alfven velocity.

• Another type of MHD shock is a slow shock, where vA,? > v1,? > vS and v2,? < vS. In
this case, both pre-shock and post-shock velocities are slower than the Alfven velocity.

• Finally, there are four di↵erent types of intermediate shock:

v1,? > vF, vA,? > v2,? > vS,

v1,? > vF, v2,? < vS,

vF > v1,? > vA,?, vA,? > v2,? > vS,

vF > v1,? > vA,?, v2,? < vS.

In all four of these shocks, the pre-shock flow is super-Alfvenic (i.e. faster than the
Alfven velocity) and the post-shock flow is sub-Alfvenic.

• A comprehensive analysis of the behaviour of all of these di↵erent types of MHD shock
is beyond the scope of this lecture course.11 Here, we restrict our discussion to a couple
of simple but informative cases.

• If B? = 0, then the shock jump conditions reduce to

⇢1v1,? = ⇢2v2,?, (456)

⇢1v
2
1,? + p1 +

1

8⇡
B2

1,k = ⇢2v
2
2,? + p2 +

1

8⇡
B2

2,k, (457)

v1,k = v2,k (458)

v1,?B1,k = v2,?B2,k, (459)
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Using these, it is possible to show that in this case, the only type of shock that is

physically possible is a fast shock, with v1,? >
�

v2A,?,1 + c2s,1
�1/2

. The compression ratio
produced by this shock can be written as
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11See e.g. Draine & McKee (1993, ARA&A, 31, 373) for a more detailed discussion
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and MA,1 ⌘ v1,?/vA,1 is the Alfven Mach number of the shock. In the limit where
M � 1 and MA � 1, D ! (� � 1) and the compression ratio becomes
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just as for a purely hydrodynamical shock. For weaker shocks, however, it is clear that
we get less compression when the magnetic field is strong and MA,1 is small than when
the magnetic field is weak or absent and MA,1 is very large. This is a consequence
of the additional resistance to compression provided by the magnetic pressure in this
scenario.

• The other important special case is when Bk,1 = 0. In this case, the shock jump
conditions become

⇢1v1,? = ⇢2v2,?, (464)

B1,? = B2,?, (465)
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Note that in this case, we cannot automatically assume that B2,k = 0, as Bk is not
necessarily conserved through the shock.

• One possible solution consistent with these jump conditions has B2,k = 0. In this case,
the jump conditions simplify further, becoming the same as for a purely hydrodynam-
ical shock, and the magnetic field plays no role in determining the shock properties.
This “hydrodynamical” solution exists whenever v1 > cs,1, and produces a compression
ratio, temperature ratio, etc. that are the same as in the absence of a magnetic field.
This hydrodynamical solution is a fast shock if cs,1 > vA,1, and can be either a fast,
slow or intermediate shock if cs,1 < vA,1.

• However, a second solution exists in the Bk,1 = 0 case in which Bk,2 6= 0. In this case,
known as a switch-on shock, both the magnetic field and the velocity acquire post-
shock components parallel to the shock front despite having no such components in
the pre-shock flow. In order for the switch-on solution to exist, the pre-shock velocity
must satisfy

vcrit > v1,? > vA,1,? > cs,1, (470)
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For � = 5/3, switch-on solutions exist only for a small range of Alfvenic Mach numbers,
1 < MA <, but for softer equations of state (� < 5/3), the allowed range of MA can
be much broader.

• Similarly, it is possible to show that there is also a class of solutions for which Bk,1 6= 0
but Bk,2 = 0. These are known as switch-o↵ shocks, and are a type of slow shock.

4.4.2 Multi-fluid shocks

• In a partially charged fluid, magnetic forces act only on the charged particles and not
on the neutral particles. If there are many charged particles, and collisions between
them and the neutral particles occur frequently, then this is a good approximation. In
this case, collisions will rapidly redistribute momentum between the charged and the
neutral components of the plasma, and the end result is the same as if the magnetic
forces acted on both fluids.

• If the fractional ionization of the gas becomes very small, however, then this approx-
imation begins to break down, as the coupling between the charged particles and the
neutrals is no longer strong enough to maintain both components at the same velocity.

• To analyze this situation, we assume that the velocity of the ions and the electrons in
the gas is equal, and focus on the behavior of the ions, since they carry most of the
momentum in the charged component of the plasma.

