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Abstract

Despite the many successes of the current standard model of cosmology on the largest physical

scales, it relies on two phenomenologically motivated constituents, cold dark matter and dark en-

ergy, which account for approximately 95% of the energy-matter content of the universe. From a

more fundamental point of view, however, the introduction of a dark energy (DE) component is

theoretically challenging and extremely fine-tuned, despite the many proposals for its dynamics.

On the other hand, the concept of cold dark matter (CDM) also suffers from several issues such as

the lack of direct experimental detection, the question of its cosmological abundance and problems

related to the formation of structure on small scales. A perhaps more natural solution might be that

the gravitational interaction genuinely differs from that of general relativity, which expresses itself

as either one or even both of the above dark components. Here we consider different possibilities

on how to constrain hypothetical modifications to the gravitational sector, focusing on the subset

of tensor-vector-scalar (TeVeS) theory as an alternative to CDM on galactic scales and a particular

class of chameleon models which aim at explaining the coincidences of DE. Developing an ana-

lytic model for nonspherical lenses, we begin our analysis with testing TeVeS against observations

of multiple-image systems. We then approach the role of low-density objects such as cosmic fila-

ments in this framework and discuss potentially observablesignatures. Along these lines, we also

consider the possibility of massive neutrinos in TeVeS theory and outline a general approach for

constraining this hypothesis with the help of cluster lenses. This approach is then demonstrated

using the cluster lens A2390 with its remarkable straight arc. Presenting a general framework

to explore the nonlinear clustering of density perturbations in coupled scalar field models, we

then consider a particular chameleon model and highlight the possibility of measurable effects on

intermediate scales, i.e. those relevant for galaxy clusters. Finally, we discuss the prospects of

applying similar methods in the context of TeVeS and presentan ansatz which allows to cast the

linear perturbation equations into a more convenient form.
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Chapter 1

Introduction

1.1 The standard model of cosmology

Current observations of the universe at large scales indicate that it is to good approximation

isotropic and - following the Copernican principle - homogeneous. Within the commonly ac-

cepted framework of general relativity (GR), this remarkably allowed cosmologists to develop

suitable theoretical models of the universe as a whole and toconstrain possible scenarios regarding

its origin and evolution as well as to pinpoint its energy budget. With the advent of observational

evidence supporting a spatially flat spacetime geometry, itwas inferred that the universe’s energy

density must be close to a critical valueρcrit. Naively, one expects this density to be made out of

known matter described by the standard model of particle physics (SMPP), in which case it should

be dominated by the contribution of baryonic material. However, current cosmological constraints

do not agree with this picture. For instance, Big Bang nucleosynthesis (BBN), which provides

a theoretical description for the creation of light elements in the first three minutes after the Big

Bang, gives strict limits on the amount of ordinary matter inthe universe [1] and suggests that

baryons contribute less than 5% to the found value ofρcrit. The fully isotropic and homogeneous

universe is, of course, an idealization. In reality, the universe exhibits a plethora of structures,

ranging from large-scale filaments and cosmic voids down to stars, galaxies and clusters thereof.

It is now widely believed that these originally formed from tiny quantum fluctuations in the very

early universe. According to the current picture, these fluctuations originated from a scalar field,

the so-called inflaton, which is also responsible for a rapidphase of cosmological expansion very

shortly after the Big Bang. Once inflation sets in, the vacuumfluctuations quickly lose causal

contact and effectively become classical, fixing the initial conditions for the growth of perturba-
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1.1. The standard model of cosmology

tions driven by gravitational attraction. Since inflation ensures that all of the observable universe

emerged from a small causally connected region, it providesa suitable explanation for the found

isotropy and homogeneity on the largest scales today. Furthermore, the inflationary scenario pre-

dicts a spatially flat spacetime geometry in accordance withthe current observational evidence

for a critical energy density. The theoretical study of perturbations and their evolution has made it

possible to make firm statistical predictions which can be tested with the help of astronomical data.

Up to today, all of these tests consistently agree with the view that baryonic material accounts for

only a fraction of the universe’s present energy density, with a contribution of around 4− 5%.

Therefore, if one assumes GR and the theory of inflation to be correct, the remaining 95− 96%

must be constituted by something that is not part of the SMPP.

Indeed, the problem of missing matter is not entirely new. Already in the early 30s, an analysis

of the Coma cluster [2] pointed out that the mass inferred from the cluster’s luminosity distribu-

tion is not able to account for the system’s gravitational potential, and it was postulated that this

discrepancy might be due to the presence of dark matter (DM) in the cluster, i.e. a hypothetical

form of matter which does not couple to light and thus is invisible to direct observations. This

assumption has been further strengthened by the first analysis of rotation curves of spiral galaxies

[3, 4], followed by many more studies in the general context of dynamical investigations as well

as gravitational lensing (see, e.g., Refs. [5–7] for recentreviews), and the currently shared view

is that this DM component is essentially collisionless [8],i.e. cold dark matter (CDM). How-

ever, observations of the cosmic microwave background (CMB) and the ratio of CDM to baryons

measured by the combination of weak lensing and x-ray analysis in galaxy clusters revealed that

this mysterious component alone is not able to fully accountfor the missing 95% of the critical

density. As it turned out, one had to add yet another ingredient to the cosmic inventory which is

commonly denoted as the cosmological constant or more generally dark energy (DE) and - unlike

any other known matter field - characterized by a strong negative pressure. The introduction of

such a quantity became necessary to explain a further observed property of the current universe, its

accelerated expansion. Although the fact that the present universe is undergoing a phase of expan-

sion was already discovered by Edwin Hubble at the beginningof the twentieth century, the first

convincing evidence for an accelerated expansion came fromobservations on supernovae Ia [9].

Sharing a common scale (in the form of the Chandrasekhar masslimit), these objects are believed

to form standard candles, i.e. objects with known luminosities, which allows one to use them as

cosmological distance indicators and thus as probes of the universe’s expansion history. Other

2



1.1. The standard model of cosmology

evidence for DE comes from the observed peaks in the CMB anisotropy spectrum, the imprint of

baryonic acoustic oscillations in the matter power spectrum [10], the relative speeds of galaxies

in the local group [11], weak gravitational lensing [12] or the late-time integrated Sachs-Wolfe

effect [13] which describes the energy gain of CMB photons traveling through the time-dependent

gravitational potentials generated by large-scale structure such as galaxy clusters.

Putting everything together, the present view is that the total energy density of today’s universe

is dominated by DE, followed by CDM and ordinary baryonic matter with fractional contributions

of 20− 25% and around 4− 5%, respectively. Combined with the framework of GR and infla-

tion, these constituents form the pillars of what is now known as theΛCDM model, the standard

model of cosmology. Over the recent years, theΛCDM model has been remarkably successful in

forming a coherent picture on the largest physical scales and provides suitable explanations for the

observations on supernovae [14], large-scale structure [15, 16], weak lensing [17] and the CMB

[18, 19]. Despite its achievements as a phenomenological description of the universe, however,

theΛCDM model is not free of problems and as we shall discuss below, it seems intriguing that

these difficulties are related to the concepts of DE and CDM.

Cold dark matter At present, the generally accepted view is that CDM is primarily made out of

nonbaryonic particles. Among the most common proposals, one finds so-called weakly interacting

massive particles (WIMPs), axions or sterile neutrinos (cf. Sec. 3.4.1). None of these are actually

part of the SMPP, but can arise within certain extensions to it. Assuming that CDM particles were

thermally produced in the very early universe, WIMPs provide a quite natural choice for DM:

Considering particle interaction rates and taking the expansion of the universe into account, it has

been found that the abundance of a particle is directly related to its typical cross section [20]. The

higher the cross section is, the lower its abundance in the universe will be and vice versa. If a

nonrelativistic particle interacts with typical weak-scale cross sections, however, its relative abun-

dance to ordinary matter turns out to be just of the right order, i.e. one obtains a DM contribution

which is in good accordance with current observational evidence. This is called the “WIMP Mir-

acle”. For instance, many supersymmetric models naturallygive rise to stable and heavy WIMPs

in the form of neutralinos1, with a lightest neutralino around a mass of roughly 10− 104GeV

providing an excellent candidate to comprise the universe’s CDM. Until now, however, none of

the above particles has been directly detected in any of the experiments conducted so far [21] and

1Having the same quantum numbers, the supersymmetric partners of Z boson, photon and the neutral Higgs boson can
mix, forming four eigenstates of the mass operator which arecommonly denoted as neutralinos.

3



1.1. The standard model of cosmology

it should be emphasized that their existence still remains theoretical speculation. Furthermore,

even if such CDM candidates were found, one would still be left with the problem that producing

the right amount of CDM is likely to require severe fine-tuning of the model parameters - even in

the case of WIMPs [22]. On the other hand, the concept of CDM also suffers from several issues

related to the formation of structure on small scales. For instance, cosmological simulations pre-

dict that there should be a substantially larger number of satellite galaxies orbiting around galaxies

like the Milky Way than actually observed [23–25]. A common explanation is that there may exist

feedback processes such as supernovae which extinguish thestar formation of such small galax-

ies. However, no fully convincing mechanism for this kind ofscenario has been proposed so far.

Another consequence of the CDM paradigm is the prediction ofcuspy density profiles in galaxies,

which appears to contradict the observed cored distribution of dwarf galaxies [26, 27]. Similar

evidence against such central cusps is also seen in the rotation curves of spiral galaxies [28] where

the CDM density does not increase towards the center. Possible remedies to this problem such as

feedback from active galactic nuclei or supernova winds, which are principally capable of reducing

the CDM density at the center of galaxies, have been found to be insufficient [29].

Dark energy Even more mysterious than assuming the presence of DM particles is the necessity

for DE which appears to constitute most of the total energy-matter content of the present universe.

To be consistent with current observations supporting accelerated expansion, DE must come with

a pressure which is approximately equal to its energy density, but with the opposite sign. In this

case, the effects of DE could be explained by simply allowing for a cosmological constant term

in the gravitational field equations, the same constant originally proposed (and later discarded)

by Einstein to enforce a static universe. To explain where this constant comes from, however,

poses a great challenge to physics [30, 31]. From a quantum theoretical point of view, it should

be identified as the energy density of the vacuum. Following the standard methods of quantum

field theory [32, 33], one may obtain a rough estimate for its order of magnitude by considering

the vacuum energy of a free scalar field. Introducing naturalunits where Planck’s constant~ and

the speed of lightc are set to unity, i.e.~ = c = 1, this leads to

〈ρvac〉 ∼
1
2

∞
∫

0

d3k

(2π)3

√

k2 +m2 (1.1)

if one takes the contribution of all the modes into account. Since the integral in Eq. (1.1) is

ultraviolet divergent, one might expect that such high-energy modes do not contribute within a

4



1.1. The standard model of cosmology

more fundamental theory and introduce a cut-off to the integral. A natural choice would be the

Planck scale where quantum effects are believed to become important. Using this assumption, one

finds an estimate forρvac which is approximately by a factor 10120 larger than the actual observed

value. Obviously, there is a cancellation effect needed which should lead to the desired value.

Certain supersymmetric theories even require a cosmological constant that is exactly zero, which

further complicates things. This is the cosmological constant problem, the worst problem of fine-

tuning in physics. Another related fine-tuning issue is the so-called cosmic coincidence problem

which simply concerns the question why the energy contributions of DE and matter (mostly CDM)

have become comparable just recently. This is disturbing inview of the fact that the size of the

universe at the creation of the CMB, where DE was completely negligible, has roughly grown

by a factor of 103 until the present and that after an additional increase by a factor of around

10, everything except DE will be negligible. Looked at this way, the transition between these

two regimes appears almost instantaneous and one would liketo understand why this is the case.

Furthermore, it is curious that the effects of DE and DM in various systems seem to be tuned to

a common scale [34], hence requiring a coincidence in both dark sectors which appears unlikely

given their current interpretation.

A perhaps more natural solution might be that the description of gravitational interaction gen-

uinely differs from GR, which expresses itself as either one or even bothof the above dark compo-

nents. Having only been accurately tested in the very stronggravity regime, i.e. the solar system,

there is no guarantee that GR will hold everywhere in the universe. This has motivated different

modifications to the gravity sector, either by directly changing the underlying principles of space-

time geometry or by introducing new fields and nonstandard couplings. Typical examples aref (R)

gravity [35], conformal Weyl gravity or scalar-tensor theories, but there exist many more [34, 36–

40]. While some of these modifications are explicitly constructed to provide a phenomenological

description of observational findings, others emerge from theoretical considerations in the context

of high energy physics. For example, there exist attempts toreconcile gravitation with quantum

theory by introducing corrections to the conventional gravitational interaction. Other approaches

involve strong couplings between spacetime curvature and scalar fields like the Higgs field in order

to provide an explanation for DE, or introduce unconventional vector fields to create the effects of

CDM on astrophysical scales. Finally, certain formulations in the context of string theory propose

that extra-dimensions could have gravitational effects on the visible universe, meaning that DE

and DM are not necessarily needed for a unified theory of cosmology.
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1.2. Structure and contents of the thesis

Ultimately, a modified theory of gravity must be able to consistently explain observations

before one may consider it as a serious competitor to theΛCDM model. In the following, we shall

discuss certain aspects of these theories such as their generic properties and possible approaches to

test and constrain them on extragalactic and cosmological scales, restricting ourselves to a subset

of modified gravity theories which have recently gained interest within the scientific community.

After a general review of GR and cosmology, we will introducethese modifications in Sec. 2.

1.2 Structure and contents of the thesis

The thesis is structured as follows:

• In Sec. 2, we will briefly review the basics of general relativity and cosmology, followed by

a discussion of selected possible extensions.

• The contents of Sec. 3 are concerned with the study of gravitational lensing in tensor-vector-

scalar gravity. Starting with a test of multiple-image lenssystems, we discuss the role of

low-density objects such as filaments and finally consider the possibility of constraining

massive neutrino matter with galaxy cluster lenses.

• In Sec. 4, we shall investigate the nonlinear regime of structure formation in the context

of coupled scalar field models. This is followed by an analysis of metric perturbations in

tensor-vector-scalar gravity, aiming at how to principally approach such problems in this

case.

• Finally, we summarize in Sec. 5.

6



Chapter 2

Gravitation and cosmology

As the dynamics of the universe at large scales is governed bygravity, we will begin with a

brief introduction to GR and its cosmological application.We will also discuss more speculative

extensions to this framework, focusing on their motivations and basic structure. Throughout this

thesis, we will mostly follow the conventions of Ref. [41]. In particular, we will assume a positive

metric signature (−,+,+,+) and units where the speed of light equals unity, i.e.c = 1. While

greek indices run from 0 to 3, latin ones run from 1 to 3.

2.1 General relativistic description of the universe

2.1.1 Basic equations

In GR, gravitation is described in terms of spacetime geometry. The geometry is determined

by the matter content while the matter’s movement is in turn governed by the geometry. More

mathematically, this interplay can be expressed in terms offield equations which read

Rµν −
1
2

Rgµν = 8πGTµν, (2.1)

whereG is Newton’s constant,Rµν is the Ricci tensor andTµν denotes the energy-momentum

tensor. HereR is defined as the contraction ofRµν, i.e. R ≡ gµνRµν, andRµν is constructed from

the metric fieldgµν according to (e.g., see Ref. [42])

Rµν ≡ Γαµν,α − Γαµα,ν + ΓααλΓλµν − ΓαµλΓλαν, (2.2)

7



2.1. General relativistic description of the universe

whereΓ is associated with the Levi-Civita connection of the metric(theΓ’s are then also called

the Christoffel symbols),

Γαβγ ≡
1
2

gαλ
(

gλβ,γ + gλγ,β − gβγ,λ
)

. (2.3)

The above quantities describe the geometry of spacetime in the combination defined as the Einstein

tensorGµν,

Gµν ≡ Rµν −
1
2

Rgµν, (2.4)

while Tµν contains the information of the matter configuration. In four dimensions, there are 16

field equations, but since in Einsteinian gravitygµν andTµν are symmetric, i.e.gµν = gνµ, the num-

ber of independent equations is reduced to ten. In general, this set of highly nonlinear equations is

practically impossible to solve. However, there exist remarkable exceptions in cases of abundant

symmetries. In such situations, the number of independent degrees of freedom can be substantially

reduced, resulting in a system of equations simple enough tobe analytically trackable. The first

such example was found by Schwarzschild in 1915 and describes the vacuum outside a spherically

symmetric matter distribution.

The field equations in Eq. (2.1) can be derived from the actionprinciple and a suitable starting

point is given by the Einstein-Hilbert action which reads

Sg =

∫

d4x
√−g

[ R
16πG

+Lm

(

gµν,Υ
B
)

]

, (2.5)

whereg is the determinant of the covariant metricgµν. The Lagrangian densityLm depends on the

metric and some collection of matter fieldsΥB, perhaps also on their first derivatives. The form of

Eq. (2.1) is obtained through minimization of Eq. (2.5): Variation of the gravitational part with

respect to the dynamical variablegµν yields the previously defined Einstein tensorGµν. To satisfy

the structural form of the field equations, one notes that theenergy-momentum tensor has to be

defined as the variation

Tµν ≡ −
2
√−g

δ(
√−gLm)

δgµν
. (2.6)

As we shall see further below, the action principle offers the most convenient way of introducing

possible modifications to the gravitational sector1. In particular, this approach will automatically

include necessary conservation laws through the action’s symmetry properties (see Noether’s first

and second theorems).

1Note that such modifications do not necessarily involve changing the geometric part of the action, but may be achieved
by introducing coupling terms between the metric and additional (new) fields.
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2.1. General relativistic description of the universe

Finally, let us briefly comment on how Newtonian dynamics emerges from the framework of

GR. In the limit of weak fields and quasistatic configurations2, the metric may be decomposed as

gµν = ηµν + hµν, (2.7)

whereηµν denotes the Minkowski metric andhµν is “small” in the sense that its components are

much smaller than unity and higher order terms are negligible. The equation of motion for test

particles is determined by the underlying spacetime geometry and given by the geodesic equation,

d2xµ

dλ2
= −Γµνκ

dxν

dλ
dxκ

dλ
, (2.8)

whereλ is some suitable affine parameter characterizing the trajectory of the particles. Using the

decomposition in Eq. (2.7), the geodesic equation then approximately takes the form (for details,

see again Ref. [42])
d2xi

dt2
= −Γi

00, (2.9)

with

Γi
00 = −

1
2
∂h00

∂xi
≡ ∂Φ
∂xi

(2.10)

and

∆Φ = 4πGρ, (2.11)

which directly follows from the field equations in Eq. (2.1).Clearly, the above describes the

equation of motion for a Newtonian system and we identifyΦ as the corresponding Newtonian

potential. However, it is important to note that - unlike theNewtonian case - the resulting trajec-

tories are not a consequence of forces acting upon massive particles, but rather follow from (free)

propagation in a curved spacetime.

2.1.2 Friedmann-Robertson-Walker cosmology

Another example of a highly symmetric gravitational systemis provided by the universe as a

whole. Cosmological observations indicate that the universe on large physical scales is homo-

geneous and isotropic3. The most general metric under these conditions is the Friedmann-

2Here we explicitly assume that there exists a global inertial coordinate system ofηµν such thatTµν has only a time-time
component and that derivatives with respect to time can safely be neglected.

3If a spacetime is isotropic at every point (the cosmologicalprinciple), it is also homogeneous.
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2.1. General relativistic description of the universe

Robertson-Walker (FRW) metric whose line element is given by

ds2 = −dt2 + a2(t)
[

dχ2 + f 2
K(χ)dω2

]

, (2.12)

where we have introduced a set of polar coordinates (χ, θ, ϕ) with

dω2 = dθ2 + sin2 θdϕ2, (2.13)

the scale factora and a radial functionfK(χ). The choice of the functionfK(χ) is restricted by

the requirement of homogeneity. It can be shown thatfK(χ) is either linear, trigonometric or

hyperbolic inχ, which corresponds to a flat, closed or open universe respectively,

fK(χ) =















































K−1/2 sin
(

K1/2χ
)

(K > 0)

χ (K = 0)

|K|−1/2 sinh
(

|K|1/2χ
)

(K < 0)

. (2.14)

Here K is a constant parameterizing the curvature of spatial hypersurfaces and bothfK(χ) and

|K|−1/2 have the dimension of length. There is cosmological evidence that the curvature of the

universe is negligibly small. Would there be a not too small curvature, it should recently have

become detectable as its contribution to the expansion of the universe would have started to domi-

nate over that of matter. A universe withK = 0 is also what one expects from the simplest models

of inflation. Therefore, we will mostly concentrate on flat cosmologies for which the line element

takes the particularly simple form

ds2 = a2(τ)
[

−dτ2 + δi j dxidxj
]

, (2.15)

where we have used Cartesian coordinatesxi and introduced the conformal timeτ which is related

to the coordinate timet via dt = a(τ)dτ. Obviously, such a metric is also conformally flat, i.e. a

Weyl transformation of the Minkowski metricηµν.

The isotropy of the universe implies that it consists of matter which can be described as a

perfect fluid. In this case, the energy-momentum tensor is written as

Tµν = ρuµuν + P(gµν + uµuν), (2.16)
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2.1. General relativistic description of the universe

whereρ andP are the fluid’s energy density and pressure, respectively, and uµ denotes the four-

velocity. Evaluating Eq. (2.16) in comoving coordinates, one finds

Tµν = diag(−ρ,P,P,P). (2.17)

Furthermore, homogeneity dictates that bothρ andP are functions of time only. Their relation is

called the equation of state (EoS),

w ≡ P
ρ
, (2.18)

and the quantityw is called the EoS parameter which is generally a function of time. Recalling

from statistical mechanics that for relativistic matter (radiation) w = 1/3, we see that this is

consistent with the theoretical result of a traceless energy-momentum tensor for the Maxwell field.

In case of nonrelativistic matter (dust), the pressure may approximately be neglected and one has

w = 0. For any matter at hand, the energy-momentum tensor is conserved4, meaning that

∇µTµν = 0, (2.19)

Theν = 0 component of the above leads to the continuity equation which determines the evolution

of the matter density in an expanding universe,

ρ̇ + 3
ȧ
a

(1+ w)ρ = 0, (2.20)

where an overdot denotes the derivative with respect to conformal time. Assuming a constant EoS

parameter, the solution of Eq. (2.20) is

ρ ∝ a−3(1+w). (2.21)

In the case of dust, the energy density decreases inverse proportionally to the comoving volume as

the universe expands. The energy density of radiation dilutes faster,ρ ∝ a−4, where the additional

factor ofa−1 can be explained with the loss of photon energy due to the stretching of wavelength.

To find an evolution equation for the scale factor, one has to return to Eq. (2.1). Considering

4Note that this does not generally correspond to the conservation of energy and momentum, but emerges from the
invariance under general coordinate transformations. Thefundamental problem is that vectorial quantities like energy-
momentum cannot be parallelly transported to another spacetime point in a unique way.
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2.1. General relativistic description of the universe

the equation’s time-time component, we arrive at the Friedmann equation,

H2 =
8πG

3
ρ − K

a2
, (2.22)

where the physical Hubble parameter is defined asH = ȧ/a2. Again, note that there appears

an additional factor ofa in the denominator because we are taking the derivative withrespect to

conformal time. The spatial components of Eq. (2.1) do not yield any additional information.

Assuming that the matter properties are given in terms ofw, there remain two unknowns,ρ and

a, which may be determined from Eqs. (2.20) and (2.22). On the other hand, given a measured

expansion history of the universe, this also allows one to reconstruct the matter content.

Parameterization To clarify the discussion of cosmological models, it is convenient to introduce

both dimensional and dimensionless parameters. In what follows, the subscript “0” will be used

to denote the values of different quantities as measured today. We begin with defining the current

value of the physical Hubble parameter as

H0 ≡ 100hkm s−1 Mpc−1, (2.23)

whereh is a dimensionless constant andH0 is called the Hubble constant. Current cosmological

observations indicate thath ≈ 0.7. Next, we define the critical density

ρcrit ≡
3H2

8πG
(2.24)

and expressing the energy density in terms ofρcrit leads to the dimensionless density parameter

Ω ≡ ρ

ρcrit
. (2.25)

For multiple matter fluids, we haveρ =
∑

i ρi and Eq. (2.22) takes the form

1+
K

a2H2
=

∑

i

Ωi = Ωtot. (2.26)

From Eq. (2.26), one may also understand the notion of a critical density: If the total energy

density equalsρcrit, the universe is flat. Whereas the total density is smaller than ρcrit for open

universes, it is larger in closed ones. Apart from the possibility of more exotic matter fluids, a

realistic universe will consist of both relativistic (e.g., photon radiation or massless neutrinos)
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2.1. General relativistic description of the universe

and nonrelativistic (e.g., baryonic matter) density components. Defining the curvature parameter,

ΩK ≡ −K/H2
0, and allowing for a cosmological constant (which may be described in terms of a

matter fluid withw = −1), we may recast Eq. (2.22) into

E2(a) = Ωr0a−4 + Ωm0a−3 + ΩΛ0 + ΩKa−2, (2.27)

where the scale factor has been normalized such thata0 = 1 andE2(a) ≡ H2/H2
0. Instead of using

the scale factora, the above equations may also be written in terms of the cosmological redshiftz

which is defined as the relative increase of photon wavelength betweena anda0 = 1, thus yielding

the relationz= −1+ 1/a.

