Astrophysical Fluid Dynamics

Assignment #7: due December 11th

1. Phase velocities of MHD waves

Consider an isothermal fluid with a uniform density ρ . Assume that this fluid is permeated by a magnetic field with strength B_0 which is oriented parallel to the y axis. Suppose that an MHD wave is propagating in this fluid, with a wavevector \mathbf{k} that lies in the x - y plane, and let θ be the angle between \mathbf{k} and \mathbf{B} .

- (a) Assume that $v_{\rm A} > c_{\rm s}$. Plot the phase velocity of the MHD wave as a function of θ if it is (i) a fast magnetosonic wave; (ii) an Alfven wave; (iii) a slow magnetosonic wave. Be sure to indicate the values of the phase velocity at $\theta = 0$ and $\theta = 90^{\circ}$. [Note: plot all three lines on the same figure].
- (b) Repeat part (a), for the case where $v_{\rm A} < c_{\rm s}$.

2. The Prandtl-Meyer relation

(a) The shock jump conditions for normal shocks are

$$\rho_1 v_1 = \rho_2 v_2, \tag{1}$$

$$p_1 + \rho_1 v_1^2 = p_2 + \rho_2 v_2^2, \tag{2}$$

$$\frac{1}{2}v_1^2 + h_1 = \frac{1}{2}v_2^2 + h_2, \qquad (3)$$

where h is the specific enthalpy, given by

$$h = \frac{\gamma}{\gamma - 1} \frac{p}{\rho}.$$
(4)

Use these to derive the **Prandtl-Meyer relation**

$$v_1 v_2 = c_*^2,$$
 (5)

where c_*^2 is defined by the relation

$$\left(\frac{\gamma+1}{\gamma-1}\right)\frac{c_*^2}{2} = \frac{v^2}{2} + h,$$
(6)

and hence is conserved across a shock. [Hint: you will need to make use of all three jump conditions, plus the definition of h in terms of p and ρ . Note that you can assume that v_1 and v_2 are both greater than zero, and that it is sufficient to show that

1

$$(v_1 - v_2) \left(\frac{c_*^2}{v_1 v_2} - 1 \right) = 0, \tag{7}$$

as this implies that $v_1v_2 = c_*^2$ provided that $v_1 \neq v_2$].

(b) c_* satisfies the inequality

$$c_2^2 > c_*^2 > c_1^2, (8)$$

where c_1 and c_2 are the sound-speed in the upstream and downstream gas, respectively. Use this and the Prandtl-Meyer relation to show that for any shock, the upstream flow is supersonic $(v_1 > c_1)$ and the downstream flow is subsonic $(v_2 < c_2)$.