• In the rest frame of the neutrals, and in the absence of any significant gravitational or
pressure forces, the ions will feel two main forces: a magnetic force per unit volume
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and a drag force due to collisions between the ions and the neutrals,

fdrag = �⇢n⇢i (~vi � ~vn) , (473)

where � is the drag coe�cient and the other quantities have their obvious meanings.

• Equating these and solving for the relative velocity ~vd between the ions and the neutrals
yields
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• To estimate when this is likely to become important, we use our usual trick of approx-
imating the derivative as 1/L, where L is a characteristic length scale, and obtain
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where we have assumed that ⇢i ⌧ ⇢n.



• In conditions typical of e.g. a dense prestellar core inside a molecular cloud, we have
� = 3.5⇥ 1013 cm3 g�1 s�1, ⇢i ' 2⇥ 10�26 g cm�3 and L ⇠ 0.1 pc. We therefore have

vd ' v2A
2 km s�1

. (476)

In these conditions, vA ⇠ 0.1 km s�1, and so vd ⌧ vA; i.e. motion of the neutrals
relative to the ions occurs slowly even in these dense regions.

• In these conditions, and if the conductivity of the plasma remains high, we can continue
to write the induction equation in the ideal MHD form
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where now we clarify that the velocity appearing in this expression is the velocity of
the ions. In terms of the velocity of the neutrals, the equation instead becomes
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• If the coupling between the ions and the neutrals is very strong, then the term on the
right-hand side of this expression is very small and can be neglected. In this case, the
field evolution with respect to the ions is the same as with respect to the neutrals.
When this is not the case, however, then the term on the right-hand side corresponds
to the di↵usion of the field with respect to the neutrals, a process termed ambipolar
di↵usion.

• If L is the typical length scale over which the magnetic field varies, then we can write
the ambipolar di↵usion timescale as

tAD ⇠ L

vd
. (479)

In many circumstances, L is large and vd is small, and hence the am bipolar di↵usion
timescale is very long. For example, in the prestellar core we considered above, L =
0.1 pc, vd ⇠ 5⇥ 10�3 km s�1, and so tAD ⇠ 20 Myr.

• However, in MHD shocks, the magnetic field strength and configuration can change
dramatically over very short length scales. Consequently, ambipolar di↵usion can be-
come very important in determining the structure of the shocks, just as molecular
viscosity plays an important role in shocks even when it is irrelevant elsewhere in the
flow.

• One of the most important consequences of the weak coupling between neutrals and
ions in the ambipolar di↵usion regime is what it implies for the propagation of MHD



waves through the gas. If the ions and neutrals are only weakly coupled, then the
Alfven velocity in the ions is given by

vA,i =
Bp
4⇡⇢i

, (480)

where ⇢i is the mass density of the ions. In a weakly ionized gas, ⇢i ⌧ ⇢n, the mass
density of the neutrals, and so the Alfven velocity is much higher than it would be if
the ions and the neutrals were strongly coupled.

• To give a few numbers for context: in a typical GMC, in the strongly-coupled regime,
vA ⇠ 2 km s�1, while in the weakly-coupled regime, vA,i > 100 km s�1.

• The large size of the Alfven velocity in the ions in the weakly-coupled case means that
from the point of view of the ions, almost all of the disturbances in the flow are sub-
alfvenic, with propagation velocities v < vA,i (which is also the approximate velocity
at which the fast mode waves propagate). Consequently, shocks do not form in the
ionized component – its properties remain continuous.

• The behavior of the neutral component depends on how strongly it is coupled to the
ionized component, and how strong the shock is. Collisions between neutrals and
ions dissipate energy, and in a weakly coupled shock, this dissipation occurs over an
extended region. If the resulting dissipative heating is small, then it can be balanced
by radiative cooling in the gas, allowing the gas temperature to remain small, and the
flow of the neutrals to remain supersonic throughout the “shock”. In this case, both
components are continuous and we refer to this structure as a C-type shock.

• If radiative cooling cannot keep up with ion-neutral dissipation, on the other hand,
either because the shock is very strong or because the ion-neutral coupling is not
su�ciently weak, then the neutral gas will undergo a supersonic to subsonic transition
in a collisional sub-shock, with a thickness of the same order as the neutral particle
mean free path. In this case, we refer to the resulting structure as a J-type shock.

• Note that in both cases, the behavior of the flow variables far upstream or far down-
stream of the shock is the same as a single-fluid MHD radiative shock. The weak
coupling only a↵ects the behavior of the shock region itself, and cannot influence the
conservation of momentum, mass etc. through the shock.