From the density scaling of individual components in Eq. (2.27), it becomes evident that rela-

tivistic matter must have been the most significant contributor at an early stage of the universe, i.e.

Ωr ≫ Ωm. Nowadays, radiation has cooled down, causing other components such asΩm or ΩΛ

to take over. With the help of cosmological observations, itis possible to put constraints on the

above parameters and there is now vast evidence supporting that the known matter fields account

for only less than 5% ofΩtot in the present universe. For instance, one may infer the radiation

contribution asΩr0 ≈ 4.7× 10−5 from the CMB temperature which is well described by a thermal

black body spectrum at aroundT = 2.7K. On the other hand, one may also estimate the bary-

onic content of the universe, either from direct astrophysical measurements or using the predicted

primordial abundance of light elements produced at big bangnucleosynthesis (BBN) which took

place during the first minutes of the universe. Although there appears some discrepancy between

these approaches, both implyΩb ≤ 0.05, which is also consistent with recent observations of CMB

anisotropies [18]. If the framework of GR indeed holds true,then the missing energy density has

to be described by something which is not rooted within the standard model of particle physics.

TheΛCDM model provides the most simplistic example of consistently explaining observational

data by incorporating such unknown physics in a phenomenological way.

Cosmological distancesGiven a curved spacetime geometry, distance measures are nolonger

unique and need to be defined according to idealizations or measurement prescriptions. The co-

moving distanceDC is defined as the distance on the spatial hypersurface att = const between the

world lines of a source and an observer moving with the mean cosmic flow. Therefore, one has the

relationdDC = dχ (see Eq. (2.12) above) and because light rays propagate according tods= 0,
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2.2. Tensor-vector-scalar theory

integration yields the result

DC [a(z1), a(z2)] =

a(z1)
∫

a(z2)

da
ȧ
=

1
H0

a(z1)
∫

a(z2)

da

a2E(a)
. (2.28)

Usingda= −a2dz, we can alternatively express Eq. (2.28) in terms of redshift z

DC(z1, z2) =
1

H0

z2
∫

z1

dz′

E(z′)
, (2.29)

whereE(z) is given by Eq. (2.27),

E(z) =
[

Ωr0(1+ z)4 + Ωm0(1+ z)3 + ΩΛ0 + ΩK(1+ z)2
]1/2
. (2.30)

In preparation for Sec. 3, we also introduce the angular diameter distanceDA. It is defined in

accordance with the relation in Euclidean space between theareaδA and the solid angleδω of an

object,δωD2
A,E = δA. As the solid angle of spheres of constant radial coordinateχ is scaled by

fK(χ) in Eq. (2.12), one must have

δA

4πa2(z2) f 2
K [DC(z1, z2)]

=
δω

4π
. (2.31)

From the above, it follows that

DA(z1, z2) = a(z2) fK(DC(z1, z2)) =
1

1+ z2
fK [DC(z1, z2)] . (2.32)

The angular diameter distance shows that cosmological distances are not necessarily monotonic.

Assuming a universe filled with pressureless matter only, for example,DA(0, z) has a maximum at

z= 5/4 and gently decreases for larger values ofz, which is a consequence of spacetime curvature.

2.2 Tensor-vector-scalar theory

In the following sections, we will discuss possible modifications to the gravitational sector which

are motivated by observational findings or more fundamentaltheoretical ideas. To begin with, we

give an introduction to Bekenstein’s tensor-vector-scalar theory [43] which has originally been

constructed to explain empirical relations in galaxies.
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2.2. Tensor-vector-scalar theory

2.2.1 Modified Newtonian dynamics

Without resorting to CDM, the modified Newtonian dynamics paradigm (MOND) aims at solv-

ing the missing mass problem on a nonrelativistic level by postulating an acceleration-dependent

change of Newton’s law which is characterized by a scalea0 [44–47]:

µ̃

(

|a|
a0

)

a = −∇ΦN + S. (2.33)

Here,ΦN denotes the common Newtonian potential of a matter source and S is a solenoidal vector

field determined by the condition thata can be expressed as the gradient of a scalar potential. The

function µ̃, controlling the modification of Newton’s law, has the following asymptotic behavior:

µ̃(x) ∼ x x≪ 1,

µ̃(x) ∼ 1 x≫ 1.
(2.34)

For nonspherical geometries, one typically hasS, 0 and finding the solution of Eq. (2.33) usually

requires the use of a numerical solver [48–50]. The law givenby Eq. (2.33) has been constructed

to agree with the fact that the rotation curves of spiral galaxies become flat outside their central

parts. In such regions, the Newtonian potential caused by a galaxy of massM is approximately

spherical (S≈ 0) and we have

|∇ΦN| ≈ GMr−2. (2.35)

Now let us consider the situation in which|∇ΦN| ≪ a0 such that the first expression in Eq. (2.34)

is satisfied. Introducing the centripetal accelerationv2
c/r with circular velocityvc, we arrive at

v2
c

r
=

√
GMa0

r
, (2.36)

and thus

v4
c = GMa0. (2.37)

Assuming a constant mass-to-luminosity ratio in a specifiedspectral band, the luminosity in that

band should therefore scale asv4
c, i.e.

L ∝ v4
c. (2.38)

The above relation corresponds to the well-known Tully-Fisher law [53] which is shown in the

right panel of Fig. 2.1 for the Ursa Major spirals in the near-infrared (K′ band) [52]. Analyzing
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2.2. Tensor-vector-scalar theory

Figure 2.1: Left: The points show the observed 21cm line rotation curve of thelow surface brightness
galaxy NGC 1560 (the figure is taken from Ref. [51]). The dotted and dashed lines are the Newtonian
rotation curves of the visible and gaseous components of thedisk and the solid line is the MOND rotation
curve witha0 = 1.2×10−10m s−2. The only free parameter is the mass-to-light ratio of the visible component.
Right: The near-infrared (K′ band) Tully-Fisher relation of Ursa Major spirals (the figure is taken from Ref.
[52]). The rotation velocity is the asymptotically constant value in units of km s−1 and the luminosity is
given in 1010L⊙. The unshaded points are galaxies with disturbed kinematics. The line is a least-square fit
to the data and has a slope of 3.9± 0.2.

observational data, Milgrom estimated an acceleration scale of a0 ≈ 1.2× 10−10m s−2. For exam-

ple, using this value fora0 and choosing the so-called standard form of the interpolating function

µ̃(x),

µ̃(x) =
x

√
1+ x2

, (2.39)

it is possible to fit the observed rotation curve of the galaxyNGC 1560 as shown in the left panel

of Fig. 2.1. Since accelerations in the solar system are strong compared toa0, Eq. (2.33) will turn

into the classical Newtonian law there.

The MOND paradigm still appears suitable to explain the observed “conspiracy” between the

distribution of baryons and the gravitational field in spiral galaxies [54–57]. It is striking that

such a simple prescription leads to extremely successful predictions for galaxies ranging over

five decades in mass (see Refs. [58, 59] for reviews), including our own Milky Way [60–62],

dwarf spheroidals [63–65], x-ray dim elliptical galaxies [66, 67], and tidal dwarf galaxies [68–

70]. In addition to the Tully-Fisher law [71, 72], MOND successfully reproduces empirical galaxy

scaling relations such as the Faber-Jackson relation [73, 74] and, more recently, the central surface

brightness predicted by dark halos [75–77]. In the view of MOND, these empirical laws emerge

as a consequence of dynamics in the low acceleration regime.
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While the framework of MONDian dynamics appears to work extremely well on galactic

scales, the situation in galaxy groups and clusters is quitedifferent: Several studies of such sys-

tems [78–80] have shown that an additional nonluminous matter component is required to explain

observations, even after taking into account the gravitational boost induced by the MOND formula.

In galaxy clusters, for example, this discrepancy is about afactor of two at very large radii, mean-

ing that there should be as much dark matter (mainly in the central parts) as observed baryons.

Assuming that MOND is a viable description for such gravitating systems, this result has led to

the question of what the needed matter component should be. It is obvious that any possible form

of exotic CDM is disfavored as it would cause the original idea of Eq. (2.33) to become redundant.

Possible remedies range from undiscovered baryonic material such as cold molecular gas clouds

to the hypothesis of massive neutrinos accounting for the missing mass [81]. We shall address this

issue further when considering the situation of gravitational lens systems in Sec. 3.

A further problem arises from the fact that the original MONDformulation does not spec-

ify cosmology or the nature of gravitational light deflection. Recent developments in the theory

of gravity, however, have been able to embed MONDian dynamics into fully Lorentz-covariant

theories by means of a dynamical four-vector field [43, 82–85]. Although still lacking a deriva-

tion from fundamental principles underpinning the MOND paradigm, these theories allow for new

predictions regarding cosmology and structure formation [86–89] as well as gravitational lensing

[50, 90–94]. As it turns out, another appealing feature of such modifications is also that they

might be able to simultaneously explain the observed effects of DE [40, 95–100], but we do not

consider this possibility in this thesis. In the next section, we will introduce the first proposed

relativistic theory of MOND, Bekenstein’s tensor-vector-scalar theory (TeVeS), and discuss some

of its properties in more detail.

2.2.2 Fundamentals of TeVeS

In this section, we shall briefly review the basics of TeVeS. In particular, we will focus on its

implications for quasistatic systems and cosmology and seehow the theory is related to MOND.

Finally, we also comment on more general constructions whose primary motivation goes beyond

the interpretation of astrophysical observations.
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2.2.2 A Fields and action

TeVeS [43] is a bimetric theory of gravity and based on three dynamical fields: an Einstein metric

g̃µν, a time-like vector fieldAµ such that

g̃µνAµAν = −1, (2.40)

and a scalar fieldφ. Furthermore, there is a second metricgµν which is needed for gravity-matter

coupling only and obtained from the non-conformal relation

gµν = e−2φg̃µν − 2AµAν sinh(2φ). (2.41)

The frames delineated by the metric fields ˜gµν andgµν will be calledEinstein frameandmatter

frame, respectively. The geometric part of the action is exactly the same as in GR:

Sg =
1

16πG

∫

g̃µνR̃µν
√

−g̃d4x, (2.42)

whereR̃µν is the Ricci tensor of ˜gµν andg̃ the determinant of ˜gµν. Note that the TeVeS constantG

must not be mistaken for the Newtonian gravitational constant GN (see Sec. 2.2.2 B). The vector

field’s actionSv reads as follows:

Sv = −
1

32πG

∫

[

KBFµνFµν − λ(AµAµ + 1)
]
√

−g̃d4x, (2.43)

with Fµν = ∇̃µAν−∇̃νAµ and indices being raised and lowered with respect to ˜gµν, i.e. Aµ = g̃µνAν.

Here the constantKB describes the coupling of the vector field to gravity andλ is a Lagrangian

multiplier enforcing the normalization condition given byEq. (2.40). Equation (2.43) corresponds

to the classical Maxwell action, the fieldAµ now having an effective mass. The actionSs of the

scalar fieldφ involves an additional nondynamical scalar fieldσB, and takes the form

Ss = −
1
2

∫












σ2
Bhµν∇̃µφ∇̃νφ +

Gσ4
B

2l2B
F

(

kBGσ2
B

)













√

−g̃d4x, (2.44)

wherehµν = g̃µν−AµAν andF is an initially arbitrary function. Furthermore, there appear two new

constants,kB andlB, wherekB is dimensionless andlB corresponds to a length scale. As there is no

kinetic term forσB, it is related to the invarianthµν∇̃µφ∇̃νφ and could in principle be eliminated

from the action. This follows from the fact that the field equation obtained from variation of Eq.
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(2.44) with respect toσB just corresponds to an algebraic relation betweenσB and derivatives of

the fieldφ. From this point of view, the introduction ofσB may simply be regarded as an auxiliary

construction which allows one to write the scalar field action in a clearly arranged form. To get a

better insight into the structure of the scalar field action,we follow the approach of Ref. [101] by

introducingµ ≡ 8πGσ2
B and

V(µ) ≡ µ2

16πl2B
F =

4πG2σ4
B

l2B
F

(

kBGσ2
B

)

, (2.45)

where we absorb the constantkB into the definition ofV(µ). Using the above allows one may

rewrite Eq. (2.44) as

Ss = −
1

16πG

∫

[

µhµν∇̃µφ∇̃νφ + V(µ)
]
√

−g̃d4x. (2.46)

From Eq. (2.46), one identifies both a kinetic-like and a potential-like term and the action now

resembles other popular scalar field constructions like, for example, k-essence models [102] which

are based on noncanonical kinetic terms for the scalar field.In the following, however, we shall

stick to the form of the scalar field action in Eq. (2.44). Notethat whether TeVeS recovers the

dynamics of MOND in the nonrelativistic limit depends on theactual choice of the potentialV or

equivalentlyF. In the next section, we will discuss this issue in more detail.

Finally, matter is required to obey the weak equivalence principle, and thus the matter action

is given by

Sm =

∫

Lm

(

g,ΥB,∇ΥB
) √
−gd4x, (2.47)

whereΥB is a generic collection of matter fields. Note that world lines are by construction

geodesics of the metricgµν rather than ˜gµν. As usual, the corresponding equations of motion

can be derived by varying the total actionS = Sg + Sv + Ss + Sm with respect to the basic fields

(see, e.g., Refs. [43, 101]). As already pointed out in Ref. [43], a requirement for obtaining

Newton’s law in the nonrelativistic high acceleration regime (a≫ a0) is thatkB, KB ≪ 1 (also see

Ref. [43] for a discussion on lower bounds ofk). Therefore, TeVeS is kept close to GR in a sense

that it will recover well-known features of GR, but there will be modifications induced by the

other fields. Albeit not a unique extension, TeVeS is the mostpopular “MONDian representative”

so far, and a variety of its aspects have been extensively studied in the literature (see Ref. [103]

for a review). Although the original formulation of TeVeS suffers from several problems, e.g. in
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the strong gravity regime [104, 105] or - at least for certainmodels - in the cosmological domain

[89, 106], it still provides a viable description of relativistic MOND on extragalactic scales.

2.2.2 B The free function, quasistatic systems and relationto MOND

Following the lines of Ref. [43], the “equation of motion” for σB suggests the introduction of a

new functionµB(y) 5 which is implicitly given by

− µBF(µB) − 1
2
µ2

BF′(µB) = −1
2

(

µ2
BF

)′
= kBl2Bhµν∇̃µφ∇̃νφ ≡ y, (2.48)

with

kBGσ2
B = µB

(

kBl2Bhµν∇̃µφ∇̃νφ
)

= µB(y). (2.49)

Here the prime denotes the derivative with respect toµB, i.e. F′ ≡ dF/dµB. Whether or not TeVeS

recovers the dynamics of MOND in the nonrelativistic limit depends on the assumed form of the

functionF which determines the properties ofµB. Originally, Bekenstein made the choice

F =
3
8

µB(4+ 2µB − 4µ2
B + µ

3
B) + 2 log (1− µB)2

µ2
B

, (2.50)

which leads to

y =
3
4

µ2
B(µB − 2)2

1− µB
. (2.51)

The functiony(µB) is illustrated in Fig. 2.2. What are the essential featuresof this function? First

of all, we note that quasistatic systems and cosmological situations will be characterized byy > 0

andy < 0, respectively. This directly follows from the definition of y in Eq. (2.48) and our sign

convention for the metric. Next we need to specify the physically relevant branches ofy(µB) if we

require the function to be single-valued, thus avoiding theproblem of ambiguity in the theory. Let

us begin by considering the situation of quasistatic systems (y > 0). The denominator in Eq. (2.51)

ensures thaty→ ∞ whenµB approaches unity, which, as will become clear shortly, is responsible

for TeVeS to have a Newtonian limit. In Eq. (2.51), this behavior is realized by a simple pole

at µB = 1, but one may also construct different expressions forF (and thusy) which lead to a

singularity of higher order at this point. Likewise, the behavior for small values ofy, i.e. y ≈ 3µ2
B

for 0 < y ≪ 1, forces the MONDian limit to be contained in the theory. Fory > 0, we therefore

choose the branch covering the range 0< µB < 1 as the physical one. Considering cosmological

5Note that we could also use the previously defined fieldµ which is related toµB(y) throughµB(y) = (k/8π)µ. In the
following, however, we shall stick to the original notationof Ref. [43].
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2.2. Tensor-vector-scalar theory

Figure 2.2: Illustration of the free functiony(µB) given by Eq. (2.51): Shown are the regimes for quasi-
static systems (y > 0) and cosmology (y < 0). Our choice of the physical branches ofy(µB) is denoted by
solid lines, branches without any physical relevance by dotted lines.

situations (y < 0), we have to make a similar choice. As can be seen from Fig. 2.2, one branch

ranges fromµB = 1 to the extremum atµB = 2 while the other one ranges from the extremum

to infinity. It can be shown that the energy density contributed by the cosmological scalar field

depends on the slope of a particularly chosen branch [43]. For the monotonically increasing branch

(1 < µB < 2), this contribution will be strictly negative whereas it will be strictly positive for the

monotonically decreasing one (2< µB < ∞). In accordance with previous work, we shall exclude

such negative contributions to the energy density and thus define the decreasing branch as the

physical one (see Sec. 2.2.2 C). This is also the reason for the factor (µB− 2)2 in Eq. (2.51) which

ensures the existence of a monotonically decreasing branchcovering the whole rangey ∈ [0,−∞).

Note, however, that a negative energy contribution of the scalar field does not necessarily violate

the requirement of a positive overall energy density [43] and could provide an interesting scenario

for future studies.

To obtain the theory’s nonrelativistic limit, one may applythe usual approximations for weak

fields and quasistatic systems. In this case, one hasy > 0, and therefore 0< µB < 1 in accordance
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2.2. Tensor-vector-scalar theory

with our assumptions. Using that alsoF < 0 for the given range, the resulting metricgµν turns out

to be identical to the metric obtained in GR if the nonrelativistic gravitational potentialΦ (cf. Sec.

2.1.1) is replaced by

Φ = ΞΦN + φ ≡ Φtot, (2.52)

where

Ξ = e−2φC (1+ KB/2)−1 . (2.53)

The quantityφC is the cosmological value of the scalar fieldφ at the time the system in question

breaks away from the cosmological expansion andΦN is the Newtonian potential generated by

the matter densityρ 6. In this approximation, it is consistent to assume thatAµ is pointing into the

direction of the timelike Killing vector associated with the static spacetime. Then we have

hµν∇̃µφ∇̃νφ→ (∇φ)2 ≡ ‖∇φ‖22 (2.54)

and the equation of the scalar field reduces to

∇ ·
(

µB

(

kBl2B(∇φ)2
)

∇φ
)

= kBGρ. (2.55)

As has been shown in Ref. [43], Eqs. (2.52) and (2.55) correspond to the MOND paradigm: If

µB → 1 (corresponding to|∇φ| → ∞), the theory reaches its (exact) Newtonian limit, and the

measured gravitational constantGN is given by

GN =

(

e−2φC

1+ KB/2
+

kB

4π

)

G. (2.56)

Similarly, the theory reaches its MONDian limit asµB → 0 and the acceleration constanta0 can

be defined in terms of the TeVeS parameters,

a0 ≡ e2φC

√
3kB

4πlB
(1+ KB/2). (2.57)

As can be seen from above,a0 depends onφC and may therefore, in principal, change with time.

For viable cosmological models (see Sect. 2.2.2 C), however, such changes are expected to be

basically imperceptible [107]. Moreover, we will see that it is also viable to assume|φC| ≪ 1 and

together withkB, KB ≪ 1 this yieldsG ≈ GN. Thus we will assume thatG = GN andΞ = 1

6Note that forφC , 0, gµν does not asymptotically correspond to a Minkowski metric. As already remarked in Ref.
[43], however, this is easily remedied by an appropriate rescaling of coordinates.
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2.2. Tensor-vector-scalar theory

throughout this thesis when working within the quasistaticapproximation.

As is obvious from the above, the TeVeS functionµB plays a similar role as the MOND inter-

polating function ˜µ from Sec. 2.2.1 and the resulting dynamics is characterizedby its asymptotic

behavior. More generally, it turns out that one needs only the requirementy ∝ µ2
B for y ≪ 1

to guarantee a MONDian limit in TeVeS because the proportionality constant may always be ab-

sorbed into the definition ofa0 [50]. Unlike µ̃, however, the functionµB does not depend on the

gradient of the nonrelativistic potential, but on∇φ. This means that there is generally no direct

correspondence between the two except for symmetric configurations which require the aforemen-

tioned gradients to be parallel (cf. Sec. 3.4). For an appropriate choice ofµB, such configurations

further allow one to express the total nonrelativistic potential in particularly simple form. To see

this, we follow the lines of Ref. [92] and redefineµB andy in terms of two new functions,µs and

δφ, according to
µs

1− µs
≡ 4π

kB

(

1− KB

2

)−1

µB (2.58)

and

δ2φ ≡
(

4π
kB

(

1− KB

2

)

)2 y
bs
, (2.59)

wherebs is defined as the value ofy/µ2
B in the limit y→ 0. Using Eq. (2.51), we havebs = 3 and

a bit of algebra reveals the relation

δ2φ =
µ2

s

(1− µs)2

(

1− kB

8π

(

1− KB

2

)

µs

1− µs

)2

(

1− kB

4π

(

1− KB

2

)

µs

1− µs

) . (2.60)

SincekB andKB are much smaller than unity, we take the limitkB, KB→ 0 and obtain

δ2φ =
µ2

s

(1− µs)2
, µ2

s =
δ2φ

(1+ δφ)2
. (2.61)

Note that this implicitly defines a newµB which will be close to the one given in Eq. (2.51).

Next, we substituteµB for µs in Eq. (2.55). Restricting ourselves to spherically or cylindrically

symmetric systems, it then follows from Gauss’ theorem that

∇φ =
1− µs

µs
∇ΦN. (2.62)
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Using Eq. (2.54) together with the definition ofa0 in Eq. (2.59), we also find

δ2φ =
(∇φ)2

a2
0

. (2.63)

Combining the above relations, one finally arrives at

|∇φ| =
√

a0|∇ΦN|, (2.64)

which allows one to express the gradient of the total nonrelativistic potential in terms of∇ΦN. As

we shall see, the choice of Eq. (2.61) and the corresponding resulting relations will be extremely

useful for analytic studies of the quasistatic limit in TeVeS (cf. Sec. 3).

2.2.2 C Modified FRW cosmology

Similar to the case of GR, it is possible to derive a cosmological model in TeVeS. Imposing the

usual assumptions of an isotropic and homogeneous spacetime, bothgµν andg̃µν are given by FRW

metrics with scale factorsa andb = aeφ, respectively. For a flat universe (K = 0), the analog of

the Friedmann equation then reads [43, 101]

3
ḃ2

b2
= 8πGa2e−4φ

(

ρφ + ρ
)

(2.65)

while the equation governing the evolution of the densityρ remains the same as in GR (see Sec.

2.1.2). Here the overdot denotes the derivative with respect to the conformal time coordinate in

the matter frame andρφ is the energy density of the scalar field,

ρφ =
µBe2φ

4k2
Bl2BG

(µBF − 2y) . (2.66)

For cosmological models in TeVeS, we have the conditiony < 0. Requiring that the functionµB

is single-valued, one is free to choose between two possiblepotential branches given the form of

F in Eq. (2.50). One branch ranges fromµB = 1 to the extremum atµB = 2 while the other

one ranges from the extremum to infinity. In accordance with previous work, we define the latter

possibility as the physical one.

To find solutions for the evolution of the scale factorsa and b, one additionally needs to

consider the equation of motion for the scalar fieldφ (see Sec. 4.3) which leads to a closed

system of equations. For Eq. (2.50) and more general classesof the potential, it has been shown
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2.2. Tensor-vector-scalar theory

that the cosmological scalar field evolves slowly in time andthat its absolute value is much less

than unity throughout cosmological history [43, 96]. Therefore, its contribution to the Hubble

expansion is negligibly small, with a ratio ofO(k) compared to the contribution of other matter

fields. Settingρφ = 0 and using that|φ| ≪ 1 at the background level, the Hubble parameter in

the matter frame takes the form of Eq. (2.22) withK = 0 and the background evolution in TeVeS

becomes structurally identical with that of a standardΛCDM model7. While this approximation

will suffice in many cases, a more detailed treatment of the cosmological background will become

necessary when dealing with the growth of TeVeS metric perturbations in Sec. 4.3.

2.2.3 Aether-type theories and beyond

Despite its explicit bimetric construction, TeVeS may be written in pure tensor-vector form [108]

and provides a particular example for an Aether-type theory[82] whose action involves a four-

vector fieldAα and is of the general form

S =
∫

d4x
√−g

[ R
16πG

+L (g,A)
]

+ Sm, (2.67)

whereL is constructed to be generally covariant and local whileSm couples only to the metric

and not toAα. If we require the Lagrangian to depend on covariant derivatives ofAα only and the

field Aα to be both timelike and of unit norm, the theory may be writtenin the form

L(g,Aα) = M2F (K) + λ(AαAα + 1), (2.68)

where

K = M−2Kαβγσ∇αAγ∇βAσ,

Kαβγσ = c1gαβgγσ + c2δ
α
γδ
β
σ + c3δ

α
σδ
β
γ

(2.69)

and theci are dimensionless constants. HereM is a constant with the dimension of mass (in natural

units) andλ is a Lagrange multiplier, enforcing the unit-timelike condition for Aα. Given the

form in Eqs. (2.68) and (2.69), the Aether action includes all generally covariant terms with two

derivatives (without total divergences). The particular form ofF (K) is principally unconstrained

and one may also construct more complicated expressions forK than specified in Eq. (2.69),

7Note that this “identity” does not apply to the matter content of the universe since we assume that there is no CDM in
TeVeS. In Sec. 3, we shall address this issue and its implications in more detail and comment on viable cosmological
models in such a framework.
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2.3. Dynamical dark energy models

including higher-order terms of the fieldAα and its derivatives. Indeed, the framework of TeVeS

does correspond to a theory with such an extendedK . Therefore, Aether theory can be regarded

as generalized formulation of the Einstein-Aether framework [109].

A basic feature of these theories is the violation of local Lorentz invariance (and thus also

gauge invariance) which is a consequence of the Aether field’s non-vanishing expectation value.

In other words, the Aether field dynamically selects a preferred frame at each point of spacetime

which is given in terms of a distinct spacetime foliation defined byAα. Traditionally, formulations

of this type have been designed as possible effective field theories and are used as phenomenologi-

cal probes of Lorentz-violating effects in quantum gravity. In the context of more fundamental the-

ories like, for instance, string theory or M-theory, such effects are expected to generically occur via

spontaneous symmetry breaking at some early stage of the universe (see, e.g., Refs. [110, 111]).

Nevertheless, it is still unknown whether constructions ofthis type exist as quantum field theories

or whether they can be derived from first principles using field theoretical methods. Employing

different approaches like classical tests of gravitation in thestrong field limit [112, 113] or the

analysis of cosmological observations, one ultimately hopes to detect intrinsic signatures pointing

towards the existence of Lorentz-violation or to falsify this class of theories. In any case, this will

likely help to constrain theoretical gravity models in the high-energy sector. Note that this gives

phenomenological models like TeVeS, which has been designed from empirical evidence only, a

more fundamental motivation and encourages one to explore such frameworks in more detail. Of

course, effective descriptions like Eq. (2.67) are not the most generalmodels one can think of and

there exist many others like, for instance, generalized TeVeS [85], scalar-Aether inflation models

[114] or the generalized dark fluid theory [115, 116].

2.3 Dynamical dark energy models

Assuming that CDM exists and accounts for the missing mattercontent in the universe, one still

has to face the problem of what is driving the accelerated expansion of the universe. In this

section, we shall present a selection of phenomenological DE models which involve a scalar field

and promote DE to a dynamical quantity with generally time-dependent EoS.

2.3.1 Quintessence

The effects of dynamical DE on the background expansion are fully described by its generally

time-dependent EoS. If DE does not correspond to the cosmological constant, i.e.wde , −1, its
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2.3. Dynamical dark energy models

interpretation as vacuum energy becomes unviable and one has to think of something else. Current

observational constraints give−1.34< wde < −0.79 (assumingw = const) anddwde/dz= 1.0+1.0
−0.8

for a possible variation (assuming a simple parametrization) [117]. More recently, it was possible

to improve these limits by combining different distance indicators [118], givingwde = −0.96±0.08

or wde = −0.87± 0.1 (depending on the data set of supernova observations) for DE with constant

EoS. Although a cosmological constant provides a good fit to the available data, it still allows one

to have more general models for DE, including the so-called phantom DE models withwde < −1.

The most popular candidate for dynamical DE is a light scalarfield [119, 120] which is gener-

ically called quintessence. Its action takes the form of a minimally coupled, self-interacting scalar

field with canonical kinetic term,

Sφ = −
∫

d4x
√−g

[

1
2

gµν∇µφ∇νφ + V(φ)

]

, (2.70)

which yields its contribution to the cosmological energy density and pressure as

ρφ =
1

2a2
φ̇2 + V(φ) (2.71)

and

Pφ =
1

2a2
φ̇2 − V(φ), (2.72)

respectively. Under slow-rolling conditions, i.e. conditions where the kinetic term is much smaller

than the potential energy, i.e.V(φ)≫ a−2φ̇2/2 the scalar field’s EoS turns negative withwφ ≈ −1,

thus mimicking the behavior of a cosmological constant. Again, quintessence should be regarded

as effective phenomenological description of physics rooted within more fundamental theoretical

frameworks. For example, the occurrence of such scalar fields is commonly predicted in super-

symmetric field theories and string theory.

Quintessence models may be classified in terms of the assumedpotential shape. In accor-

dance with today’s observations, the scalar field must be situated in a sufficiently flat region of

its potential for the slow roll condition to apply. Further constraints on viable potentials can be

obtained if one requires the field to exhibit a so-called tracking behavior, implying the existence

of an attractor solution which is reached for a wide range of different initial conditions and thus

avoiding fine-tuning issues. During tracking, the evolution of the scalar’s energy density will be

determined by the evolution of the background fluid, i.e.wφ = wφ(wB), wherewB denotes the
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EoS of the background fluid. For exponential potentialsV(φ) ∼ eλφ which naturally appear in

high-energy physics, however, it has been found that this tracking is exact, meaningwφ = wB.

Therefore, exponential models are either fine-tuned or their impact on the cosmological expansion

is indistinguishable from the background, suggesting thatwde = 0. This has motivated a vari-

ety of different plausible scenarios for such scalar fields, ranging from potential modifications as

in power-law models or Planck-scale quintessence [121] to more complicated constructions such

as general k-essence (phantom DE models) [99] or extended quintessence [122]. Finally, note

these dynamical DE models will generally exhibit clustering properties (similar to ordinary matter

fluids) which will have an impact on the formation of structure. Independent of the background

evolution, this offers additional ways of constraining the viability of such DEproposals (cf. Sec.

4.2).

2.3.2 Chameleon fields

In the last section, we have discussed quintessence models as a possible candidate for DE. In order

to explain the cosmological expansion of the universe, these scalar fields must currently have a

mass8 on the order of the Hubble expansionH0 (in Heaviside units), thus leading to the situation

of an essentially massless scalar on solar system scales. From the high-energy physics point

of view, however, it is commonly expected that such scalar fields should also couple to matter,

leading to an additional force acting on matter particles. In this case, however, experimental tests

of the equivalence principle [112] would constrain this coupling to be unnaturally small due to the

field’s low effective mass. An interesting approach to avoid this problem is given in terms of the

chameleon mechanism [123, 124] where one allows the self-interacting scalar fieldφ to also have

a strong coupling to matter. The key input here is that the dynamics ofφ is no longer governed by

its potentialV(φ), but instead by an effective potential which takes the general form

Veff = V(φ) −C(φ)Lm, (2.73)

whereC(φ) denotes the coupling to matter andV(φ) is typically assumed to be of runaway form,

i.e. a monotonically decreasing function satisfyingV → ∞ for φ → 0 andV → 0 for φ → ∞,

which is generically predicted for non-perturbative potentials in string theory. Assuming a species

8The presence of a self-interaction potential for the scalarfield allows to introduce the notion of an effective mass in
analogy to the mass term appearing in the action of the relativistic Klein-Gordon field.
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of nonrelativistic matter particles with densityρm, Eq. (2.73) may approximately be written as

Veff = V(φ) +C(φ)ρm. (2.74)

If C(φ) is chosen to be of exponential form (cf. Sec. 2.3.1), i.e. a monotonically increasing

function of φ, Veff exhibits a minimumφmin and an effective massmeff , usually defined by the

Taylor expansion around the minimum,

Vφ ≈ V(φmin) +
meff

2
(φ − φmin)2, (2.75)

which are determined by the local matter density. For the given construction, it turns out that

φmin andmeff are then decreasing and increasing functions ofρm, respectively, meaning that if

the matter density is low (cosmological situations),meff becomes small and the scalar field may

act as dynamical DE. On the other hand, ifρm is very large (e.g., in the solar system), so ismeff

and the scalar force is significantly suppressed, thus beingable to evade experimental detection.

Therefore, models of this kind are called chameleon fields. Also note that such coupled scalar

field models are mathematically equivalent to the frameworkof f (R) gravity, which can be shown

by performing an appropriate conformal transformation to the Jordan frame9.

To completely evade the constraints from solar system testsof gravity, one may also consider

models where the scalar field only couples to CDM particles. This idea has recently gained a

lot of interest because the physics of CDM are unknown and such a coupling could alleviate

the coincidence problem of DE [125, 126]. Typically, these coupled scalar field models yield a

background evolution which is virtually indistinguishable from a standardΛCDM cosmology and

one has to look out for other potentially observable discriminators. An interesting approach into

this direction is to consider the nonlinear clustering of density perturbations in this context. In

Sec. 4.2, we shall investigate the impact of such scalars on the matter power spectrum and discuss

the prospects of observing characteristic signatures, choosing the particular coupled scalar field

model of Ref. [127]

9Given a scalar-tensor theory and using an appropriate conformal transformation of the metric tensor, it is possible to
express the Lagrangian in theEinstein frame, in which the Ricci scalar enters in the form of the usual Einstein-Hilbert
action, or in theJordan framewhere the Ricci scalar is multiplied by the scalar field or a function thereof. For the
models we consider here, the non-minimal coupling to mattervanishes in the Jordan frame and the Lagrangian takes
the form of a particular (nonlinear)f (R) gravity theory.
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Chapter 3

Gravitational lensing in relativistic

formulations of MOND

With the advent of fully relativistic theories for the MOND paradigm, it has become possible to

extend the analysis of such modifications beyond the field of galactic dynamics. It is clear that

any theory trying to get along without CDM ultimately needs to face observations and a powerful

tool to challenge these models is gravitational lensing. Adopting the framework of TeVeS, we

will begin with a brief introduction to its basics, discuss relevant details on the cosmological

background and present several applications thereafter.

3.1 Gravitational lensing in a nutshell

3.1.1 Light deflection in slightly curved spacetime

For any metric theory, the propagation of light rays is generally determined by the null geodesics

of the metricgµν (assuming that this is the metric matter fields couple to), i.e

gµν
dxµ

dλ
dxν

dλ
= 0, (3.1)

whereλ is some suitable affine parameter for the light ray. In general, finding solutionsfor Eq.

(3.1) is a very complicated problem. However, in the limit ofweak fields and quasi-static systems,

i.e. if the metric potential given by Eq. (2.52) and the peculiar velocity v of the lens are small

(Φ, v ≪ 1), one can presume a locally flat spacetime which is only disturbed close to inhomo-

geneities acting as gravitational lenses; these conditions are typically well satisfied for galaxies
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and galaxy clusters. In this case, the line element approximately takes the form1

ds2 = −(1+ 2Φ)dt2 + (1− 2Φ)δi j dxidxj . (3.2)

Since light rays obey Eq. (3.1), we haveds= 0, which allows one to express the refractive indexn,

i.e. the ratio between the speed of light in the vacuum and that in the gravitational field as (Φ ≪ 1)

n =

√

1− 2Φ
1+ 2Φ

≈ 1− 2Φ. (3.3)

Note that the gravitational potential is attractive, i.e.Φ ≤ 0, leading ton ≥ 1 and therefore to a

slower light propagation in the gravitational field than in the vacuum. Next, we consider the light

travel time between two pointsA andB which is given by the expression

∆tAB =

B
∫

A

n[x(l)]dl, (3.4)

wherex(l) denotes the light path. According to Fermat’s principle, light rays traverse the path

between two points which takes the least time. Therefore, weneed to find the light path which

minimizes Eq. (3.4). Clearly, this is a standard variational problem which leads to the well-known

Euler-Lagrange equations. Introducing the curve parameter λ and defining ˙xi ≡ dxi/dλ, we have

dl =
√

δi j ẋi ẋ jdλ ≡ |ẋ|dλ (3.5)

the variational problem can be written as

δ

λB
∫

λA

L (x, ẋ, λ) dλ ≡ δ
λB
∫

λA

n[x(λ)] |ẋ|dλ = 0. (3.6)

From the corresponding Euler-Lagrange equations,

d
dλ
∂L

∂ẋi
− ∂L
∂xi
= 0, (3.7)

1Note that a more rigorous treatment should consider perturbations around a FRW spacetime in which the potentials in
the time-time and space-space components of the metric tensor are not necessarily the same. In TeVeS, for instance,
such a difference may be induced by both anisotropic stress of the matter fluid and the growth of vector perturbations.
We shall further comment on this at a later point in the thesis.
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it then immediately follows that
d
dλ

(

n
ẋ
|ẋ|

)

− |ẋ|∇n = 0. (3.8)

Evidently, ẋ is a tangent vector to the light path, which we can assume to benormalized by a

suitable choice for the curve parameterλ. We thus set|ẋ| = 1 and writee ≡ ẋ for the unit tangent

vector to the light path. Then Eq. (3.8) takes the form

nė=∇n− (e ·∇n) e. (3.9)

As the second term on the right-hand side of Eq. (3.9) is the derivative along the light path, the

whole right-hand side corresponds to∇⊥n, the gradient ofn perpendicular to the direction of light

propagation, and we finally arrive at

ė=
1
n
∇⊥n =∇⊥ logn ≈ −2∇⊥Φ, (3.10)

where we have again used thatΦ ≪ 1. The deflection angle can now be obtained by integrating

−ėalong the light path, i.e.

α̂ = 2

λB
∫

λA

∇⊥Φdλ. (3.11)

Given our present assumptions, the deflection of light rays will typically be very small. In this case,

we may apply Born’s approximation and integrate along the unperturbed light path. Identifying

Φ with the Newtonian potentialΦN and assuming that the unperturbed light rays propagate along

thez-axis, the total deflection angle in GR finally reads

α̂GR = 2

∞
∫

−∞

∇⊥Φdz. (3.12)

Because all of the above is based on the metric approach in Eq.(3.2), our results may directly

be transferred to the framework of TeVeS. Using Eq. (2.52), the deflection angle of a light ray in

TeVeS under the given assumptions can therefore be expressed as2

α̂ = 2

∞
∫

−∞

∇⊥Φtotdl = α̂GR+ 2

∞
∫

−∞

∇⊥φdl, (3.13)

2As previously mentioned in Sec. 2.2.2 B, we assume thatΞ = 1 andG = GN in the context of quasi-static systems.
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3.1. Gravitational lensing in a nutshell

Figure 3.1: Illustration of a gravitational lens system. The distancesbetween source and observer, lens and
observer, and lens and source areDs, Dd, andDds, respectively (the figure is taken from Ref. [128]).

In addition to the deflection angle caused by the Newtonian potentialΦN, there is a contribution

arising from the scalar fieldφ. Compared to the distances between lens and source and observer

and source, however, we may still assume that most of the bending occurs within a small range

around the lens [43, 50]. Assuming that the nonrelativisticmetric potentialΦtot is known from

solving the corresponding field equations, one can therefore directly proceed to calculate the usual

lensing quantities, fully adopting the standard GR formalism which is briefly reviewed in the

following section.

3.1.2 Lensing formalism

The effects of gravitational lensing can mathematically be described as a mapping in a two-

dimensional space. Given the assumptions introduced in thelast section, Fig. 3.1 shows a typical

gravitational lens system. As one may directly read off the figure, the mapping of light rays from
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3.1. Gravitational lensing in a nutshell

the source to the lens plane takes the form [128, 129]

η =
Ds

Dd
ξ − Ddsα̂(ξ), (3.14)

whereξ denotes the two-dimensional position vector in the lens plane,η is the two-dimensional

position vector in the source plane andDs, Dd, andDds are the (angular diameter) distances be-

tween source and observer, lens and observer, and lens and source, respectively. Introducing angu-

lar coordinates byβ ≡ η/Ds andθ ≡ ξ/Dd, Eq. (3.14) may be rewritten in terms of dimensionless

quantities,

β = θ − Dds

Ds
α̂(Ddθ) = θ −α(θ), (3.15)

where we have used the definition of the scaled deflection angle α ≡ Ddsα̂/Ds. The relation in

Eq. (3.15) is called the lens equation and determines the angular positionθ of the image for a

given source positionβ. If there is more than one solution for a fixed value ofβ, the lens produces

multiple images. Furthermore, it is convenient to introduce the deflection potentialΨ(θ):

Ψ(θ) = 2
Dds

DsDd

∫

Φtot(Ddθ, z)dz, (3.16)

where we have chosen coordinates such that unperturbed light rays propagate parallel to thez

axis. Since light rays are deflected differentially, shapes of images and sources will differ from

each other. If a source is much smaller than the angular scaleon which the lens properties change,

the lens mapping can locally be linearized. Thus, the distortion of an image can be described by

the Jacobian matrix

A(θ) =
∂β

∂θ
=





















1− κ − γ1 −γ2

−γ2 1− κ + γ1





















. (3.17)

The convergenceκ is directly related to the deflection potentialΨ through

κ =
1
2
∆θΨ =

1
2













∂2Ψ

∂θ21

+
∂2Ψ

∂θ22













(3.18)

and the shear componentsγ1 andγ2 are given by

γ1 =
1
2













∂2Ψ

∂θ21

− ∂
2Ψ

∂θ22













, γ2 =
∂2Ψ

∂θ1∂θ2
, γ =

√

γ2
1 + γ

2
2. (3.19)

As there is no absorption or emission of photons in gravitational lensing, Liouville’s theorem im-

plies that lensing conserves surface brightness, i.e. ifI (s)(β) is the surface brightness distribution
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3.1. Gravitational lensing in a nutshell

Figure 3.2: Imaging of an extended source by a non-singular circularly symmetric lens (the figure is taken
from Ref. [128]): Closed curves in the lens plane (left) are denoted ascritical curves, those in the source
plane (right) ascaustics. Because of their image properties, the outer and inner critical curves are called
tangentialandradial, respectively.

in the source plane, the observed surface brightness distribution in the lens plane is

I (θ) = I (s) (β(θ)) . (3.20)

The fluxes observed from image and unlensed source can be calculated by integrating over the

corresponding brightness distributions and their ratio isdefined as the magnification which is

given as the inverse of the Jacobi determinant,

detA = (1− κ − γ)(1− κ + γ). (3.21)

While the convergence causes an isotropic focusing of lightbundles, the shear, acting anisotropi-

cally within the lens mapping, causes changes in both shape and size of the image. Points in the

lens plane where

detA = 0, (3.22)

form closed curves, thecritical curves. Their corresponding image curves residing in the source

plane are calledcaustics. Because of Eq. (3.22), sources on caustics should be magnified by an

infinitely large factor. Since every astrophysical source is extended, however, its magnification

remains finite. An infinitely large magnification simply doesnot occur in reality. Nevertheless,

images near critical curves can be significantly magnified and distorted, which, for instance, is

indicated by the giant luminous arcs formed from source galaxies near caustics. Knowledge about

the exact shape and location of these curves already allows one to make solid statements about

35



3.1. Gravitational lensing in a nutshell

the system’s matter distribution. In Fig. 3.2, the mapping of an extended source is demonstrated

for a non-singular circularly symmetric lens. A source close to the point caustic at the lens center

produces two tangentially oriented arcs close to the outer critical curve and a faint image at the lens

center. A source on the outer caustic produces a radially elongated image on the inner critical curve

and a tangentially oriented image outside the outer critical curve. Due to these image properties,

the outer and inner critical curve are denoted astangentialandradial, respectively.

In addition to the lens mapping, the deflection by the gravitational potential also causes a time

delay for light rays traveling from a source to an observer. This can be understood from the fact

that the path of a photon traveling in a curved geometry is longer than in a flat one. Assuming an

observer at redshiftz= 0, the traveling time of light rays can be expressed as

t(θ) =
1+ zl

D

[

1
2

(θ − β)2 − Ψ(θ)

]

, (3.23)

wherezl is the redshift of the lens andD ≡ Dds/(DsDd). If the deflection potential is known, Eq.

(3.23) allows to calculate the relative time delay between different images.

Considering lensing in the framework of TeVeS, we also need to specify the form of the free

functionµB. Unless we use the simplistic form of the free function introduced at the end of Sec.

2.2.2 B, this also includes a choice for the constantkB (or equivalentlylB) after rewriting the

equations in terms of the MOND acceleration constanta0 using Eq. (2.57) (Remember that we

work with KB, φC ≈ 0). If not specified in any other way, we shall setkB = 0.01 in these cases.

This is justified following the analysis of Ref. [50] where the TeVeS lensing maps have been shown

to be generally insensitive to variations of the parameterkB as long as it is small,kB . 0.01. Also,

we will assumea0 = 1.2× 10−10m s−2 in accordance with Sec. 2.2.1 and particular constructions

of the free function will be given when needed.

3.1.3 Background cosmology

To calculate angular diameter distances in the context of gravitational lensing, we still need to

choose a cosmological model in TeVeS. Throughout this thesis, we will assume that the cosmo-

logical branch ofµB (or equivalentlyF) is chosen in such a way that the basic resultφ, ρφ ≪ 1

presented in Sec. 2.2.2 C remains valid. There we have already discussed the resulting background

equations and found them to be structurally identical to those obtained in the framework of GR,

but we are still left with the problem of specifying the energy-matter content in a TeVeS universe.
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3.1. Gravitational lensing in a nutshell

Since previous constraints on the baryonic contribution such as from BBN still apply in this case

[98] and we assume that there is no CDM, finding a suitable background model poses a serious

challenge to the theory. First attempts of reconciling TeVeS with observations on supernovae of

type Ia [92] have led to the development of an open minimal-matter cosmology with (In the fol-

lowing, we will always refer to present-day values of the cosmological parameters and therefore

skip the subscript “0”)

Ωm ∼ 0.04, ΩΛ ∼ 0.46, h ∼ 0.7 (3.24)

and although it is able to fit the data up to a redshift ofz∼ 1− 2, it was quickly realized that such

a model will not be able to explain observations of CMB anisotropies3 and the present matter

power spectrum [86]. Similarly, a flat minimal-matter cosmology with

Ωm ∼ 0.05, ΩΛ ∼ 0.95, h ∼ 0.7 (3.25)

suffers from the same issues while providing a worse fit to the supernovae data.

An interesting solution for this problem is to consider thatneutrinos have masses. Assuming

three species of left-handed ordinary neutrinos with a massaround 2eV and their antiparticles, it

has been possible to obtain power spectra for both CMB anisotropies and matter which are able to

describe the observational data in a qualitatively acceptable way [86] (although the corresponding

fits do not match the excellent agreement of aΛCDM model). Interestingly, the idea of massive

neutrinos around 2eV has already been discussed to provide asolution to the lack of matter on

cluster scales [78, 79, 81] and to explain the observed weak lensing map of the galaxy cluster

1E0657− 558 (“bullet cluster”) [93, 130]. It should be mentioned that the needed neutrino mass

of 2eV is barely consistent with the current upper limit on the electron neutrino’s mass (e.g., see

Ref. [131]). Depending on how the current data sets are analyzed, on obtains an upper mass limit

of 2.2eV or 2.8eV; future measurements such as the Karlsruhe Tritium Neutrino Mass Experiment

(KATRIN) [132, 133] will be able to explore a mass range well below the 2eV threshold. While

such neutrinos must have been relativistic in the early universe, they should behave like nonrela-

tivistic matter today, with their density evolving asρν ∝ a−3. If we assume that these neutrinos

followed a thermal distribution at the time of decoupling, one may estimate their current total con-

tribution to the energy budget of the universe asΩν ∼ 0.032h−2mν/eV (see, e.g., Ref. [20]). Here

we have assumed three neutrino generations together with their antiparticles andmν denotes the

3Here the main difficulty is the resulting angular-distance relation which is not able to match the observed position of
the peaks in the angular power spectrum of the CMB.
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3.2. Analytic model for nonspherical lenses in TeVeS

mass of a single neutrino in eV. From this, one obtains the so-called flat modified hot dark matter

(µHDM) cosmology whose parameters read

Ωm = Ωb + Ων ∼ 0.05+ 0.17= 0.22, ΩΛ ∼ 0.78, h ∼ 0.7, (3.26)

where we have generously setmν = 2.6eV, leading toΩν ∼ 0.17 in accordance with the analysis

of Ref. [86]. In situations relevant for gravitational lensing, the background of theµHDM model

is close to a standardΛCDM cosmology parametrized by

Ωm ∼ 0.3, ΩΛ ∼ 0.7, h ∼ 0.7, (3.27)

and for several applications it will suffice to consider the latter. As we shall discuss in Sec. 3.4, one

is not bound to use ordinary neutrinos and there is evidence that a massive sterile neutrino provides

a much better candidate to account for the missing energy-density in TeVeS or related theories.

Furthermore, it is also possible to construct covariant formulations of MOND [40, 115] which

yield a background evolution indistinguishable fromΛCDM without the need for an additional

matter fluid. In the present thesis, however, we will not consider such alternatives.

3.2 Analytic model for nonspherical lenses in TeVeS

Equipped with the covariant framework of TeVeS, it is now possible to investigate the conse-

quences and viability of the MOND paradigm beyond “classical” domain of fitting observed rota-

tion curves. Building on an earlier noncovariant approach [91], for instance, this allowed several

authors to test MOND against multiple-image lens systems from the CfA-Arizona Space Tele-

scope Lens Survey (CASTLES)4 [134] (see, e.g., Refs. [92, 135–137]). Their analysis was never-

theless restricted to models ofspherical geometry, and thus only able to account for the size of the

Einstein ring of observed lenses, but not for the exact position of collinear images in double-image

systems, and of course not for quadruple-image systems. This intrinsic limitation is due to the fact

that the MONDian accelerationgM is related to the Newtonian one according to Eq. (2.33).

In the following sections, we will demonstrate how to createsimple analytic models ofnon-

spherical lensesin TeVeS, corresponding to the situation ofS = 0 in MOND. Without resorting

to a numerical Poisson solver, these analytic models can thus be used to fit image positions in

double-image and quadrupled-image systems of the CASTLES data sample.

4cfa-www.harvard.edu/castles
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3.2. Analytic model for nonspherical lenses in TeVeS

3.2.1 The Hernquist-Kuzmin Model

3.2.1 A Potential-density pair

The Kuzmin disk [138], defined by a Newtonian gravitational potential of the form

ΦN,K =
−GM

√

x2 + y2 + (|z| + b)2
, b > 0, (3.28)

is a well-known and simple model for a nonspherical density configuration: Forz> 0, Eq. (3.28)

corresponds to the Newtonian potential generated by a pointmass located at (0, 0,−b), in case of

z < 0 it turns into the Newtonian potential of a point mass located at (0, 0, b). Thus, above and

below the disk, we effectively have a spherical Newtonian potential, which implies that trulyS= 0

in Eq. (2.33).

Hereafter, the idea is simply to model lens galaxies by replacing the auxiliary point lens po-

tential of the Kuzmin disk with an auxiliary Hernquist potential [139]; we shall refer to this model

as the Hernquist-Kuzmin (HK) model. A similar approach, using Plummer’s model and a smooth

transition atz = 0 instead, leads to the Plummer-Kuzmin model derived in Ref.[140] which

provides a qualitatively good fit to the mass profile of observed galaxies. Although our proposed

model is not a very good description of real galaxies, it enables us to derive fully analytic lens

models in the context of MOND (see Sec. 3.2.1 B) and to study the influence of nonsphericity on

the ability to fit image positions.

The Newtonian potential of the HK model takes the form

ΦN,HK =
−GM

√

x2 + y2 + (|z| + b)2 + h
, (3.29)

with b being the Kuzmin parameter andh denoting the core radius of the Hernquist profile.

Choosing different ratiosh/b, this model will produce different Hubble type galaxies, going from

a pure Kuzmin disk galaxy forh/b→ 0 to a pure Hernquist sphere forh/b→ ∞. To clarify this

situation and to characterize the nonsphericity of the model, one may simply expand the right-hand

side of Eq. (3.29) far away from the disk (r2 = x2 + y2 + z2):

ΦN,HK =
−GM
r + h

(

1− |z| b
(r + h)r

)

+ O
(

b2
)

. (3.30)
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Figure 3.3: Contours of equal density in the (R, z) plane for the HK lens model (3.31) whenh/b = 0.1 (top
right), h/b = 1 (bottom left) andh/b = 10 (bottom right). Contour levels are (0.01, 0.003, 0.001, ...)M/b3

(top right); (0.001, ...)M/b3 (bottom left); (0.0003, ...)M/b3 (bottom right). Thetop left panelillustrates the
HK model: At the point (R,−|z|) below the disk, the potential Eq. (3.29) is identical with that of a Hernquist
distribution whose origin is located at a distanceb above the disk’s center.

Using Poisson’s equation, we find that the underlying density distribution is given by

ρHK =
Mh

2π
√

R2 + (|z| + b)2
(√

R2 + (|z| + b)2 + h
)3
, (3.31)

where we have used the definitionR2 = x2 + y2. The corresponding density contours in the (R, z)

plane are plotted in Fig. 3.3 for different values ofh/b.

Considering the HK model for gravitational lensing, we choose thez-axis such that it is parallel

to the line-of-sight and (x, y) are the Cartesian coordinates spanning the lens plane. Because we

need to account for different possible orientations of galaxies, we additionally have to rotate the
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3.2. Analytic model for nonspherical lenses in TeVeS

disk. Defining (r
′
)2 = (x

′
)2 + (y

′
)2 + (|z′ | + b)2, where

x
′
= (xcosφ − ysinφ) cosθ − zsinθ,

y
′
= xsinφ + ycosφ,

z
′
= (xcosφ − ysinφ) sinθ + zcosθ,

(3.32)

the angle (π/2)− θ being the inclination of the galaxy’s symmetry plane with respect to the line of

sight andφ the galaxy’s position angle (PA), Eq. (3.29) turns into

ΦN,HK =
−GM
r ′ + h

. (3.33)

3.2.1 B Lensing Properties

Assuming spherical symmetric configurations and choosing the simplistic form of the free function

µB introduced at the end of Sec. 2.2.2 B, we have the following relation for the total gravitational

acceleration in TeVeS:

gM(r) = gN(r) +
√

gN(r)a0, (3.34)

wherea0 = 1.2 × 10−10ms−2. Exploiting the above and introducingz0 = (xcosφ − ysinφ) tanθ,

the deflection angle’sx-component yields

αx = 2(x− bcosφ cosθ)

z0
∫

−∞

dz

r ′

(

GM

(r ′ + h)2
+

√
GMa0

r ′ + h

)

+ 2(x+ bcosφ cosθ)

∞
∫

z0

dz
r ′

(

GM

(r ′ + h)2
+

√
GMa0

r ′ + h

)

.

(3.35)

The integral (3.35) can be evaluated by means of elementary calculus, but as the resulting expres-

sion is quite lengthy, we shall skip its presentation at thispoint. Analogously, the closed analytic

form for αy can be derived, and as as a consequence, this is also true for the lensing quantitiesκ

andγ.

Concerning the calculation of distances in gravitational lensing, we shall adopt a standard

flat ΛCDM cosmology withΩm = 0.3, ΩΛ = 0.7 andh = 0.7. This choice is justified by the

fact that many covariant formulations of MOND mimic the behavior of aΛCDM, accounting for

marginal differences that will have no significant impact on our analysis.In particular, this is true
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3.2. Analytic model for nonspherical lenses in TeVeS

for theµHDM cosmology based on the assumption of massive neutrinos in TeVeS or for covariant

approaches [40] yielding a Hubble expansion which is virtually indistinguishable from theΛCDM

model within the redshift range relevant for the lens systems we consider here (see Sec. 3.1.3).

3.2.2 Fitting procedure for CASTLE lenses

To model individual lens systems from the CASTLES sample, wewill follow the approach pre-

sented in Ref. [141]: For each pair of imagesi and j, when tracing one light-ray back for each

observed image to the source plane, the source position obtained from Eq. (3.14) should be the

same for both images. We can thus simply compare the resulting source position for each image

by computing their squared deviation,

∆2
s =

∑

i, j

(

(xsi − xs j)
2 + (ysi − ys j)

2
)

, (3.36)

wherexs andys denote the source position in Eq. (3.14). This is a measurement of how well

the images retrace back to a single point in the source plane.Another quantity to minimize is the

deviation of the lens center from the observed optical center, given by

∆2
l = x2

l + y2
l , (3.37)

However, our model has generally 9 fitting parameters (the lens massM, the Kuzmin lengthb,

the Hernquist lengthh, the PA angle, the inclinationi, the source position (xs, ys) and the lens

position (xl , yl)), while for a double-image system we have only four constraints from the two

image positions, and another two constraints from the observed lens optical center. The problem

is thus ill-posed.

To cure this and to ensure the uniqueness of the solution, we insert a regularization term in the

minimization. This term is penalizing solutions deviatingfrom the fundamental plane as well as

face-on5 and disky solutions, and solutions with an anomalous mass-to-light ratio or a large flux

anomaly:

P =














(logFP)2 + (cosi)2 +

(

b
b+ h

)2












+

[

log
fAB

f obs

]2

+

[

log
M
M∗

]2

. (3.38)

The deviation from the fundamental plane is measured by logFP = log(h/h1) − 1.26 log(M/M1),

5As there is strong observational evidence supporting that the system B0218+357 corresponds to a nearly face-on spiral
galaxy [142, 143], we choose the regularization term for this particular lens such that edge-on solutions are penalized
instead. Further relaxing the penalties with respect to both fundamental plane and observed flux ratio in Eq. (3.38),
the fit substantially improves, corresponding to a factor of20 in∆s.
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3.2. Analytic model for nonspherical lenses in TeVeS

whereh1 = 0.72kpc andM1 = 1.5× 1011M⊙ [144].

Choosing a very small regularization parameter,λ ∼ (0.003′′)2, we minimize the following

regularized “χ2-like” quantity,

η2 = ∆2
s + ∆

2
l + λP, (3.39)

for 14 double-image systems and four quadruple-image systems of the CASTLES data sample.

Note that we also check that our results are insensitive to the detailed choice of the regularization

parameter6 and that due to the sufficient number of constraints (position of lens and images),

the fitting procedure for quadruple-image lenses is performed withλ = 0. The results are shown

in Table 3.1 and Table 3.2, respectively. Finally, note thatthe observed mass of each lens was

calculated according to Sec. 7.1 of Ref. [92].

3.2.3 Fitting results

3.2.3 A Double-image systems

Setting∆s < 0.01′′ as a reasonable threshold for acceptable fits of the HK lens, Table 3.1

shows that our model is able to describe the observed image positions of all double-image sys-

tems, with quite a number of these systems yielding plausible parameters within the context of

MOND/TeVeS. For a better presentation, Figs. 3.4, 3.5 and 3.6 further illustrate this in terms of

the found relations between modeled and observed lens masses and flux ratios, respectively. As

can be seen from Fig. 3.5, for example, the HK model seems to beable to explain the flux ratios

of these binaries in most cases.

However, there are a few outliers which we will discuss in thefollowing. Since the model

should be capable of reproducing all observational constraints and the lens mass should have a

value close to the stellar mass (M/M∗ ≃ 1) in TeVeS, these are characterized by very poor fitting

parameters in terms of large differences between predicted and observed flux ratios or anomalous

mass ratiosM/M∗ (deviation larger than a factor of 3).

RXJ0921+4529 The system RXJ0921+4529 contains twozs = 1.66 quasar images and aH =

18.2 spiral galaxy located in between the quasar images. This galaxy lens is quite likely to be a

member of azl = 0.32 x-ray cluster centered on the observed field [145]. Clearly, RXJ0921+4529

6In case of RXJ0921+4529, however, our choice ofλ creates an over-regularization effect, which results in a best-fit
lens mass that is roughly by a factor 10 smaller than estimated in Ref. [92] from fitting the system’s Einstein ring size.
Decreasing the regularization parameter toλ ∼ (3× 10−4 ′′)2 is able to resolve this issue, with∆s dropping by a factor
10 and the lens mass now being in accordance with the previousestimate of Ref. [92] (see Table 3.1).
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Table 3.1: Fitting results for selected 2-image lens systems from the CASTLES sample: In the table, the observed lens massM∗ is calculated according to Sec. 7.1
of Ref. [92], the parameterrh is the Hernquist length expected from half-light measurements (values are taken from Ref. [92]). We do not giveη2, but instead we
list ∆s and compare the inferred values of PA, the Hernquist lengthh, mass and flux ratio to observations. Additionally, we predict inclination and time delay for
the particular lens models. Outliers are characterized by large differences between predicted and observed flux ratios and/or anomalous mass ratiosM/M∗ (deviation
larger than a factor of 3) like, for instance, in case of RXJ0921+4529 which resides in a cluster. Note that the fitted lens position is given by (xl , yl) ≈ (0, 0) for all
lenses.

Lens zl b/h h/rh M (fit/obs) PA incli. ∆s fAB (fit/obs) δt (fit/obs)
[kpc] [1011M⊙] [◦] [ ′′] [days]

Q0142-100 0.49 0.25 1.34/1.6 1.70/4.08 72.2 90.0 2.43× 10−4 8.06/8.22 151.5/-
B0218+357 0.68 1.0 2.19/1.8 2.69/2.67 -22.6 6.94 7.75× 10−5 0.759/0.587 7.52/10.5
HE0512-3329 0.93 0.24 1.45/1.8 1.49/2.91a 28.2 90.0 3.90× 10−6 0.0013/1.175 19.6/-
SDSS0903+5028 0.39 0.76 1.83/1.8 2.77/3.80 -30.4 90.0 9.90× 10−4 2.29/2.17 135.2/-
RXJ0921+4529 0.31 0.037 7.59/1.8 20.0/0.34 60.2 90.0 5.85× 10−4 3.623/3.591 167.2/-
FBQ0951+2635 0.24 0.13 1.20/0.32 0.47/0.31 60.3 90.0 1.23× 10−4 2.74/3.53 13.2/-
BRI0952-0115 0.41 0.055 2.20/0.29 0.58/0.27 124.1 90.0 5.04× 10−4 3.52/3.52 8.11/-
Q0957+561 0.36 1.55 1.21/5.23 6.94/8.44 40.0 90.0 1.97× 10−3 14.3/1.08 752.4/417.0
Q1017-207 0.78 0.0092 2.39/1.19 0.83/0.74 88.8 89.9 2.16× 10−4 0.73/0.72 29.0/-
B1030+071 0.60 0.10 0.84/1.50 1.85/1.66 29.3 90.0 8.04× 10−5 36.6/36.6 346.8/-
HE1104-1805 0.73 0.33 0.58/2.48 4.91/3.32 61.9 90.0 1.96× 10−3 0.35/3.85 321.2/-
B1600+434 0.41 0.18 1.64/1.8 1.01/0.40 36.8 90.0 2.09× 10−4 0.83/0.84 32.2/51.0
PKS1830-211 0.89 0.48 2.75/1.8 1.33/1.48 62.3 90.0 4.14× 10−4 157.3/157.3 32.7/26.0
HE2149-2745 0.50 0.026 0.94/11.4 1.04/2.00 -30.0 90.0 2.30× 10−4 6.53/4.19 90.7/103.0
SBS0909+523 0.83 0.19 3.02/1.8 2.92/13.5a 49.2 90.0 1.84× 10−3 1.42/1.42 65.9/-

a Note that the analysis of Ref. [92] assumed a different value forM∗ based on a wrong magnitude in an older version of the CASTLES data set.
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3.2. Analytic model for nonspherical lenses in TeVeS

Figure 3.4: Illustration of the resulting ratios between modeled lens massM and the corresponding stellar
massM∗ for double-image systems in the CASTLES data set: Shown is the ratioM/M∗ plotted against∆s.
Since there is no additional DM on galactic scales, acceptable lens models in TeVeS should cluster around
M/M∗ ≃ 1; outliers are labeled with their names.

does not correspond to an isolated system, which complicates the situation in TeVeS and provides

a possible explanation for the extremely poor fit/mass ratio (M/M∗ ≈ 59). The presence of a

cluster could have caused difficulties in fitting the lens as the impact of an external field orother

nonlinear effects may be important. In addition, remember that there are still unresolved issues in

MOND and its extensions concerning clusters [50, 78, 79, 81,93].

Q0957+561 The gravitational lens Q0957+561 is the most thoroughly studied one in literature.

The system involves a radio-loud quasar at redshiftzs = 1.41 which is mapped into two images by

a brightest cluster galaxy (BCG) and its parent cluster at redshift zl = 0.36 [146, 147]. It is also

known that the lens galaxy has a small ellipticity gradient and isophote twist which are properties

the simple HK model cannot account for. Together with the fact that the lens is embedded into a

cluster, this might be a reason for the huge discrepancy between observed and predicted flux ratio

in the context of modified gravity.

HE1104-1805 The lens galaxy’s colors are in agreement with a high-redshift early-type galaxy,

and its redshift is roughly estimated aszl = 0.77 [148]. Concerning its lensing properties, the

system HE1104-1805 is quite uncommon in a the sense that the lens is closer to the bright image,
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3.2. Analytic model for nonspherical lenses in TeVeS

Figure 3.5: Illustration of the resulting relation between modeled andobserved flux ratios for double-
image systems in the CASTLES data set: Shown is the ratiofAB,fit/ fAB,obsplotted against∆s. As is obvious,
acceptable lens models in TeVeS should cluster aroundfAB,fit/ fAB,obs ≃ 1; outliers are labeled with their
names.

rather than the faint one. As is known from lensing within thestandard GR+ CDM paradigm,

simple models can create such configurations only for a narrow range of parameters due to the

peculiar flux ratio. Assuming simple ellipsoidal lens models, however, these parameters imply a

large misalignment between the light and the projected density. The only possibility to align the

mass with the light, is to have a shear field being approximately twice as strong as estimated from

the particular lens model.

Furthermore, the observed image separation is by a factor 2− 3 larger than that of a typical

lens, strongly suggesting that the separation is enhanced by the presence of a group or a cluster.

So far, however, there has been no direct observational evidence for such a structure in the lens’

surrounding area. Analog to the aforementioned lens systems, the unsatisfying fit and the corre-

spondingly inferred flux ratio might be a result of both lens environment and model limitations

(see also Sec. 3.2.3 C and 3.2.3 D).

SBS0909+523 SBS0909+532 shows two images of a background quasar source atzs = 1.377

separated by 1.11′′ [148]. Optical and infrared HST images indicate that the lensing galaxy has a

large effective radius and a correspondingly low surface brightness. Additionally, the lens galaxy’s
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3.2. Analytic model for nonspherical lenses in TeVeS

Figure 3.6: Mass ratioM/M∗ plotted against the ratio of modeled and observed flux ratio for double-image
systems in the CASTLES data set: Note that acceptable lens models in TeVeS should cluster close to the
point (1, 1); outliers are labeled with their names.

redshift is estimated aszl = 0.83 [149], and its total magnitude in theH-band has been measured

asH = 16.75± 0.74. Although the lens galaxy’s colors are poorly measured, they seem consistent

with those of an early-type galaxy at the observed redshift.

The large uncertainties are a result of the difficulty in subtracting the close pair of quasar

images [148]. For instance, the uncertainty in theI -band magnitude,I = 18.85± 0.45, allows a

deviation of the mass estimateM∗ by a factor of roughly 2.3 at the 2σ level, where we have used

Eqs. (73) and (74) of [92]. Thus we argue that the low mass ratio (listed in Table 3.1) may be

entirely due to these uncertainties in observed magnitudes, with better constrained observations

possibly softening the found problem in TeVeS.

HE0512-3329 The system HE0512-3329 was discovered as a gravitational lens candidate in the

course of a snapshot survey with the Space Telescope ImagingSpectrograph (STIS), with the im-

ages of the lensed quasar source being separated by 0.644′′ [150]. Although the lens galaxy has

not been detected yet, measurements of strong metal absorption lines at redshiftz = 0.93, identi-

fied in the integrated spectrum, hint towards a damped Lyα system intervening at this redshift.

Analyzing separate spectra of both image components, it hasbeen pointed out that both dif-
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Figure 3.7: Left panel: Shown are the critical curves (black lines) and caustics (red lines) of the best-fit
Hernquist-Kuzmin model for Q2237+030. The empty and filled squares denote the observed positions of
images and source, respectively.Right panel: Convergence mapκ of the best-fit Hernquist-Kuzmin model
for Q2237+030, with the outer contour level starting atκ = 0.7 and increasing in steps of 0.1 up to a level
of κ = 2.0.

ferential extinction and microlensing effects significantly contribute to the spectral differences and

that one cannot be analyzed without taking into account the other [150]. For lens modeling pur-

poses, the observed flux ratio can therefore only be used after correcting for both effects. Thus the

large discrepancy between predicted and observed flux ratiomight be a consequence of neglecting

the above mentioned effects, rather than being intrinsic to TeVeS.

3.2.3 B Quadruple-image systems

As we can see from Table 3.2, most of the quadruple-image systems are very poorly fitted by the

analytic HK model. In accordance with our goodness-of-fit criterion (∆s < 0.01′′) introduced in

Sec. 3.2.3 A, there is just one system where the model is able to predict the image positions in a

satisfying manner. Additionally, none of the observed flux ratios can be explained.

The only acceptable fit is given for Q2237+030, the nearby Einstein cross (zl = 0.04 [151]),

which is the only true bulge-disk system in our set. Also, itsphysical Einstein ring size in the

lens plane is very small,RE ≈ 0.7kpc (in B1422+231, for instance, it is already by a factor of

roughly 10 larger [152]). Nevertheless, it is not possible to give a reasonable explanation for the

flux ratios using the smooth HK model. Taking effects due to microlensing into account, which

are not considered in the present analysis, could be able to relax the situation. Note that the lens

galaxy actually contains a bar feature [153] which is ignored in our analysis.
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Table 3.2: Fitting results for selected 4-image lens systems from the CASTLES sample: Note that all positions (RA and declination)are given in units of′′. The
observed position angle and inclination of Q2237+030 (major-axis) are PA= 77.2◦ and i = 64.5◦, respectively, assuming a circular face-on disk. Replacing the
auxiliary Hernquist with a Jaffe profile barely changes the numbers: inclination and PA change by about 5◦, the predicted mass by roughly 10% .

PG1115+080 Q2237+030 B1422+231 SDSS0924+0219

zl 0.31 0.04 0.34 0.39
zs 1.72 1.69 3.62 1.52
Dl [kpc] 957.2 163.6 1020.2 1116.6
Ds [kpc] 1874.2 1874.0 1637.6 1867.0
Dls [kpc] 1413.2 1810.8 1341.7 1252.1
Image A (−0.947,−0.690)± 0.003 (−0.075,−0.939)± 0.003 (0.375, 0.973)± 0.003 (−0.162, 0.847)± 0.003
Image B (−1.096,−0.232)± 0.003 (0.598, 0.758)± 0.003 (0.760, 0.656)± 0.003 (−0.213,−0.944)± 0.003
Image C (0.722,−0.617)± 0.003 (−0.710, 0.271)± 0.003 (1.097,−0.095)± 0.003 (0.823, 0.182)± 0.003
Image D (0.381, 1.344)± 0.003 (0.791,−0.411)± 0.003 (−1.087,−0.047)± 0.003 (−0.701, 0.388)± 0.003

Source (−0.011, 0.091) (0.027,−0.0051) (0.089, 0.030) (−0.024,−0.047)
Lens (−0.0011,−0.0041) (0.00066, 0.00096) (−0.00093, 0.0065) (0.019,−0.0051)
M (Mfit/M∗) [1011M⊙] 7.80/1.23 0.78/1.19 4.83/0.77 2.80/0.32
h [kpc] 2.25 0.44 8.42 1.57
b/h 0.56 1.85 0.29 2.17
PA angle [◦] 244.8 246.6 117.9 266.4
Inclination [◦] 44.5 30.6 48.6 40.5
∆s [′′] 0.0402 0.0026 0.0593 0.0612
Flux ratio (obs) 4.03:2.53:0.65:1 2.62:1.64:1.30:1 31.1:34.6:18.4:1 12.5:5.68:4.81:1
Flux ratio (fit) 3.98:4.15:1.40:1 0.81:0.66:0.68:1 8.56:6.53:7.51:1 1.66:0.69:0.86:1
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3.2. Analytic model for nonspherical lenses in TeVeS

PG1115+080 The lens galaxy in PG1115+080 and its three neighbors belong to a single group

at zl = 0.311, with the group being centered southwest of the lens galaxy’s position [154, 155].

Reasonable fits of this lens typically involve a significant amount of external shear in the context of

GR+ CDM. Moreover, the observed anomaly of the flux ratio (∼ 0.9) between two of the images

strongly hints towards an additional perturbation of the system caused by a satellite galaxy or a

globular cluster. Similar to Sec. 3.2.3 A, we have a gravitationally bound system which will likely

involve a different approach than provided by the isolated HK model.

B1422+231 The system B1422+231 shows almost the same characteristics as PG1115+080

[156]. Again, the lens belongs to a galaxy group which is centered south of the lens galaxy

(zl = 3.62). In Ref. [157], the lensing system was fit using a very flat singular isothermal ellipsoid

(SIE) [158, 159] plus an external shear field. However, HST observations revealed that the lens

galaxy’s optical axis ratio is much closer to unity than assumed for the flat SIE, favoring rounder

lens models with larger external shear.

SDSS0924+0219 Estimated colors and magnitudes of the lens galaxy are consistent with those

of a typical elliptical galaxy atzl = 0.4 [160]. Although the lens environment does not show any

nearby objects perturbing the system, quite an amount of external shear is needed to obtain a satis-

fying fit to observations, with the lens being typically modeled by a (flattened) singular isothermal

sphere (SIS). Additionally, microlensing plays an important role in explaining the observed flux

ratios within GR+ CDM, which is likely to be true in TeVeS as well.

3.2.3 C Maximum nonspherical shear of a Kuzmin lens

As we have seen, the outliers in our selection of quadruple-image lenses correspond to systems

with a large external shear. In PG1115+080, for example, this is due to a neighboring galaxy

group. However, the same situation also appears in uncrowded environments, usually constraining

the lensing potential to require a substantial ellipticity. From Sec. 3.2.3 B, it seems that our

present analytic model is not able to generate such a potential in most cases. As is known, almost

all quadruple-image systems show evidence for the need of anexternal shear field [158, 161, 162]

by violating a certain inequality of the image positions. Itis perhaps not surprising that the current

isolated HK model fails to fit these lenses7. To gain a better understanding about this issue, we

consider a pure edge-on Kuzmin lens (h = 0) and derive the maximum variation of the shear at

7Note that our analysis does not take into account external shear effects, which would complicate the relation between
lens mapping and associated density distribution due to nonlinearity in modified gravity. While our main task is to
explore the capability of the HK model, such contributions should certainly be addressed in future work.
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Figure 3.8: Nonspherical shear parameterQ for a simple TeVeS Kuzmin lens (solid line), assuming
a0D/c2 = 0.03: Additionally, we show the results for a SIE model with a potential axis ratio of 0.9 (dotted-
dashed line), 0.8 (dotted line) and 0.7 (dashed line), respectively.

the Einstein radiusRE by comparing its values on the major and minor axis. For this reason, let us

introduce a quantityQ which is given as follows:

Q ≡ γ(RE, 0)− γ(0,RE)
γ(RE, 0)+ γ(0,RE)

. (3.40)

The parameter defined above will indicate the level of the shear field’s nonsphericity at the Einstein

radius and is a function of the dimensionless radiusRE/b. Note that in case of the Kuzmin lens,

the quantityQ depends on redshift.

Figure 3.8 showsQ as function ofRE/b for the pure Kuzmin model (solid line), assuming

a0D = 0.03. This value has been chosen in accordance with the majority of lens redshifts in

the CASTLES sample, and changing it does have no significant qualitative impact on the basic

outcome. Additionally, we also present the result for the singular isothermal ellipsoid (SIE) model

[159], with the potential axis ratio varying from 0.7 to 0.9 (shown by horizontal lines). As we can

see, the Kuzmin model becomes comparable to a very round SIE if RE/b & 10.

To obtain a sufficiently strong quadruple moment, i.e. nonspherical shear,at the Einstein radius

(Q > 0.2), these disk-only models must satisfy the conditionb > 0.2RE. In case of PG1115, the
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3.2. Analytic model for nonspherical lenses in TeVeS

observed ring size can be estimated asRE ≈ 5kpc, so to fit four images, one might actually expect

thatb ' 1kpc. However, trying to fit the above mentioned Einstein ring size using the stellar mass

only, we also find that this would need a Kuzmin parameter close to zero (b ≈ 0), corresponding

to a very concentrated point-like lens. Although we have only given a plausibility argument,

rather than a rigorous proof, this could explain why we cannot find a value ofb that meets both

requirements and why the HK model mostly fails to fit quadruple-image systems.

3.2.3 D Experimenting with hypothetical lenses

Another possibility of investigating the fitting capability of our model is to generally explore its

parameter space and to study the structure of critical curves and caustics. To avoid any limitations

that might be due to the particularly chosen radial profile, we furthermore replace the auxiliary

Hernquist profile with the more general Dehnen profile [163].Its Newtonian potential and the

corresponding density profile read as

ΦN,D(r) =
GM
α

[

−1+
( r
r + h

)α]

, ρD(r) =
Mh(1+ α)

4πr2−α(r + h)2+α
, (3.41)

whereh is a characteristic length of the model. Depending on the value ofα, the Dehnen model

represents different density distributions, ranging from quite cuspy to more broadened profiles.

Forα = 0 andα = 1, Eq. (3.41) reduces to the models of Jaffe [164] and Hernquist, respectively.

Allowing different values forα, we repeat the fitting procedure for the quadruple-image systems

discussed in Sec. 3.2.3 B. The result is basically the same asfor the HK model, with the parameters

listed in Table 3.2 not significantly changing. In case of theJaffe profile (α = 0), for instance,

inclination and PA are altered by about 5◦ and the predicted mass by approximately 10%.

To further illuminate the insufficiency of our model, let us have a more detailed look at the

caustic structure, taking the system PG1115+080 as an example: Choosing a plausible setting for

the lens system in MOND, we fix its size toh = 0.72kpc and the PA to 77.2◦ (observed value).

In accordance with the best-fit results, we additionally assume a lens mass ofM = 8 × 1011M⊙

and vary the Dehnen indexα, the model’s “diskyness”b/(h + b) as well as the inclination on

a range from−1 to 1, 0.1 to 0.9 and 10◦ to 90◦, respectively. For a selection of such lenses,

the corresponding critical curves and caustics are shown inFig. 3.9. Then, among all resulting

lens models, we select those which exhibit the strongest (nonspherical) shear, corresponding to

a large astroid caustic size. Since the lens mass should be close to the stellar mass (M/M∗ ≃ 1)
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3.2. Analytic model for nonspherical lenses in TeVeS

in MOND/TeVeS, the idea is now to stepwise decrease the mass of these models. In all cases,

we find that, due to the caustics’ contraction, the source crosses the astroid caustic way before

M/M∗ reaches unity, thus not corresponding to a quadruple-imagesystem anymore. Typically, the

crossing seems to take place when the lens model’s mass is roughly around 4− 6 × 1011M⊙. For

α = 1, b/(h + b) = 0.38 and an inclination of 44.5◦, this situation is illustrated in the left and

middle panel of Fig. 3.10. Note that we have kept the source position fixed at (−0.011, 0.091)′′

for our analysis, with the lens being centered on the origin.

Again, this provides a possible explanation why the Dehnen-Kuzmin model (including the HK

model) mostly fails to fit quadruple-image systems, supporting our earlier conclusion from Sec.

3.2.3 C. Given thatM/M∗ ≃ 1 in TeVeS, our model is obviously not able to generate sufficiently

strong shear (hence large caustics) and a large Einstein ring at the same time. For comparison,

we also present the resulting caustics and critical curves of a best-fit SIS+ γext model in the right

panel of Fig. 3.10. As is known, its deflection potential can be expressed as

Ψ(ξ, θ) = cξ +
γ

2
ξ2cos

(

2(θ − θγ)
)

. (3.42)

Choosing the lens’ position (xl , yl) = (0.0028, 0.0048)′′ , c = 1.14′′, γ = 0.07 andθγ = 88.7◦, the

above model is able to fit the observations of PG1115+080 satisfyingly.

3.2.4 Discussion

We have found that the HK model is able to describe the observed image positions of all analyzed

double-image systems, with 10 of these systems yielding plausible parameters within the context

of TeVeS. Additionally, our model is mostly able to explain the flux ratios of these binaries. Note

that the implied masses for most of these lenses are quite similar to those derived from the spheri-

cally symmetric models applied in Ref. [92], but that the bigadvantage of our nonspherical model

is its ability to fit the precise image-positions rather thanjust the size of the Einstein ring.

On the other hand, 5 double-image systems do not provide a reasonable fit: While for two of

these systems, the found problems are likely to be solved by considering observational uncertain-

ties, a more accurate model or additional effects such as extinction and microlensing, the other

three lenses appear to be lacking an obvious explanation8. It is however quite striking that all

8Note, however, that the stellar mass estimates depend on theadopted initial mass function and star formation rate, and
can vary by a factor of 4 in the R-band, which could partly solve the problem of the mass-ratio discrepancy, but not
the flux ratio anomalies.
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Figure 3.9: Experimenting with hypothetical lenses: Shown are the critical curves (black lines) and caustics (red lines) of different Dehnen-Kuzmin models char-
acterized by the parametersα, b/(h+ b) and inclination (“core” radius and PA are fixed toh = 0.72kpc and 77.2◦, respectively). All models assume a lens mass of
M = 8× 1011M⊙ which is approximately 8 times the stellar mass of the lens galaxy in PG1115+080. The empty and filled squares denote the observed image and
source positions of PG1115+080.
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Figure 3.10:Effects of reducing the lens mass: Shown are the critical curves(black lines) and caustics (red lines) of a Dehnen-Kuzmin model (α = 1,b/(h+b) = 0.38,
h = 0.72kpc, PA= 77.2◦ and i = 44.5◦), assumingM = 8 × 1011M⊙ (left panel) andM = 5 × 1011M⊙ (middle panel), respectively. The empty and filled squares
denote the observed image and source positions of PG1115+080, the stellar mass of the lens is estimated asM∗ ≈ 1011M⊙. Right panel: Critical curves (black lines)
and caustics (red lines) of the best-fit SIS+γext model given by Eq. (3.42).
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3.2. Analytic model for nonspherical lenses in TeVeS

these remaining outliers are actually residing in (or closeto) groups or clustersof galaxies. Since

TeVeS lensing is much more sensitive to the underlying three-dimensional distribution of the lens

than in GR [50], this means that effects due to environment or nonlinearity could have an impor-

tant incidence. Moreover, it is known for a while that additional dark matter is needed for galaxy

clusters in MOND and it has recently been shown that this is the case for groups, too [80]. Possi-

ble explanations for this “cluster dark matter” range from the presence of numerous clouds of cold

gas [165] through the existence of neutrinos with a mass around several eV [166] to the nontrivial

effects of the vector field (or of an additional scalar field) in TeVeS or other covariant formulations

of MOND [34, 84, 167]. Several studies (including the recentanalysis of the velocity dispersions

of globular clusters in the halo of NGC 1399 [168]) have also provided first evidence for such

dark matter ongalaxy scalesin MOND, which is typical for galaxies residing at the centerof clus-

ters only. This may be interpreted as a small-scale variant of the aforementioned cluster problem

(although the two are not necessarily related to each other)and could thus provide an additional

reason for the poor fits obtained for the two-image lenses residing in groups or clusters.

For the four quadruple-image systems, it is a different story: the only acceptable fit is obtained

for the Einstein cross Q2237+030, but even in this case, the observed flux ratios cannot be re-

produced. However, the anomalous flux ratios here are most likely due to microlensing effects

which have not been considered in our analysis. We can thus conclude that MOND does not pro-

vide a solution to the flux anomaly issue, mainly because smooth MOND models naturally predict

smooth magnification patterns. Among the 3 very poorly fittedlenses, only PG1115+080 and

B1422+231 appear in a crowded environment, which could cause the same perturbing effects as

for non-isolated double-image systems; the remaining lens, SDSS0924+0219, appears relatively

isolated. We argue that, especially in this particular case, the poor fits are due to the intrinsic

limitation of the HK model: Indeed, we have shown that the model is unable to produce a large

Einstein ring and a large nonspherical shear at the same time. Although we have not presented a

rigorous proof, we have tried to make this limitation plausible by analyzing the maximum non-

spherical shear of a TeVeS Kuzmin lens as well as the caustic structure of different HK models.

We have also tried models based on the more general Dehnen profile [163], but this has not led to

a satisfactory solution either. Again, note that our analysis did not consider any contribution due

to external shear effects.

In summary, we conclude that our analytic models generally provide good fits to the image

positions of isolated two-image lenses, but that some problems are encountered for non-isolated
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3.3. Gravitational lensing by intercluster filaments

lens systems. On the other hand, we have shown that our modelsare barely able to fit quadruple-

image systems, which is essentially traced back to the intrinsic limitations of our model. The

present study has thus pinpointed some lenses for which moredetailed approaches such as a full

three-dimensional numerical model should be devised. While our analytic models do obviously

not yet represent a definitive test of MOND/TeVeS with gravitational lensing, they have neverthe-

less provided a new step toward understanding this quite unexplored research area and isolating

the possibly challenging lens systems for the future.

3.3 Gravitational lensing by intercluster filaments

3.3.1 Weak lensing anomalies and filamentary structures

Recently, strange and hard-to-explain features have been discovered in galaxy clusters, such as

the “dark matter core” devoid of galaxies at the center of the“cosmic train wreck” cluster Abell

520 [169] or the “dark clusters” discussed in Ref. [170]. In what follows, we shall consider the

possibility that this kind of features could be due to the gravitational lensing effects generated by

intercluster filaments in a TeVeS universe. However, we are not performing a detailed lensing

analysis of any particular cluster in the presence of filaments, but rather provide a proof of concept

that the influence of filaments could be much less negligible than within the framework of GR+

CDM.

Filaments are among the most prominent large-scale structure of the universe. From simula-

tions inΛCDM cosmologies, we know that almost every two neighboring clusters are connected

by a straight filament with a length of approximately 20− 30Mpc [171]. For instance, the dy-

namics of field galaxies, which are generally embedded in such filaments, as well as their weak

lensing properties are persistently influenced by this kindof structure, generally encountering ac-

celerations of about 0.01− 0.1× 10−10m s−2. Filaments also cover a fair fraction of the sky, much

larger than the covering factor of galaxy clusters. Thus, there is a good chance that filaments

might be superimposed with other objects on a given line of sight, hence affecting the analysis of

observational data like, for example, weak lensing shear measurements.

Short straight filaments are structures which, at the best, are partially virialized in two direc-

tions perpendicular to their axis. According to Ref. [171],a filament generally corresponds to an

overdensity of about 10− 30, having a cigar-like shape. Furthermore, filamentary structures tend

to have a low density gradient along their axis and, in the perpendicular directions, they have a
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Figure 3.11:Light deflection by an infinitely elongated cylinder of constant mass density: The unperturbed
photon traveling along thez-direction passes the filament at the distancey (impact parameter) from the
filament’s axis and is deflected by the angle ˆα. The line density of the filament is assumed to be constant,
λ = M/L = ρπR2

f , whereρ is the volume density andRf is the cylinder’s radius.

nearly uniform core which tapers to zero at larger radii (usually about 2−5 times their core radius).

Since filaments are typically much longer than their diameter, we shall approximately treat them

as infinite uniform cylinders of radiusRf = 2.5h−1Mpc. Lacking a structure formationN-body

simulation in the framework of TeVeS, we shall adopt the naive assumption that filamentary struc-

tures have roughly the same properties as in aΛCDM model and we will justify this approach in

Sec. 3.3.3.

3.3.2 Modeling a filamentary lens

We investigate the effect of gravitational lensing caused by a straight filament connecting two

galaxy clusters in both GR and TeVeS gravity. As a first simpleapproach, we shall take the

filament’s matter density profile to equal an infinitely elongated and uniform cylinder which is
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3.3. Gravitational lensing by intercluster filaments

illustrated in Fig. 3.11. The cylinder’s line density,

λ = M/L = ρπR2
f , (3.43)

is taken to be constant, whereM is the total mass,L denotes the length along the symmetry axis,

Rf is the cylinder’s radius, andρ is the volume density. A photon traveling perpendicular to the

filament’s axis will change its propagation direction when passing by the cylinder due to the local

gravitational field which is assumed to be a weak perturbation to flat spacetime, i.e. all further

calculations may be carried out within the nonrelativisticapproximation discussed in Sec. 3.1.

In our example (see Fig. 3.11), the filament’s axis is alignedwith the x-axis, and light rays

propagating along thez-direction are dragged into the±y-directions due to the symmetry of the

resulting gravitational field. Keeping this configuration and introducing cylindrical coordinates,

we may rewrite Eq. (3.13) as

α̂(y) = 4y

∞
∫

y

Φ
′
tot

√

r2 − y2
dr, (3.44)

where the prime denotes the derivative with respect to the cylindrical radial coordinater, i.e.

Φ
′
tot = dΦtot/dr. Considering the symmetry properties of our cylindrical lens model and the

configuration in Fig. 3.11, Eq. (3.18) further simplifies to

κ(y) =
1
2

DlDls

Ds

∂α̂(y)
∂y
, (3.45)

with the convergenceκ being related to the quantitiesγ (γ2 = γ2
1, γ2 = 0) andA ≡ detA as

follows:

κ = γ =
1− A−1

2
. (3.46)

Furthermore, let us introduce the complex reduced shearg given by

g =
γ1 + iγ2

1− κ . (3.47)

To lowest order, this quantity is the expectation value of the ellipticity χ of galaxies weakly dis-

torted by the lensing effect, thus corresponding to the signal which can actually be observed. The

absolute value of the reduced shear is|g| = γ/(1 − κ), and since we haveκ = γ ≪ 1 in our case,

we obtain|g| ∼ κ = γ. Note that the above result is independent of the particularlaw of gravity.
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3.3.2 A The uniform filament in Newtonian gravity

The Newtonian gravitational field of our filament model is given by

gN(r) = |∇ΦN(r)| =











































Gλ
2π

r

R2
f

, r < Rf

Gλ
2π

1
r
, r ≥ Rf

, (3.48)

with λ being the previously defined line density given by Eq. (3.43). For Rf ≤ y, evaluating the

integral (3.44) yields

α̂N(y) = Gλ = const. (3.49)

Inserting the above into Eq. (3.45), we may obtain the corresponding convergence field. As

expected,κN equals to zero outside the cylinder’s projected matter density. For y < Rf , the

deflection angle has to be calculated from

α̂N(y) =
2Gλy
π

























Rf
∫

y

rdr

R2
f

√

r2 − y2
+

∞
∫

Rf

dr

r
√

r2 − y2

























. (3.50)

Carrying out the integrations in (3.50), we finally end up with the following expression:

α̂N(y) =
2Gλ
π


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
















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y
√

R2
f − y2

R2
f

+ arcsin

(

y
Rf

)

























. (3.51)

Using Eq. (3.45), the convergence in this case turns out to be

κN(y) = 2
DlDls

Ds

Gλ

πR2
f

√

R2
f − y2. (3.52)

3.3.2 B The uniform filament in TeVeS

Now we shall consider light deflection within the framework of TeVeS gravity, again using the

simplistic form of the free interpolating functionµB introduced at the end of Sec. 2.2.2 B. Assum-

ing a cylindrically symmetric configuration, the total gravitational acceleration may be written in

the following way:

gM(r) = |∇ΦM(r)| = gN(r) +
√

gN(r)a0, (3.53)
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wherer denotes the cylindrical radial coordinate andΦM(r) is the total nonrelativistic gravita-

tional potential in TeVeS. The constanta0 = 1.2× 10−10m s−2 characterizes the acceleration scale

at which MONDian effects start to become important compared to Newtonian contributions. Since

filaments are the most low-density structures within the universe, their internal (Newtonian) grav-

ity is very small. Therefore, the MONDian influence yields anenhancement of the gravitational

field which is on the order ofa0/gN, being extremely large in such objects. For this reason, we

may expect a substantial difference concerning the lensing signal caused by filamentary structures

in TeVeS. Equipped with Eqs. (3.44), (3.48) and (3.53) we areready to proceed with the analysis

of our cylindrical filament model: ForRf ≤ y, the deflection angle is given by

α̂M(y) = α̂N(y) +

√

8Gλa0

π
y

∞
∫

y

dr
√

r
√

r2 − y2
= Gλ +

Γ(1/4)
Γ(3/4)

√

2Gλa0y. (3.54)

In this case, the convergence reads as follows:

κM(y) =
DlDls

Ds

Γ(1/4)
Γ(3/4)

√

Gλa0

8y
. (3.55)

For y < Rf , the integral (3.44) has to be split in several parts, similarly to Eq. (3.50). Using

elementary calculus, we finally arrive at

α̂M(y) =α̂N(y) +

√

2Gλa0

π

y3/2

Rf


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4

√

√

R2
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Rf y
− B(

y2/R2
f ,1

) (3/4, 1/2)


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
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



+

√

2Gλa0y
π
B(

0,y2/R2
f

) (1/4, 1/2) ,

(3.56)

whereα̂N(y) is given by (3.51) andB(p,q)(a, b) is the generalized incomplete Beta function defined

by

B(p,q)(a, b) =

q
∫

p

ta−1(1− t)b−1dt, Re(a),Re(b) > 0. (3.57)

As the expression for the convergenceκM turns out to be quite lengthy, we will drop it at this point.

From Eqs. (3.54) and (3.55), we find thatαM outside the cylinder’s projection increases with

the square root of the impact parametery (αN = const) whileκM decreases with the inverse square

root of y (κN = 0). This reveals a fundamental difference between MOND/TeVeS and GR: Since

κN = 0, we also haveγN = 0 andAN = 1 according to Eq. (3.46), meaning that there will be no
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distortion effects as well as no change in the total flux between source and image, i.e. wherever

the projected matter density is zero, the lens mapping will turn into identity. However, this is no

longer true in the context of TeVeS as the convergence and theshear field do not vanish (cf. Fig.

3.12). Obviously, the MONDian influence does not only enhance effects that are already present

in GR, but rather creates something new, which, in principle, could be used to distinguish between

laws of gravity (see Sec. 3.3.6). SinceαM continues to increase with the square root of the impact

parameter far away from the filament, one might wonder how this affects very distant systems and

whether such a model leads to inconsistencies. As will become clear in a moment, there is, in fact,

no real problem. The found growth ofαM is a direct consequence of modeling the filament as

an infinite cylinder. Clearly, this approximation will break down once the impact parameter gets

sufficiently large, at which point we expect the deflection angle to start decreasing. However, even

if the approximation held at arbitrarily large values ofy, one would not necessarily be in trouble.

The reason is that one can only measure relative deflection angles: AsαM grows sublinearly,

the relative deflection (caused by the filament) between light rays passing through some distant

system will become very small, eventually turning toward zero if the system is located sufficiently

far away from the filament. Finally, note that if one considers varying the inclination angleθ of the

filament’s axis to the line of sight, the lensing properties derived in this section have to be rescaled

by a factor of sin−1 θ in both GR and TeVeS.

3.3.3 Model application

FromΛCDM large-scale structure simulations, it has been shown that there are close cluster pairs

with a separation of 5h−1Mpc or less which are always connected by a filament [171]. At separa-

tions between 15 and 20h−1Mpc, still about a third of cluster pairs is connected by a filament. On

average, more massive clusters are connected to a larger number of filaments than less massive

ones. Additionally, these simulations indicate that the most massive clusters form at the intersec-

tions of the filamentary backbone of large-scale structure.For straight filaments, the radial profiles

show a fairly well-defined radiusRf beyond which the profiles closely follow anr−2 power law,

with Rf being around 2.0h−1Mpc for the majority of filaments. The enclosed overdensity within

Rf varies from a few times up to 25 times the mean density, independent of the filament’s length.

Along the filaments’ axes, material is not distributed uniformly. Towards the clusters, the density

rises, indicating the presence of cluster infall regions.

As previously stated, we will assume that filamentary structures in TeVeS have similar prop-
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erties as in a CDM dominated universe based on GR. To justify this assumption, one may, for

example, resort to theµHDM cosmology (see Sec. 3.1.3) and on the fact that filaments are generic

9 and have similar characteristics in hot dark matter (HDM) and CDM scenarios [172–174]. For

instance, neutrino dark matter is known to collapse into sheets and filaments in HDM simulations.

Concerning the uniform model introduced in Sec. 3.3.2, we thus take the filament’s radius as

Rf = 2.5h−1Mpc, and set its overdensity toδ = 20, whereδ denotes the density contrast defined

by

δ =
ρ − ρ0

ρ0
(3.58)

andρ0 is the intergalactic mean density.

On the other hand, analyzing the Perseus-Pisces segment, [175] concluded that a MONDian

description of filaments would not need any additional nonbaryonic mass component. Due to

rather large systematic uncertainties, however, this result remains highly speculative and does not

rule out our approach where filamentary structures have higher densities. Nevertheless, we will

also include this case, where filaments consist of baryonic matter only, into our analysis. Since

the absolute density of a filament in this situation is approximately by a factor 10− 100 smaller

than inµHDM, we do expect the MONDian influence to become even more important (compared

to a GR scenario with the same background cosmology). Encouraged by the MOND simulations

discussed in Ref. [176], we shall stick to the assumption that both shapes and relative densities of

filaments are similar to theΛCDM case when considering a universe made out of baryonic matter

only, thus keeping the choiceδ = 20.

In order to calculate the intergalactic mean density and thenecessary angular diameter dis-

tances for lensing, we shall use the flatµHDM cosmology in Eq. (3.26) introduced in Sec. 3.1.3.

To investigate whether the such derived results are sensitive to the background assumption, we will

also consider the less realistic flat minimal-matter cosmology given by Eq. (3.25). Furthermore,

the model-dependent intergalactic mean densityρ0 is calculated according to

ρ0 = Ωmρc(1+ zl)
3, (3.59)

whereρc = 3H2
0/8πG is the critical density andzl is the lens redshift, i.e. the filament’s redshift.

Concerning the framework of GR, we shall use a flatΛCDM cosmology withΩm = 0.3 and

9Note that the occurrence of filamentary structures is a generic feature of gravitational collapse from a Gaussian random
field which does not depend on the specific form of the law of gravity.
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Figure 3.12: Density profileρ(r) (top left), radial evolutiong(r) of the total gravitational acceleration (top
right), deflection angle ˆα(y) (bottom left) and convergenceκ(y) (bottom right; κ = γ = (1− A−1)/2) in GR
(dashed) and TeVeS (solid) gravity for the uniform filament cylinder model whose axis is inclined by an
angleθ = 90◦ to the line of sight, assumingzl = 1, zs = 3 and the flatµHDM cosmology (3.26) in TeVeS.
The radius of the filament isRf = 2.5h−1Mpc and the overdensity within the filament is taken as 20 times
the mean densityρ0. Note that, for consistency, the Newtonian results are based on a flatΛCDM cosmology
with Ωm = 0.3 andΩΛ = 0.7.

ΩΛ = 0.7, which allows one to consistently compare the corresponding results to those obtained

in TeVeS.

3.3.3 A TheµHDM scenario

Using the TeVeS cosmology specified in (3.26) and considering a filament which is inclined by

an angleθ = 90◦ to the line of sight, both the Newtonian and the MONDian deflection angle as

well as the corresponding convergence are plotted in the bottom left and bottom right panel of

Fig. 3.12, with the filament placed at redshiftzl = 1 and background sources atzs = 3. Whereas

the Newtonian signal is rather small,κN . 10−3, the filament can create a convergence on the
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Figure 3.13:Same as Fig. 3.12, but now assuming the flat minimal-matter cosmology Eq. (3.25) in TeVeS.

order ofκ ∼ 0.01 in TeVeS. This even remains true in the outer regions, where κN = 0, if we take

into account that it can have other orientations, i.e. a different inclination angleθ. For example,

a nearly end-on filament withθ = 10◦ has a lensing power 6 times larger than that of a face-on

filament, i.e.θ = 90◦.

Using Eq. (3.46), we therefore infer that a single TeVeS filament may generate a shear signal

which is on the same order as the convergence,γ ∼ 0.01, as well as a magnification bias at a 2%

level, A−1 ∼ 1.02. Additionally, we present the densityρ(r) and the radial evolution of the total

gravitational accelerationg(r) in the top left and top right panel of Fig. 3.12, respectively. Note

again that the GR results are based on a flatΛCDM cosmology withΩm = 0.3 andΩΛ = 0.7 for

consistency.
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3.3.3 B The baryons-only scenario

Now let us switch to the minimal-matter background given by (3.25). Keeping all remaining

parameters exactly the same as in the last section, the corresponding results are presented in Fig.

3.13. Although the convergence is slightly smaller than in theµHDM case (roughly by a factor

of 1.5− 2), we find that also in this case, single filamentary structures are capable of producing a

lensing signal which is of the same order,κ ∼ γ ∼ 0.01. Again, this is even true outside the “edges”

of the filament’s projected matter density, accounting for the fact that the inclination angleθ may

vary, 0◦ ≤ θ ≤ 90◦.

3.3.4 Oscillating density model

Matter density fluctuations are steadily present throughout the universe. Thus, as a more realistic

approach, we shall use a fluctuating density profile to describe a filament and its surrounding area

including voids, i.e. regions in the universe where the local matter density is below the intergalactic

mean density. To keep our analysis on a simple level, let us write the density fluctuation as (r still

denotes radial coordinate in cylindrical coordinates)

δ(r) =




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, (3.60)

whereδ(r) denotes the density contrast defined in (3.58),δ0 = 4 is the density fluctuation ampli-

tude (this value ensures a positive overall matter density)andRf = 2.5h−1Mpc again the filament’s

characteristic radius. Multiplying with the mean densityρ0 and integrating along the radial direc-

tion, we find that the mass per unit length enclosed by an infinite cylinder of radiusr reads as

(Note that we neglect the contribution due to the mean density background)

M(r)
L
=











































2ρ0δ0R2
f

π

(

1− cos

(

πr
Rf

))

, r < 2Rf

0, r ≥ 2Rf

, (3.61)
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Figure 3.14: Density profileρ(r) (top left), radial evolutiong(r) of the total gravitational acceleration (top
right), deflection angle ˆα(y) (bottom left) and convergenceκ(y) (bottom right;κ = γ = (1− A−1)/2) in GR
(dashed) and TeVeS (solid) gravity for the oscillating density model given by Eq. (3.60) (θ = 90◦), assuming
δ0 = 4, Rf = 2.5h−1Mpc, zl = 1, zs = 3 and the flatµHDM cosmology (3.26) in TeVeS. Note that, for
consistency, the Newtonian results are based on a flatΛCDM cosmology withΩm = 0.3 andΩΛ = 0.7.

whereρ0 is the mean intergalactic matter density given by Eq. (3.59). From Eq. (3.61), we directly

see that the Newtonian gravitational acceleration in this case is

gN(r) =
GM(r)

2πL
1
r
. (3.62)

Using Eqs. (3.44), (3.53) and (3.62), we are now able to numerically calculate the lensing prop-

erties of this configuration. Choosing lens and source redshift again aszl = 1 andzs = 3, re-

spectively, and assuming the previously used cosmologicalbackground models (see Sec. 3.3.3),

the resulting deflection angle as well as the convergence areshown in bottom panel of Fig. 3.14

(flat µHDM cosmology) and 3.15 (flat minimal-matter cosmology), assumingθ = 90◦. Here the

occurrence of negativeκ-values simply reflects the fact that our model (3.60) generates a local
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Figure 3.15:Same as Fig. 3.14, but now assuming the flat minimal-matter cosmology Eq. (3.25) in TeVeS.

underdensity, 1+ δ(r) < 1, with the overall matter densityρ being strictly non-negative at any

radius. Compared to the Newtonian case whereκN . 10−4, we again find that a face-on TeVeS

filament may cause a significantly larger lensing signal, which is now on the order ofκ ∼ γ ∼ 10−3

within both TeVeS cosmologies. As the results of theµHDM and the minimal-matter cosmology

approximately differ by a factor 1.5−2 just as in Sec. 3.3.3, the order-of-magnitude lensing effects

caused by TeVeS filaments are also in this case more or less cosmologically model-independent.

Close to the filament’s axis, whereκ ∼ 4 × 10−3, one can actually have a lensing signal

κ = γ = 0.01 assuming that the inclination angle is small,θ . 20◦. Although such angles

correspond to rather special configurations, we may conclude that also for our simple oscillation

model, single TeVeS filaments potentially generate a lensing signal∼ 0.01, which is similar to our

result in Sec. 3.3.3. However, note that the above discussion is based upon the choice of (3.60)

andδ0 = 4. Considering a higher overdensity along its axis, even a face-on filament described by

a similar fluctuating profile could easily create a shear fieldγ ∼ 0.01 fory . Rf .
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Table 3.3: Parameters of the superimposed filaments in Sec. 3.3.5

Plane PA [◦] incl. [◦] b Shift from origin [kpc]c Redshiftz

2 90 12 (0,−150) 0.25
3 45 45 (600, 0) 0.30

b Inclination of the filament’s axis to the line of sight.
c Shift of the filament’s projection in the corresponding redshift plane.

3.3.5 Superimposing filaments with other objects

To demonstrate the contribution of filamentary structures to the lensing map of other objects, e.g.

galaxy clusters, we superimpose two differently orientated filaments with a toy cluster along the

line of sight, assuming the previously introducedµHDM cosmology and different redshifts for

each component. If all objects are sufficiently far away from each other (& 100Mpc), we may

approximately treat them as isolated lenses at a certain redshift slice, i.e. the corresponding de-

flection angles can be calculated separately10. Thus, we may resort to the well-known multiplane

lens equation [129, 177]:

η =
Ds

D1
ξ1 −

n
∑

i=1

Disα̂i(ξi ), (3.63)

wheren is the number of lens planes,Di j corresponds to the angular diameter distance between

the i-th and thej-th plane andξi is recursively given by

ξi =
Di

D1
ξ1 −

i−1
∑

j=1

D ji α̂ j(ξ j), 2 ≤ i ≤ n. (3.64)

Comparing Eq. (3.63) to the lens equation for a single lens plane, we identify the total deflection

angle as

α̂tot(ξ1) = α̂1(ξ1) +
n

∑

i=2

Dis

D1s
α̂i(ξi) = α̂c + α̂ f . (3.65)

Hereα̂c andα̂ f are the deflection angle of an isolated cluster atz1 and an additional contribution

due to the superimposed filaments, respectively. Analog to the case of a single plane, further

lensing quantities such as the total convergence and the total shear can be calculated from Eq.

(3.65), using the general relations introduced in Sec. 3.1.For simplicity, we shall assume that the

10Note that in general, one would have to solve the full nonlinear TeVeS scalar field equation, which is beyond the scope
of the present analysis.
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Figure 3.16: Superposition of two filaments with a toy cluster along the line of sight: Shown are the
cluster’s convergence mapκc in absence of any filamentary structures along the line of sight (top left) and
the filaments’ contribution∆κ = κtot−κc to the total convergence (top right) and as well as to the components
of the reduced shear,∆g1 = γtot,1/(1−κtot)−γc,1/(1−κc) and∆g2 = γtot,2/(1−κtot)−γc,2/(1−κc), respectively
(bottom panel).

cluster’s TeVeS potential follows the “quasi-isothermal”profile given in Ref. [93]:

Φ(r ) = v2 log

√

1+
|r − r0|2

p2
, (3.66)

with v being the asymptotic circular velocity,p a scale length andr0 the center’s position.

Concerning the numerical setup, we setv2 = 2 × 106km2 s−2 and p = 200kpc, fixing the

cluster’s redshift toz1 = 0.2. Furthermore, we choose the uniform filament model discussed in

Sec. 3.3.2 and assume that filaments have a constant overdensity of δ = 20 as well as the same

characteristic radiusRf = 2.5h−1Mpc. While the cluster is centered at the origin (ξx = ξy = 0),

the two filaments are set up according to the parameters givenin Table 3.3. Finally, we place the

source plane at a redshift ofzs = 1. Note that this specific setting corresponds to a more realistic

lensing configuration compared to our order-of-magnitude analysis in the previous sections, where

our choice is again motivated by results based on aΛCDM universe.

From the top right panel of Fig. 3.16, we see that the filaments’ contribution to the total
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3.3. Gravitational lensing by intercluster filaments

convergence map,∆κ = κtot− κc (κc is the cluster’s convergence map in absence of any filamentary

structures along the line of sight) is comparable to our previous findings, with the signal again

being on the order of 0.01. Also, note the distortion effects caused by the cluster and the peak close

to the region where the two filaments overlap. Obviously, thecontribution pattern depends on the

actual configuration as well as on the type and amount of the considered objects along the line

of sight and can generally be quite complex. Additionally, we present the changes in the reduced

shear components,∆g1 = γtot,1/(1− κtot) − γc,1/(1− κc) and∆g2 = γtot,2/(1− κtot) − γc,2/(1− κc),

due to the filaments’ presence in the bottom panel of Fig. 3.16.

At this point, we should emphasize that we have considered the impact of filamentary struc-

tures alone. Depending on their particular position along the line of sight, additional (foreground)

objects such as galaxies, galaxy clusters or voids might locally contribute on a comparable level or

even exceed the signal caused by filaments. Of course, this further complicates the interpretation

of the corresponding lens mapping and we conclude that extracting the filaments’ contribution can

generally pose quite a challenge.

3.3.6 Discussion

Regardless of the actual used cosmological background, we have shown that TeVeS filaments

can account for quite a substantial contribution to the weaklensing convergence and shear field,

κ ∼ γ ∼ 0.01, as well as to the amplification bias,A−1 ∼ 1.02. This is even true outside, but

close (y ∼ 2Rf ) to the projected “edges” of the filament’s matter density, taking into account that

the filamentary structures may be inclined to the line of sight by rather small angles (θ . 20◦).

Additionally, we have demonstrated the impact of filaments onto the convergence map of other

objects by considering superposition with a toy cluster along the line of sight. Again, our results

have shown an additional contribution comparable to that ofa single isolated filament and that the

contribution pattern of filaments can be generally quite complex 11.

Although our analysis is mainly of theoretical interest, the above result points to an interesting

possibility concerning recent measurements of weak lensing shear maps. For instance, the weak

shear signal in the “dark matter peak” of Abell 520 [169] is roughly at a level of 0.02, which is

comparable to what filaments could produce in TeVeS, but not in GR (also cf. [179]). Therefore,

11Here we have considered the lensing signal generated by single filaments alone. Simulating the cosmic web in a
standardΛCDM cosmology, [178] have found a shear signalγ ∼ 0.01− 0.02 along filamentary structures, which
seems quite similar to what TeVeS can do. Note, however, thatthis signal is entirely dominated by the simulation’s
galaxy clusters, with the filament’s signal being much smaller, approximately on the order of 10−4 − 103.
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we conclude that filamentary structures might actually be able to cause such anomalous lensing

signals within the modified framework.

In principle, the predicted difference in the weak lensing signal could also be used to test the

viability of modified gravity. As several attempts to detectfilaments by means of weak lensing

methods have failed so far, e.g. the analysis of Abell 220 and223 [180], this might already be a first

hint to possible problems for such modifications. On the other hand, shear signals aroundγ ∼ 0.01

are still rather small to be certainly detected by today’s weak lensing observations, and lacking

N-body structure formation simulations in TeVeS, we cannot even be sure about how filaments

form and how they look like in a MONDian universe compared to the CDM case. Another point

of concern is whether the treatment within the nonrelativistic limit of TeVeS provides a good

description at the scales we have considered here. Previouswork has shown that TeVeS vector

perturbations have a significant impact on the evolution of large-scale structure [86, 87], which

could also be important for a discussion of filaments. Clearly, more investigation is needed to gain

a better understanding about the impact of filamentary structures.

3.4 Constraining neutrino dark matter with cluster lenses

3.4.1 Massive sterile neutrinos: A possible remedy for TeVeS

As we have discussed in Sec. 3.1.3, massive ordinary neutrinos with a mass around 2eV provide

an interesting candidate for the missing energy-density inTeVeS and the question of the viability

of the assumed neutrino mass is soon expected to be answered by the upcoming results of the KA-

TRIN experiment. Nevertheless, the rather unsatisfactoryresults of this solution on large scales,

especially for the CMB anisotropy power spectrum (aΛCDM model provides a better fit to the

data), and problems within galaxy groups [80] have led to deem the hypothesis of very massive

ordinary neutrinos unattractive. Alternatively, the required additional matter could be provided in

the form of (right-handed) sterile neutrinos (SNs) which are motivated by theoretical considera-

tions in particle physics (e.g., see Refs. [181–183] and references therein) and offer an elegant

way to explain the small masses of active neutrinos via theseesaw mechanism12 [184–186]. The

main motivation for considering the existence of one or possibly more generations of SNs comes

12The seesaw mechanism is a possibility to generate neutrino masses. In its simplest form, the standard model La-
grangian is extended by a combination of Dirac and Majorana mass terms, with the left-handed Majorana mass set
to zero and the right-handed Majorana mass to a large value which is typically associated with some grand unifica-
tion scale. As a consequence of this construction, the mass matrix, whose eigenvalues describe the physical neutrino
masses, gives rise to a very light left-handed neutrino and avery heavy right-handed one.
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from the combined data of different neutrino oscillation experiments: Since the flavor eigenstates

of neutrinos are different from their corresponding mass eigenstates, the principles of quantum

mechanics dictate that there is a probability of finding a neutrino with an initially given flavor in

another flavor state at a later time, i.e. neutrinos may oscillate into a different flavor state. This

behavior has been observed in several experiments based on the detection of solar and atmospheric

neutrinos, and provides firm evidence for the fact that neutrinos are not massless particles. Fur-

thermore, these experiments allow one to determine the squared mass differences∆m2 between

distinct mass eigenstates. If there were only three generations of ordinary neutrinos, then there

should only exist two independent∆m2’s. However, results of more recent laboratory-based ex-

periments such as the Liquid Scintillator Neutrino Detector seem to disagree with this picture as

their interpretation requires at least three independent∆m2’s. The problem can be alleviated by

adding SNs to the standard model which may oscillate into ordinary neutrinos and vice versa. As

experimental effort into this direction has just begun and stringent constraints on the properties of

SNs do not yet exist, there is currently great freedom in their theoretical description.

Returning to the field of gravitation and cosmology, the conceptual advantage of such an ap-

proach lies in combining the success of modified gravity on small scales with new physics in a

sector of the standard model which is known to be incomplete [187] and in need of revision13.

Motivated by a possible interpretation of the MiniBooNE experiment [188], Angus [189] has sug-

gested to use a single light species of SNs with a mass of approximately 11eV and investigated

its consequences. If such SNs decouple while they are relativistic and in thermal equilibrium,

one should obtain both a background evolution and a CMB anisotropy power spectrum which are

basically indistinguishable from a standardΛCDM cosmology14, while at the same time, this

additional hot dark matter (HDM) component may give rise to acorrect prediction of the linear

matter power spectrum and represents a suitable candidate for the missing mass in galaxy clusters

without spoiling MONDian dynamics on galactic scales [190]. As for the nonlinear regime of

structure formation, the situation is still unclear. Because of the more sophisticated mathematical

structure of the nonlinear TeVeS field equations (or that of related theories) as opposed to those

13Without resorting to a modification of gravity, SNs in the keVmass range still provide a viable candidate for all the
dark matter in the universe [183]. In this case, however, onemay expect similar fine-tuning issues on small scales as
in current CDM models.

14Although this has not been explicitly calculated, one can use the following argument: For common choices of the
TeVeS parameters, the impact of perturbations due to the extra fields is small at early times, i.e. those relevant for the
CMB. Thus the theory exhibits a GR-like behavior, which allows to directly adopt the results of Angus for TeVeS.
This is further supported by the nearly identical results for the CMB power spectrum in TeVeS [86] and GR [189],
assuming three active neutrinos with a mass around 2eV. However, it is still an open question whether secondary
anisotropies such as the thermal or kinetic Sunyaev-Zel’dovich effects leave a different signature than inΛCDM.
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of GR, there seems currently no way to gain reliable information about the nonlinear evolution.

This difficulty is somewhat reflected by the fact that the resulting field equations in the quasistatic,

nonrelativistic limit typically remain highly nonlinear.Assuming anad hocmodification of the

original MOND formula Eq. (2.33), however, a first simplifiedattempt into this direction is dis-

cussed in Ref. [191].

It is noteworthy that TeVeS or TeVeS-like theories in combination with sufficiently abundant

massive neutrinos provide the most consistent relativistic MOND framework presented in the lit-

erature so far15; nevertheless, there are still innumerable aspects which need to be tested further.

As we have discussed in Sec. 3.2.1, one possibility to employthe tool of gravitational lensing is to

test the theory with the help of multiple-image galaxy lens systems. Another way of challenging

the theory is offered by weak galaxy-galaxy lensing. Using data from the Red-Sequence Cluster

Survey and the Sloan Digital Sky Survey (SDSS), it has been found that the most luminous galax-

ies (& 1011L⊙) would require a substantial fraction of nonbaryonic matter [192]. Although this

result needs to be confirmed by larger data sets before a firm conclusion can be drawn, it might

hint towards a problem with the original MOND idea on galactic scales. Again, SNs with a mass

around 11eV could provide a remedy as they should be able to cluster densely enough in such

massive systems [190]. However, it remains to be seen in detail whether such an approach can

explain observations. Summarizing the above, we note that the assumption of 11eV SNs has the

potential to remedy the problems of TeVeS-like theories on many different scales and therefore

merits further investigation.

In the following, we suggest to test TeVeS and the massive SN hypothesis in the context of

complex lens systems which are typically present in the central regions of galaxy clusters. A pre-

vious analysis [193] already revealed that such an environment can put stringent constraints on the

distribution and plausibility of the needed dark neutrino component, thus providing an excellent

testbed for our purposes. Generally, the advantage of galaxy clusters lies in the independent esti-

mates of baryonic matter, inferred from observed x-ray and stellar luminosities, and of the system’s

total mass distribution based on a combination of weak and strong gravitational lensing. Being in-

sensitive to the dynamical state of the deflecting mass, the latter techniques are particularly suited

to constrain the properties of the dark component. In contrast to weak lensing estimates, strong

lensing is basically free of statistical uncertainties andoffers a unique and robust probe of the mat-

15Note that there are certain theories which aim at reproducing MOND and large-scale observations without any addi-
tional dark matter [40], but it is currently unknown whethersuch models naturally give rise to the observed properties
of galaxy clusters.
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ter distribution on scales. 100kpc. Here we shall use strong lensing to further test the viability

of 11eV SNs. Unlike conventional CDM, light SNs are subject to strong phase-space bounds set

by the Tremaine-Gunn limit [194], which allows one to check cluster lens models inferred within

the modified framework for consistency. Since this limit prevents SNs from clustering into dense

clumps, galaxy cluster lenses with a considerable amount ofdark substructure provide an ideal

target for our intentions. As a first example, we shall study the galaxy cluster Abell 2390 (A2390)

with its notorious straight arc, and investigate whether itis possible to reproduce this particular

lens feature in TeVeS. Again, we shall restrict ourselves toweak fields and quasistatic systems16,

which allows one to make use of the relations presented in Sec. 3.1. Based on the assumption of

a single species of 11eV SNs [189, 190], we shall further use aflat cosmological model with

Ωm = Ωb + Ων = 0.29, ΩΛ = 0.71, h = 0.7 (3.67)

to calculate angular diameter distances in the context of gravitational lensing. Note that this gives

a background which is virtually indistinguishable from a standardΛCDM model. A particular

choice for the free functionµB(y), suitable for the gravitational lensing analysis of A2390, will be

given and discussed in Sec. 3.4.4.

The following sections are structured as follows: Startingwith an observational summary of

the galaxy cluster A2390 and its pronounced straight arc in Sec. 3.4.3, we highlight why this sys-

tem provides an excellent candidate for our intentions. Continuing with the setup for a simplified

density model of A2390 in Sec. 3.4.4, we discuss results for quasiequilibrium configurations in

Sec. 3.4.5. Based on the latter, we outline a systematic approach to cluster lenses in TeVeS, and

describe a lens model for the straight arc in Sec. 3.4.6. Finally, we conclude in Sec. 3.4.7. For

clarity, several technical and numerical details are givenin the appendix.

3.4.2 The Tremaine-Gunn bound

In the following, we shall discuss why light (ordinary or sterile) neutrinos cannot cluster into

arbitrarily dense clumps. If one assumes that such neutrinos were thermally produced in the early

universe and account for the missing mass in galaxy clusters, this fact can then be used to place a

lower bound on the neutrino mass, which is known as the Tremaine-Gunn bound [194]. At early

times, when temperatures are sufficiently large such that one may neglect the particles’ rest mass,

16Note a caveat here: The present approximation ignores possible contributions arising from perturbations of the vector
field Aµ which could have a significant impact on cluster scales. Thisissue is further discussed in Sec. 3.4.7.
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the neutrinos are in thermal equilibrium and their distribution is basically given by the Fermi-

Dirac distribution of a massless particle (here we considera single neutrino species and ignore

perturbations),

f (p)d3p =
gν

(2π)3

(

ep/T + 1
)−1

d3p, (3.68)

where we have used natural units with~ = c = 1 = κB (κB is the Boltzmann constant),T denotes

the temperature andgν is the degeneracy factor. As the universe cools down, the neutrinos eventu-

ally decouple from the rest of the cosmic inventory (at around T ∼ 1MeV) and their Fermi-Dirac

distribution freezes in. Since both their momenta and temperature scale asa−1 thereafter, their

distribution today is still given by Eq. (3.68) - not by the equilibrium distribution of nonrelativistic

particles - because the phase space distribution was preserved after decoupling. Furthermore, their

present temperature reads

Tν =

(

4
11

)1/3

Tγ ≈ 1.95K, (3.69)

whereTγ is the observed temperature of the CMB today and the prefactor results from the fact

that the additional heating due to electron-positron annihilation occurred after neutrino decoupling.

The argument presented in Ref. [194] is now the following: Because the neutrinos are noninteract-

ing, the density of a fluid element in phase space is conserveddue to Liouville’s theorem. There-

fore, the maximum fine-grained phase-space density is conserved. As a consequence, the maxi-

mum coarse-grained phase-space density must not exceed that of the fine-grained one. From Eq.

(3.68), we find that the maximum fine-grained phase-space density is gν/2(2π)3 which provides

a limit for any bound neutrino system found today. Not that this phase-space bound corresponds

to half of the Pauli limit. If these systems resemble isothermal gas spheres, their velocity distri-

bution is Maxwellian and the maximum coarse-grained phase-space density isρ0m−4
ν (2π)−3/2σ−3,

whereρ0 is the central density,mν denotes the neutrino mass andσ is the one-dimensional velocity

dispersion. Thus we end up with

m4
ν > 2

(2π)3/2ρ0

gνσ3
. (3.70)

Alternatively, if one assumes a given value formν, Eq. (3.70) can be used to constrain the max-

imally allowed density or the velocity dispersion. Finally, note that the argument we have pre-

sented here would also work for any hypothetical Maxwell-Boltzmann particles. It does not work

for bosons because their equilibrium phase-space density does not have a maximum.
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3.4.3 Observations of the galaxy cluster A2390

3.4.3 A X-ray gas and member galaxies of A2390

The galaxy cluster A2390 at redshiftz = 0.23 [195, 196] is one of the richest and most luminous

clusters known in the literature. Several interesting properties, e.g. the large abundance of lensing

arcs and arclets [197], an elongated galaxy distribution [198] and its large velocity dispersion

[199], have made the analysis of this system particularly attractive. In the context of GR, A2390

has been subject to extensive study by means of different techniques including virial (e.g., Ref.

[200]), x-ray [201–204], redshift-space caustic [205] andboth weak [206–210] and strong [211–

214] lensing studies.

Observations with CHANDRA exhibit a very concentrated and highly peaked x-ray emission,

indicating a strong cooling flow which is centered on cluster’s central cD galaxy [202]. On large

scales, the x-ray morphology has been found to be strongly elliptical with an overall position angle

(PA) comparable to the main cluster direction in the optical(PA = 133◦) [197]. Here and below,

the PA is defined as the angular offset of the major axis with respect to the north-south direction,

being measured counterclockwise. The data provide evidence for an elongated x-ray morphology

in the very central part, and suggest the existence of a substructure in the cluster gas located

roughly 40′′ (∼ 147kpc) from the cluster center. The CHANDRA image further reveals large-

scale cavities in the x-ray surface brightness extending approximately 400kpc from the center,

where a sharp break in the surface brightness profile is visible. As observed in several other

clusters [215], such cavities are likely produced by bubbles of radio plasma emitted by the central

active galactic nucleus. Despite these irregularities andthe appearance of a secondary gas peak,

however, the x-ray observations indicate that the system asa whole is relatively regular and, to

good approximation, dynamically relaxed. Thus, if one excludes the cluster’s central part, the

overall assumption of hydrostatic equilibrium appears as areasonable one.

There are also several studies of individual galaxies within the cluster. For instance, the prop-

erties of the central cD galaxy have been examined using optical [216], infrared and radio ob-

servations [217]. A large sample of 216 confirmed cluster members based on photometric and

spectroscopic information is presented in Ref. [218]. Morerecent observations include a selec-

tion of 48 early-type member galaxies which has been used to investigate their evolutionary status

[219]. We note that the available observational data will beimportant for building a realistic cluster

model in TeVeS.
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Figure 3.17:A small section of an HST/WFPC2 observation of A2390 shows the impressive straight arc on
the left side. Characterized by two breaks along its light profile (present in other observed bands as well),
the arc can be decomposed into three segments labeledA, B andC, respectively [197]. Also visible are the
galaxy 2592, which is located adjacent to the arc, as well as the galaxy 6666 (see Table 3.4).

3.4.3 B The straight arc of A2390

Among several arcs and arclets, the cluster A2390 exhibits an unusual, strongly lensed straight

arc (see Fig. 3.17) which is located approximately 38′′ (∼ 140kpc) from the central cD galaxy

[197]. This particular arc is unusual in the sense that, as itis both located in the outer core region

and adjacent to a lens galaxy lying in between arc and cD galaxy, it would be expected to appear

curved with respect to the massive cluster center or the closest galaxy. Along its light profile, the

arc further exhibits two breaks in surface brightness, symmetrically located relative to the closest

galaxy’s center. Spectroscopic analysis of the arc revealed that it is actually the joint image of two

different sources, one at redshiftz = 0.913 (corresponding toB − C in Fig. 3.17) [197] and the

other atz = 1.033 (corresponding toA) [220]. In addition, ISOCAM observations of the image

segmentB−C indicate the presence of an active star forming region and support the scenario of
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two interacting source galaxies atz= 0.913 [221]. Nevertheless, the found straightness requires a

rather special lens configuration (also see Sec. 3.4.5 A).

Apart from the system A2390, there also exist other detections of (relatively) straight images

which are typically well modeled from the visible distribution of bright galaxies helped by the cen-

tral cluster potential [222–224]. As already pointed out inthe literature [211], a similar approach

for A2390 within the usual framework of CDM would require extremely high mass-to-light ratios

for individual galaxies, and thus yields a rather unrealistic scenario. In recent years, several authors

have considered possible lens models which aim at reproducing such a straight image, and a first

attempt was performed in Ref. [197]. For instance, the fold caustic of a single, highly elliptical

cluster lens can be used to create a straight image [212]. Such a model gives a result comparable

with the arc’s morphology, but fails to explain infrared observations. Adopting a very large ellip-

ticity of the central cluster profile, it was demonstrated how a cusp model may produce the desired

elongated image morphology [214]; however, this solution seems incompatible with other lensing

constraints of the system. Building on the existence of x-ray substructure in the arc’s vicinity, the

authors of Ref. [213] employed a two-component model using an elliptical cluster center with axis

ratio b/a = 0.7 to explain the arc. Despite a slight deviation at∼ 1σ significance, the obtained

x-ray temperature profile and the projected mass within 38′′ (∼ 140kpc) appear consistent with

those derived from the observed x-ray luminosity [202].

It seems obvious that any suitable model needs substantial fine-tuning to form the necessary

lens configuration for straight images. As a consequence, all of these models are extremely sensi-

tive and unstable with respect to perturbations due to the closest galaxy or additional substructure

in the intracluster medium (ICM). While this does not pose a problemper se, it is nevertheless

interesting to look for models with improved stability. From a general analysis on how to form

straight images [211], it has been concluded that the most likely configuration involves a dark mir-

ror component of the nearest galaxy located on the opposite side of the arc, counterbalancing the

effect of the visible galaxy. With the help of the central cluster profile, this yields a so-calledbeak-

to-beak modelwhich explains the observed straight arc and, if realized with such a “dark galaxy,”

is sufficiently stable against local perturbations. Alternatively, there is also the possibility of alips

catastrophe[211], i.e. a lips caustic just emerged or just about to emerge in three-dimensional

caustic space (for a demonstration of a lips catastrophe in A370 see Ref. [225]). Since such a

model requires the lensing convergence - equal to the projected matter density in GR only - to

peak at the arc’s position, however, it is not supported by observations.
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3.4.3 C A challenge for TeVeS and hot dark matter

Concerning the situation in TeVeS, we may already state thatthe “dark galaxy” approach, i.e.

a nonluminous matter distribution of galactic size, cannotbe achieved with our choice of 11eV

SN HDM. Assuming that these particles are relativistic and thermalized at the time of decoupling

(just like for active neutrinos around a temperature of several MeV which is much larger than

the considered mass)17, their Fermi-Dirac distribution freezes in, and their phase-space density is

constrained by the Tremaine-Gunn (TG) limit [194]. For instance, a HDM galaxy in TeVeS would

have a typical phase-space occupation number (we neglect factors ofπ and order unity)

~
3dN

d3xd3p
∼ M

mν

(

~

mνσrC

)3

∼
a2

0~
3

Gm4
νσ

5

∼ 103
( mν
11eV

)−4
(

σ

100km s−1

)−5

,

(3.71)

which exceeds unity, and thus the TG limit for thermal relics, unless the HDM massmν is much

larger than 11eV (e.g.,∼ 1keV warm dark matter) and/or the structure’s velocity dispersionσ ≫

100km s−1, hence above the galactic scale. The estimate given in Eq. (3.71) assumes that the

structure’s dense core is subject to the Newtonian regime (µB ∼ 1), which gives a core sizerC ∼

GM/σ2, and the total massM ∼ σ4/Ga0 can be well approximated within the “deep-MOND”

limit (µB ∼
√

y). Also note that moving to masses significantly larger thanmν = 11eV would

spoil the dynamics of MOND in galaxies and thus eliminate theuse of such HDM in the first place

[190].

Therefore, a combination of HDM and modified gravity may, in principle, face a challenge in

order to create observed effects of dark substructure. The TG phase-space bound not onlyapplies

to HDM substructure, but also to its global distribution within the cluster, which presents a well-

posed and constraining general test of TeVeS or similar theories supplemented by an additional

HDM component. As other realistic lens models for the straight arc [213] also suggest a substantial

amount of dark substructure, a basic question is whether there are TeVeS lens models which are

compatible with the TG bound for 11eV SNs. Before we can address this point, however, we

need a reliable way of modeling the straight arc in TeVeS. An approach into this direction will be

discussed below.
17Note that whether or not SNs decouple whilst in thermal equilibrium depends on the assumed model, production

mechanism and parameters, e.g. the mixing to active neutrinos. Since the physical processes in the early universe
are yet unknown, the relic distribution of SNs is quite uncertain. Here we choose a thermal distribution to obtain the
desired cosmological properties as discussed in Refs. [189, 190].
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3.4. Constraining neutrino dark matter with cluster lenses

In preparation for the following sections, we introduce theterminology and procedure used

for two different kinds of lens configurations in our analysis:

Quasiequilibrium configurations Here we consider configurations which are based on the as-

sumption of hydrostatic equilibrium. Both the cluster gas and the (SN) HDM component are mod-

eled by symmetric, central density distributions, the latter having a maximum phase-space density

set by the TG limit which is inferred in a self-consistent wayby considering the equation of state

for a partially degenerate neutrino gas [81, 190] (see App. A). In addition, we include substruc-

ture in the form of visible galaxies and further allow for perturbations of the central distribution

(gas+ HDM) which are modeled by the same density profile as the central one (corresponding to

structure of equal scale). We then check whether such configurations can produce the observed

straight image in TeVeS.

Nonequilibrium configurations In this case, we allow for any HDM distribution which is ca-

pable of explaining the straight arc. This includes complexdistributions with multipeaked mass

densities and concentrations of different scale. Although we outline a general approach to lens

models in TeVeS, we restrict our analysis to a bimodal configuration based on a model in GR (cf.

Table 3.5 below) whose components exhibit dispersionsσ & 500km s−1 and appear consistent

with the crude estimate of Eq. (3.71), i.e.σ & 400km s−1(mν/11eV)4/5. Approximately treating

each density peak as a symmetric equilibrium distribution of SNs, we investigate whether they

satisfy the TG phase-space limit formν = 11eV. For simplicity, we do not account for baryonic

substructure (galaxies) in this context.

3.4.4 Quasiequilibrium model of A2390

Because of the nonlinear relation of the TeVeS scalar field tothe underlying matter distribution, we

cannot work with projected quantities, but need to perform our calculations in three dimensions.

This significantly complicates the lensing analysis of A2390 and requires knowledge about the

cluster’s three-dimensional matter density. A first approach to our problem is to consider cluster

configurations which are based on the assumption of hydrostatic equilibrium.

3.4.4 A Distribution of baryonic material

Using available data of x-ray gas [202, 204] and individual galaxies [219], we have modeled the

distribution of baryons in A2390. Here we shall briefly present the results which are relevant for

the analysis in Sec. 3.4.5. A detailed description of our procedure can be found in App. B.
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Table 3.4: Positions, line-of-sight configurations and masses of individual galaxy components for the density model of A2390: At the cluster’s redshift (z= 0.23), an
angular scale of 1′′ corresponds to approximately 3.7kpc.

Line-of-sight configuration Projected stellar massM(< 1.5′′)
Galaxy IDd θx θy ξx ξy A B M1 M2

[′′] [kpc] [kpc] [1011M⊙]

#2180 −48.21 −16.98 −178.04 −62.71 0 +850 2.02 1.60
#2592 −34.29 13.32 −126.63 49.19 0 +850 3.51 4.66
#2619 −13.04 28.80 −48.16 106.36 0 +850 1.09 0.49
#2626 −34.62 29.86 −127.85 110.27 0 −850 1.40 0.79
#6666 −50.25 14.03 −185.57 51.81 0 −850 2.89 3.21

Substructuree −37 25 −137 92 - - - -
Center 0 0 0 0 - - - -

d Identifiers for galaxies are taken from Ref. [219].
e The given values roughly indicate the position of the x-ray substructure presented in Ref. [213].
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3.4. Constraining neutrino dark matter with cluster lenses

Figure 3.18: TeVeS equilibrium configuration of 11eV sterile neutrinos in A2390: The figure shows the
calculated density distribution of neutrinos (dashed line), the analytic fit to this density using the profile
specified in Eq. (3.78) (solid line) and the central baryonicmatter distribution derived from x-ray observa-
tions (dotted line).

Figure 3.18 shows the density distribution inferred from x-ray observations with CHANDRA

(dotted line). In addition to this central profile, we consider the contribution of five massive early-

type galaxies which are located close to the straight arc. The masses of these galaxies are derived

following a twofold approach: The first estimate (denoted asM1) is based on a direct conversion

of observed luminosity to stellar mass while the second one (M2) uses a dynamical method. In

what follows, we shall consider both prescriptions and present results for the two different mass

estimates below. We further assume that all galaxies can be described by a spherical density profile

which is closely related to the Hernquist profile [139] for elliptical galaxies (see App. B.2). Using

the notation of Ref. [219], the basic properties of our models for the galactic components are

illustrated in Table 3.4.

3.4.4 B Adding massive neutrinos

As previously mentioned, TeVeS requires an additional matter component to consistently describe

observations of galaxy clusters. Assuming 11eV SNs within the original formulation of MOND,

the authors of Ref. [190] derived their corresponding equilibrium density and (radial) velocity

dispersion distributions for a sample of 30 galaxy groups and clusters, including the system A2390.
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3.4. Constraining neutrino dark matter with cluster lenses

Starting from the observed density and temperature of the ICM [204], ρx(r) andTx(r), respectively,

the assumption of hydrostatic equilibrium immediately allows one to determine the gravitational

field as a function of radius:

g(r) =
−κBTx(r)

wmpr

(

d logρx(r)
d log r

+
d log κBTx(r)

d log r

)

, (3.72)

whereκB is the Boltzmann constant,w ≈ 0.6 is the mean molecular weight andmp the mass of

the proton. The such derived result is typically accurate to∼ 10% if equilibrium is realized [204].

Using the above, one directly obtains the total enclosed MOND mass which is given by

M(r) =
r2g(r)µ̃(x)

G
, x =

g
a0
. (3.73)

Hereµ̃ corresponds to the MOND interpolating function defined in Eqs. (2.33) and (2.34). Note

that this is the only stage where the modification of gravity is involved. Once this function is

specified, Eq. (3.73) can be used to obtain the cluster’s total density distribution, which then

allows one to determine the contribution due to SNs by subtracting the known density of the ICM.

Considering the equation of state for a partially degenerate neutrino gas, the resulting SN density

ρν is then used to infer the associated radial velocity dispersion σν needed for equilibrium. A

detailed description of the actual calculation can be foundin App. A. To check whether the results

for ρν andσν are compatible with each other, one can exploit the TG phase-space constraint [194].

Assuming a Maxwellian velocity distribution, the maximally allowed densityρν,max for a given

value ofσν reads

ρν,max =
gν
2

m4
ν

(2π)3/2~3
σ3
ν, (3.74)

where the number of allowed helicity states is assumed asgν = 2 [190, 226] andmν = 11eV. For

the “simple” MOND interpolating function which is defined as

µ̃(x) =
x

1+ x
, (3.75)

it has been found that the calculated SN phase-space densityof all considered systems reaches

the TG limit in the central part (r . 20kpc for A2390) [190], meaning that the SNs acquire their

densest possible configuration in that region. If the equilibrium assumption is valid, this result

further implies that a small portion of the dynamical mass must be covered by the brightest cluster

galaxy. As for the cD galaxy of A2390 and its contribution in this context, we refer the reader to
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3.4. Constraining neutrino dark matter with cluster lenses

App. B.3.

In principle, we could directly adopt the SN density of A2390calculated in Ref. [190] for our

simple cluster model if we specified a TeVeS free functionµB which corresponds to the choice

Eq. (3.75) in MOND. For numerical reasons discussed in Ref. [50] and to maximize possible

MONDian effects, however, we assume a TeVeS free function of the following form:

µB(y) =

√
y

1+
√

y
, (3.76)

wherey is defined according to Eqs. (2.48) and (2.49). Apart from itssimplicity, Eq. (3.76) is close

to Bekenstein’s original choice of the free function [50], and thus allows one to derive the TeVeS

lens properties in a fully analytic way for certain configurations like, for example, spherically

symmetric lens models [92]. In the intermediate and low acceleration regime, which is typically

realized in galaxy clusters, the MONDian counterpart of Eq.(3.76) can be expressed as [43]

µ̃(x) =

√
1+ 4x− 1
√

1+ 4x+ 1
, (3.77)

which is known to yield a less favorable description for the rotation curves of spiral galaxies than

Eq. (3.75) as it enhances gravity too efficiently [227]. Inserting the above into Eq. (3.73), we

have repeated the analysis of Ref. [190] for A2390, and calculated the equilibrium SN density

distribution suitable for our cluster model in TeVeS. The resulting density profile is shown as a

dashed line in Fig. 3.18. Note that the apparent waviness is not a numerical artifact, but rather

emerges from using the data of Ref. [204] in Eq. (3.72). As thefree function Eq. (3.77) enhances

gravity more efficiently than Eq. (3.75), the SN density is notably decreased(cf. Fig. 2 of

Ref. [190]), with the effect becoming stronger for larger radii. In the center, however, there is

basically no change, indicating that the previous constraints due to the TG limit remain the same.

To simplify the input into a numerical solver, the obtained SN density can be well fit by a profile

of the following form:

ρ(r) =
ρ0

(1+ (r/r0)γ)1/4
, (3.78)

whereρ0 ∼ 5.5 × 107M⊙kpc−3, r0 ∼ 14kpc andγ ∼ 8.2. For comparison to the numerical result

(dashed line), the analytic fit (solid line) is also illustrated in Fig. 3.18.

Note that the actual choice of the free function, which fixes the equilibrium distribution of

SNs, will have no significant impact on the results for quasiequilibrium configurations presented
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3.4. Constraining neutrino dark matter with cluster lenses

in Sec. 3.4.5. While the main cluster potential will almost be the same - it is exactly the same in

case of spherical symmetry - for differentµB, only the effects of substructure, e.g. the contribution

of individual galaxies in A2390, should be affected by the particular form of the functionµB.

Therefore, our decision to use Eq. (3.76) will result in optimistic estimates of effects intrinsic to

the framework of TeVeS. Since we are interested in the regimeof strong lensing, however, we

expect these differences to be rather mild.

3.4.5 Quasiequilibrium lens configurations

As a first approach, we shall investigate the strong lensing properties of quasiequilibrium con-

figurations based upon several variations of the cluster model presented in Sec. 3.4.4. Although

these models do not provide a realistic description of the cluster’s core region, their study will

be extremely useful to explore intrinsic TeVeS effects and to see whether TeVeS offers alternative

mechanisms - different from those in GR - which can produce straight images. For the sake of

clarity, we discuss details on the used numerical tools and the basic simulation setup in App. C.

3.4.5 A Analysis of the TeVeS lensing maps

Considering the previously introduced equilibrium model of the cluster, we are still left with sub-

stantial freedom regarding the galaxies’ line-of-sight positions which are not constrained by ob-

servations and may vary over the cluster’s extent which we define by the model’s cutoff radius

R = 1Mpc introduced in App. B.1. Also, to account for nonsphericity of the cluster, we shall

allow an additional ellipticity for the central density distribution (x-ray and SNs) which is solely

modeled within the observed plane. Together with a respective PA, this gives a total of 7 free pa-

rameters for our simple model if we fix the galaxies’M/L ratios. As for the range of ellipticities,

we choose a maximum corresponding to an axis ratio ofb/a ∼ 0.7. Moving significantly beyond

this threshold would cause a severe mismatch to x-ray observations [202, 213], thus yielding a

rather unrealistic cluster description.

Modifications of the overall density profile along the line ofsight have already been studied in

Ref. [50]: Varying the lens’ extent between two extreme configurations, a disklike and a strongly

“cigar-shaped” lens, can cause changes of up to 10−20% in the lensing maps as well as the critical

curves. For realistic cluster models lying in a range between these extrema, however, this effect is

expected to be less pronounced, typically accounting for deviations on the order of a few percent.

Therefore, we shall ignore such modifications in this work. Also, since the straight arc’s sources
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Figure 3.19: TeVeS lensing maps for a quasiequilibrium configuration: Shown are the resulting convergenceκ (left panel), shear modulusγ (middle panel), and
critical curves (right panel) for a cluster model withe = 0.7, PA = 115◦, mass modelM1 and line-of-sight configurationB. The triangles indicate the observed
position of the straight arc.
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Figure 3.20: Same as Fig. 3.19, but assuming PA= 133◦ and mass modelM2.
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3.4. Constraining neutrino dark matter with cluster lenses

Figure 3.21: Left panel: The generated image contours (solid lines), resembling the observed luminosity
distribution of the straight arc, and the critical curves (dashed lines) for an equilibrium cluster model with
e = 0.7, PA= 133◦, mass modelM2 and line-of-sight configurationB. Right panel: The resulting source
distribution (solid lines) and lens caustics (dashed lines), where contours have been determined by averaging
the calculated source points onto a regular grid. The open contour lines are due to a cutoff of the mapped
image. In both panels, contours are in arbitrary units and chosen at equidistant levels.

are located close in redshift space (the corresponding distancesDs andD = DdDds/Ds only differ

by roughly 3%), we restrict ourselves to a single source plane for our analysis. Unless otherwise

stated, we will always work with a lens and source redshift ofzl = 0.23 andzs = 1, respectively.

For different plausible cluster configurations, we have found no quasiequilibrium model that is

capable of producing (nearly) straight images at the observed arc’s position. As all of our results

are qualitatively very similar, we only present a selectionof simulation runs in the following. For

example, Fig. 3.19 shows the calculated TeVeS lensing maps assuming an axis ratiob/a ≈ 0.7 cor-

responding to an ellipticity ofe= 0.7, PA= 115◦, mass modelM1 and line-of-sight configuration

B (see Table 3.4). A similar case is illustrated in Fig. 3.20, assuming PA= 133◦ and mass model

M2 while keeping all other parameters the same. We note that thelensing properties in the arc’s

vicinity are almost entirely dominated by the closest galaxy. The structure of the critical curves

(right panel) already reveals that such models will producestrongly bent images with respect to

the galaxy 2592 at the position of interest. To elucidate this point and to demonstrate the problems

of such configurations, we have constructed a luminosity distribution, which roughly resembles

the observed image morphology. This distribution has then been mapped back into the source

plane, assuming the “second” cluster model presented in Fig. 3.20. The generated image and its

associated source distribution are shown in the left and right panels of Fig. 3.21, respectively. Our

particular example exhibits several features indicating that the model is not compatible with the

observed straight image. These features can be summarized as follows:
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3.4. Constraining neutrino dark matter with cluster lenses

Figure 3.22: Occurrence of a new image for quasiequilibrium configurations: Shown is the observed
straight arc and an additional, strongly magnified image which forms around the radial critical curve (dashed
line), assuming the upper patch of the source distribution illustrated in the right panel of Fig. 3.21. The
resulting image has been smoothed using a top-hat function with a diameter of roughly 0.4 ′′. Contours are
still equidistant, but different for each image; the outermost contour of the two imagesis identical and the
increase between the contours of the new image is four times larger than between those of the straight arc.

(a) Around the area where the three source patches visible inthe right panel of Fig. 3.21 appear

to intersect (marked with a rectangle), the inferred sourcedistribution becomes multivalued.

This remains true even after taking into account that the image is due to two distinct sources

(see Sec. 3.4.3 B), and thus the lens model turns out to be ambiguous and inconsistent.

(b) Apart from the tangential caustic, i.e. the inner dashedline shown in the figure’s right panel,

the found source distribution also crosses the radial (outer) caustic, implying the existence

of further images different from the straight arc. Assuming the upper patch of the source

distribution illustrated in the right panel of Fig. 3.21, the occurrence of a new image is

demonstrated in Fig. 3.22. However, there is no evidence forsuch additional images as they

are not observed in the system.

(c) Assuming an average size of roughly 1′′ (∼ 10kpc) for galaxies atz = 1, the source’s

constituents appear too big in angular size (up to 4′′), yielding a rather unlikely scenario.

This problem further deteriorates if one tries to avoid the issues related to (a) and (b) by

lowering the total mass of the nearby (lens) galaxy 2592.
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3.4. Constraining neutrino dark matter with cluster lenses

Figure 3.23:Relative difference of the convergence maps calculated for the two line-of-sight configurations
A andB: The here presented result assumese= 0.7, PA= 133◦, and mass modelM1.

Observations further indicate the presence of several faint elongated objects whose orientation is

approximately the same as that of the arc, with a scatter of only a few degrees [197]. Together

with the above, these arclets strongly support the requirement for a special lens composition rather

than the necessity for unusual source properties, suggesting that the lens configurations considered

here are inappropriate to explain the straight image.

This is the basic result of all simulated cluster models, which seems to be insensitive to the used

mass model (M1 or M2) or the actual line-of-sight alignment of galactic components. To quantify

the effect of the latter, we compared the lensing maps of individualmodels for two extreme line-

of-sight configurations,A and B. Adopting the parameters of the realization presented in Fig.

3.19, Fig. 3.23 displays the obtained relative difference between the corresponding convergence

maps. As we can see, the deviation can reach values up to∼ 30% in regions of low (effective)

surface density, but remains smaller (. 15%) in regions whereκ & 1. A comparison of the

corresponding critical curves and caustics of galaxies reveals that this line-of-sight effect typically

affects their position on the order of∼ 10%, which has no qualitative impact on our results. As for

the dependence on the actually used mass models (galaxies),we will investigate the influence of

varying M/L ratios in the next section.
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3.4.5 B Variation of mass-to-light ratios

So far, we have restricted our analysis to two sets ofM/L ratios for the cluster’s galaxies (see

Table 3.4). How robust are our results with respect to variations of these ratios? Here we take a

simplified approach to obtain reasonable estimates of the effect on the strong lensing properties,

in particular, the critical curves. In what follows, we use aHernquist profile [139] with fixed core

radiusrH = 3kpc for the density distribution of galaxies [corresponding to the limitǫ = 0 in Eq.

(B.2)]. In the isolated case and for our choice of the free function µB, this allows one to express

the lensing properties fully analytically [50], and the deflection angle is given by

α̂(ξ) =
rHA(ξ)

√

|ξ2 − r2
H |













4ξ
√

GMa0

rH
+

4GMξ

ξ2 − r2
H













− 4GMξ

ξ2 − r2
H

, (3.79)

where

A(ξ) =



























arsinh
√

∣

∣

∣1− (rH/ξ)2
∣

∣

∣ ξ < rH

arcsin
√

1− (rH/ξ)2 ξ > rH

. (3.80)

Furthermore, we will assume that

(a) the superposition principle remains valid; i.e. the lensing maps of isolated galaxies and

the cluster background can just be added, which is rigorously true if the components are

infinitely separated from each other and leads to an optimistic estimate otherwise, and that

(b) the cluster background at each galaxy’s position can be modeled as an external contribution

with locally constant convergenceκC and shear modulusγC.

Choosing polar coordinates, the latter yields an effective cluster deflection potential of the follow-

ing form:

Ψ(θ, ϕ) =
κC

2
θ2 +

γC

2
θ2 cos(2(ϕ − ϕ0)), (3.81)

where the external shear’s principle axes system is defined by ϕ0. Locally, the system’s total shear

modulus, relevant for the determination of critical curvesand caustics, depends nonlinearly on the

contribution due to the Hernquist lens and the cluster,

γ2
tot = (γ1,H + γ1,C)2 + (γ2,H + γ2,C)2. (3.82)
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Figure 3.24: Predicted mean radius of tangential critical curves of a Hernquist lens embedded into the
external cluster field: The mean radius is plotted as a function of the projected enclosed mass within an
aperture of 3′′ diameter (∼ 11kpc). The vertical lines indicate the values of the galaxy2592 for mass model
M1 (dashed line) andM2 (dotted line), respectively.

Because of the shear’s tensor property, the above is anisotropic, which directly affects the resulting

position of critical curves given by Eq. (3.22),

(1− κ)2 − γ2 = 0. (3.83)

To obtain the mean effect due to the cluster background, we perform an average overϕ and all

possible orientations of the external shear field, which leads to

γ2 = γ2
H + γ

2
C. (3.84)

We use the simulation result for an equilibrium cluster model with e = 0.7, PA = 115◦ and

no galaxies to estimate the parameters of the background model. Around the arc’s position, this

roughly fixesκC ≈ 0.29 andγC ≈ 0.17. For this case, Fig. 3.24 shows the resulting mean radius

of the tangential critical curve as a function of the enclosed galactic mass within an aperture of 3′′

diameter. While this should give a reasonable picture for the galaxy 2592, which resides close to

the arc, the such estimated radii will be too large for the other galaxies. These are located in regions
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where the background has a weaker impact (κC andγC take lesser values), leading to an optimistic

prediction of their mean critical-curve size. Assuming small variations inM/L, the figure suggests

no qualitative changes of our previous results. Even if we consider thatM/L ratios may change

up to a factor of 4 in the infrared, we find a maximum increase ofthe mean critical-curve radius

corresponding to a factor of approximately 2. At most, such an extreme scenario could come close

to a merged-cusp model for the galaxies 2592 and 6666, but this configuration cannot explain the

arc due to its inappropriate orientation and position of critical curves and caustics in the lens and

source plane, respectively. We therefore infer that the basic result of Sec. 3.4.5 A does not depend

on the particularly assumedM/L ratios of individual galaxies - unless the background potential is

substantially modified.

We have also explored the influence of perturbations to the central cluster profile. For this

reason, we have assumed a secondary spherical clump made outof gas and SNs which follows

the same profile as the central distribution and accounts for10− 15% of the system’s total mass.

The clump’s position has been chosen from a narrow range roughly centered on the detected

substructure in the x-ray map [202, 213] (see Table 3.4). Again, we have found no qualitative

difference compared to previous simulations. The calculated deviations in the lensing maps are on

the order of a few percent, leaving a basically negligible impact on the critical curves and caustics.

Similar statements apply to an overall increase of the central density profile by 10− 20%.

Together with the results presented in Sec. 3.4.5 A, we thus conclude that TeVeS quasiequilib-

rium configurations with 11eV SNs are not capable of explaining the observed arc. In particular,

we find no evidence for the formation of beak-to-beak or lips catastrophes [211] due to intrinsic

TeVeS effects, which could give rise to straight images. Therefore - just as in GR - a suitable

TeVeS lens model needs substantially more mass as well as a special density distribution in the

cluster’s core region. A general procedure on how to obtain such models will be discussed in the

next section.

3.4.6 Nonequilibrium lens configurations

In the following, we shall outline a general approach for modeling cluster lenses in TeVeS which

allows one to use existing GR lens models to estimate the needed TeVeS lens properties. Adopting

a bimodal lens model for the straight arc, we will present an example of such a lens and discuss

implications for the modified framework.
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3.4.6 A Systematic approach to cluster lenses

Taking a naive point of view, one might expect that strong lensing is subject to the strong acceler-

ation regime, and therefore it should be enough to consider the limit µB → 1. In this case, all rel-

evant equations would reduce to their GR counterparts, allowing a conventional lensing analysis.

Previous calculations [50] have shown that such an approximation is not justified. In particular,

the scalar field can have a significant impact on the second derivatives of the lensing potential.

For instance, this can increase the radii of critical curvesby up to a factor of 2, depending on the

assumed mass distribution of the lens (cf. Figure 7 of Ref. [50]). As we shall see below, however,

there is another way of simplifying the lensing problem in TeVeS.

Let us return to the scalar field given by Eq. (2.55). Integrating once, we may recast this

equation as

µB∇φ =
kB

4π
(∇ΦN +∇ × h) , (3.85)

whereh is a regular vector field determined up to a gradient by the condition that the curl of the

right-hand side of Eq. (3.85) must vanish. We note that the main difficulty associated with solving

the scalar equation are the generally nonvanishing components ofh. If for any reasonh ≈ 0, Eq.

(3.85) reduces to a relatively simple algebraic relation between the gradients of the scalar and the

Newtonian potential,

µB∇φ ≈
kB

4π
∇ΦN, (3.86)

which can easily be inverted by numerical means to give∇φ, assuming that the Newtonian poten-

tial (or only its gradient) are known. Therefore, we want to address the question of how the fieldh

is affecting the corresponding lensing maps in the strong lensingregime. We already expecth to be

important around local extrema of the Newtonian potential,but it is difficult to make any intuitive

guesses about its quantitative impact in stronger gravity regions as well as on the final projected

result. The most straightforward approach to this problem is a direct comparison of simulations

treating the full scalar equation to those whereh = 0. To this end, we have taken our previous

quasiequilibrium models and fed them into a modified versionof our solver, now assuming Eq.

(3.86) to determine the scalar gradient. Since our choice ofµB is very close to that presented in

Ref. [92] (see, e.g., Ref. [50]), our code assumes

|∇φ| =
√

a0 |∇ΦN| (3.87)
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Figure 3.25:Simulation results with proper treatment of the scalar fieldequation compared to those where
the curl fieldh has been set to zero: The figure illustrates the relative deviation in the corresponding lensing
maps, the convergenceκ (left panel) and the shear modulusγ (right panel), assuming an equilibrium model
with e = 0.7, PA= 133◦, mass modelM1, and line-of-sight configurationB. The visible gridlike structure
is a combined effect of Fourier fluctuations, interpolation, and the division by values close to zero.

to calculate∇φ. For instance, adopting an equilibrium model withe = 0.7, PA= 133◦, mass

model M1 and line-of-sight configurationB, the relative deviation of the lensing maps from the

proper solution is presented in Fig. 3.25. While the convergence varies by 5− 15%, differences

in the shear map can be as high as∼ 50%. As expected, the largest deviations occur in regions

where the Newtonian gradient approaches the null vector, which, for example, can be seen in the

very core of the central elliptic profile for both the convergence and shear maps.

Clearly, the impact of the curl fieldh is not negligible in regions of low gravity. Concerning the

domain of strong lensing, however, we find the following: Comparing the corresponding critical

curves and caustics, the curl field turns out to be much less important. Interestingly, the obtained

deviation with respect to their position in the lens and source plane, respectively, is only about

. 2 − 3%. Within a sufficiently large environment around these curves accounting for all strong

lensing features, the accuracy of the approximated (h = 0) lensing maps is typically of the same

order, meaning that the curl field negligibly contributes tothe strong lensing properties of a given

matter distribution. Our result appears to generally hold for strong cluster lenses and indicates that

it is enough to consider Eq. (3.86) in the context of TeVeS lens models. Therefore, if one specifies

the line-of-sight extent of the total system as well as individual matter components, this offers a

direct systematic way of modeling strong lenses in TeVeS.
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3.4.6 B Modeling the straight arc in TeVeS

Based on the result of Sec. 3.4.6 A, one could, in principle, take an available GR lens fitting

routine, modify it to include the TeVeS scalar field according to Eq. (3.86), and use it to obtain

a lens model for the straight arc. It is obvious that such an approach will be computationally

more demanding because the scalar’s contribution has to be evaluated in three dimensions, and

one also needs to invoke numerical integration to derive thedesired projected quantities. In the

following, however, let us consider an alternative way to estimate the necessary deflection mass

and its distribution in TeVeS. For this reason, we start fromthe bimodal GR model derived in

Ref. [213] which, in addition to the central matter clump, assumes a smaller subcomponent at

approximately 45′′ (∼ 166kpc) from the cluster center. The second clump is motivated by the

existence of substructure in the cluster’s x-ray map which is used to infer its position in the lens

plane. Both clumps are chosen to follow a pseudoisothermal elliptic mass distribution (PIEMD)

[228], but the subcomponent’s profile is assumed to be spherically symmetric. Correcting for

the here used cosmological background, the model gives an enclosed projected mass ofMa ∼

1.2 × 1014M⊙ within a circular aperture of 38′′ (∼ 140kpc) radius from the cluster center. As

typical for strong lensing mass models, this estimate should lie within ∼ 30% of the true value

[229].

Using the arguments presented in Sec. 3.4.6 A, it is obvious that there exists an analogous

bimodal lens model in TeVeS. To obtain a spherically averaged density estimate in TeVeS, we

ignore the secondary clump, which negligibly contributes to the enclosed mass within the given

aperture, and also assume that the main component can be described by a spherically symmetric

density profile. Thus, its three-dimensional matter distribution can be written as

ρ(r) = ρ0
r2
C

r2
C + r2

, (3.88)

whereρ0 is the central density andrC the core radius. Alternatively, Eq. (3.88) may be written

in terms of its asymptotic velocity dispersionσ∞ associated with the density profile of a singular

isothermal sphere:

ρ(r) =
1

2πG
σ2
∞

r2
C + r2

. (3.89)
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Table 3.5: Fiducial parameters of the bimodal lens configuration presented in Ref. [213]: Here the sub-
clump is offset by approximately 45′′ (∼ 166kpc) from the main component.

b/a PA [◦] rC [′′] σ∞ [km s−1]

Central main clump 0.71 49.2 12± 5 950± 100
Subclump 1 − 7− 12 420− 500

The corresponding enclosed mass of this density distribution at radiusr reads

M(r) = 4πr2
Cρ0

(

r − rC arctan

(

r
rC

))

. (3.90)

Since our choice of the free function allows us to make use of Eq. (3.87), it is possible to express

the enclosed mass in TeVeS, which effectively generates the same dynamical mass as Eq. (3.88),

as

Meff(r) = M(r) +
a0r2

2G

















1−

√

1+
4GM(r)

a0r2

















= M(r)
4s

(

1+
√

1+ 4s
)2
, (3.91)

wheres = GM(r)/a0r2. As previously noted, however, the choice of Eq. (3.76) doesnot yield a

good description of galaxy rotation curves. Adopting a TeVeS free function corresponding to Eq.

(3.75), a similar calculation leads to

Meff(r) =
[M(r)]2

M(r) + a0r2/G
= M(r)

s
1+ s

. (3.92)

SettingrC ≈ 13′′ (48kpc) [213] and requiring that the enclosed projected dynamical mass within

38′′ is still given byMa, the above expressions can be used to derive the underlying density distri-

butions which, together with the resulting surface densityprofiles, are illustrated in Fig. 3.26. The

visible density drop-off within r . 20kpc is a consequence of the assumed PIEMD and probably

unphysical, but can easily be avoided by changing the central profile in favor of a peaked and finite

core, fixing the enclosed mass aroundr = 140kpc (and thus keeping the lens properties needed for

the arc). Of course, our results depend on the assumed line-of-sight extent specified by Eq. (3.88),

but the derived surface densities should vary by only a few percent for different models (see Sec.

3.4.5 A). We also note that the “modified” density profiles yield a finite mass; for both Eqs. (3.91)

and (3.92), the total mass is given by (taking the limits→ 0)

lim
r→∞

Meff(r) =
16π2Gr4

Cρ
2
0

a0
. (3.93)
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Figure 3.26: Spherically averaged density (left panel) and corresponding projected surface density (right
panel) profiles for the bimodal lens model in TeVeS: Shown are the results for the Newtonian dynamical
mass (solid line) and the two TeVeS free interpolating functions corresponding to Eq. (3.91) (dotted line)
and Eq. (3.92) (dashed line), respectively. Note that the three-dimensional mass density profiles are entirely
dominated by the contribution of SNs within a radius of a few hundred kpc. Forr . 25−30kpc, the derived
densities are well below the TG-limit-saturating equilibrium distribution of 11eV SNs in Fig. 3.18, and they
are also much broader. This already indicates that the main component’s phase-space limit is not violated
here.

Although the profiles are not diverging, the relevant mass typically extends to large radii. There-

fore, the use of such profiles within the full TeVeS solver is very inefficient because very large

box sizes would be necessary to perform the calculations, which underlines the advantage of ne-

glecting the curl field for strong lensing models (see Sec. 3.4.6 A). The resulting total lensing

mass is entirely dominated by SNs within a radius of a few hundred kpc, which allows one to ig-

nore the contribution of gas and stellar material to excellent approximation. We have checked that

the three-dimensional density distributions in Fig. 3.26,basically representing the lens model’s

main component, are consistent with the TG limit estimated for hydrostatic equilibrium and a

Maxwellian velocity distribution, following the approachof Ref. [190]. This is already indicated

by the fact that the derived densities are much broader and well below the TG-limit-saturating

11eV SN equilibrium distribution (shown in Fig. 3.18) forr . 25− 30kpc. At the arc’s position

(θ = 38′′), the actual enclosed projected mass of the TeVeS lens models is given by 6.1× 1013M⊙

or 8.0 × 1013M⊙, assuming Eq. (3.91) or (3.92), respectively. Here the model’s subcomponent

deserves special attention: Naively treating the problem,the smaller clump’s presence acts as a

perturbation to the total system’s phase-space density, and thus it is trivially in accordance with

the estimated TG limit since the main clump is. However, thisapproach typically leads to overes-

timating the TG limit, considering that the secondary clumpshould be regarded as a bound object

by itself. Taking the view that A2390 has undergone recent merger activity, it seems reasonable to
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Figure 3.27: Estimated 11eV SN density distribution (solid line) and corresponding TG limit (dashed
line) for a subclump model withrC ≈ 7′′ (26kpc) andσ∞ ≈ 500km s−1: The origin is centered on the
subcomponent, and the TG limit has been calculated according to Eq. (3.74), following the prescription of
Ref. [190]. Note that the slight “wiggly” feature of the dashed line is due to a nonuniform dispersionσ(r)
which is computed in a self-consistent way [190].

assume that the subcomponent has formed at a sufficiently earlier time, and therefore it should be

subject to its own phase-space distribution. This suggeststhat one should examine the secondary

clump separately. Considering the subclump as an isolated object entirely dominated by 11eV

SNs, we have repeated the above TG analysis for the range of parameters listed in Ref. [213] (see

Table 3.5). It is important to note that the bimodal lens model requires the secondary deflector

to be an extended object withrC ∼ 7 − 12′′. Moving to smaller core radii, the lensing potential

would start to resemble that of a point lens and the model would fail to reproduce the observed

arc. Moreover, it is likely that one would also violate constraints due to other observed images in

this system. A very massive and compact deflector such as a supermassive black hole is therefore

not a viable possibility, which is further supported by the lack of evidence for a very strong and

point-like x-ray or radio source at the subclump’s position. To achieve a rather realistic TeVeS

mass estimate, we have adopted a free interpolating function corresponding to Eq. (3.75) for our

calculations. The obtained SN density profile and the TG limit according to Eq. (3.74) are illus-

trated for two cases in Figs. 3.27 and 3.28. AssumingrC ≈ 7′′ (26kpc) andσ∞ ≈ 500km s−1, the

subcomponent’s density slightly exceeds the TG limit (up to30%) within a range of approximately
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Figure 3.28: Same as Fig. 3.27, but assumingrC ≈ 10′′ (37kpc) andσ∞ ≈ 440km s−1.

10− 25kpc. Moving toward larger radii (r & 50kpc), the SN density consistently stays below this

limit. For a less compact model withrC ≈ 10′′ (37kpc) andσ∞ ≈ 440km s−1, the TG bound

is never exceeded. Generally, our results seem to rule out configurations where the subclump is

modeled with small values ofrC (. 8 − 9′′) whereas the bimodal TeVeS lens appears consistent

with 11eV SN HDM for larger choices of the core radius. Beforedrawing such a conclusion,

however, we need to consider how strong the implication of the present analysis really is.

First of all, we note that the lens model is based on the PIEMD model given by Eq. (3.88).

This clearly introduces a bias on our estimates; other assumptions about the components’ density

distributions might yield a different result. In particular, the PIEMD model leads to an unphysical

drop of the central density which could affect our estimate of the TG bound. To check this, we

have modified the central SN density profile of the subclump model presented in Fig. 3.27 in

favor of a uniform core, but without changing its propertiesbeyondr ≈ 15kpc (the arc appears at

r ≈ 26kpc from the subcomponent’s center). The resulting density profile and the corresponding

TG limit are shown in Fig. 3.29. While the TG bound is still violated within∼ 10 − 25kpc,

we see that the density limit is notably decreased in the center, almost matching the assumed SN

distribution. Therefore, it is unlikely that shifting matter to the central region can help to avoid

an excess of the TG bound. Next, our estimates assume that thesubclump can be treated as an
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Figure 3.29: Same as Fig. 3.27, but now assuming a uniform core of the SN distribution. Note that the
radius at which the density becomes constant (r ≈ 15kpc) is fixed by requiring a continuous distribution of
SNs.

isolated object. Since the clump resides within the background field of the main component, this

is not rigorously true. Using Eq. (3.92), we find that the maincomponent provides an external

Newtonian gravitational field of arounda0 at the subclump’s position. As for the subcomponent,

this modifies the relation between gravitational field and underlying density distribution, and gives

rise to an increase of the central SN density on the order of unity. Such a density boost could push

seemingly consistent subclump models withrC & 10′′ toward or even beyond the TG limit, but

detailed statements about this issue are very sensitive to the actual model parameters.

Another point is related to the fact that our calculations rely on completely SN dominated lens

components within∼ 100kpc. If placed at or close to the subclump’s center, already a relatively

small, concentrated baryonic mass, e.g. a galaxy, on the order 108 − 109M⊙ could help to relax

the density constraint due to the TG limit18. Whether such an approach can be reconciled with

observations of this region, however, remains to be seen. Last but not least, we also need to

check the viability of the current estimate of the TG limit which has been derived under simplified

conditions. In what follows, we shall discuss in more detailhow these simplifications affect our

analysis.

18From private communication with G. W. Angus.
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As previously mentioned, the strong lensing domain in the center of A2390 is not in equilib-

rium and has a rather complicated nonsymmetric density distribution. This will obviously have an

influence on the estimates for the TG limit. Considering nonequilibrium configurations in general,

the velocity dispersionσ is expected to increase for a given matter distribution whenmoving away

from equilibrium. Since the value ofσ increases in this case, one would also obtain a higher den-

sity limit for SNs according to Eq. (3.74). Taking the additional asymmetry into account, however,

the situation becomes less clear. Depending on the system’sactual properties, the TG limit could

increase or decrease, and there seems to be no universal ruleallowing one to make solid statements

for anisotropic systems. Finally, one should also adhere todeviations from a Maxwellian velocity

distribution. This issue has been addressed in Ref. [230]. There it has been shown that the actual

physical density limit becomes larger than the previous estimates of the TG limit which can be

exceeded by up to a factor of 2. Again, this would imply that SNs could account for more mass in

the cluster. Combining the three aspects from above, it seems reasonable to assume that the true

density limit will be on average higher than our previous estimates, meaning that density models

with SNs become more flexible. Note, however, that such an argument generally does not replace

the need for a rigorous treatment of particular systems.

Given the accuracy of our present analysis and accounting for all of the above, we conclude

that the bimodal TeVeS lens model for the arc is in accordancewith the assumption of 11eV SNs.

Nevertheless, it seems intriguing that the needed amount and distribution of 11eV SNs lies so

close to what they can maximally contribute to the system. Itshould be obvious that all of our

statements depend on the assumed lens configuration and are valid only for the bimodal model we

have considered here. In particular, the bimodal lens modelignores the contribution of galaxies.

These can have a significant impact on the lensing maps (see Sec. 3.4.5 A), which is especially

true for the galaxy 2592 adjacent to the straight arc. A more realistic approach including all

visible components would be useful to further constrain theproperties of additional substructure

and check whether such configurations remain consistent with respect to the TG limit. While our

analysis is concerned only with the straight arc, the cluster A2390 actually exhibits a number of

lensing features which should all be taken into account for acomplete cluster model. Extending

the investigation also to other massive galaxy clusters, future work should address such complex

lens models and their implications for TeVeS or related theories and 11eV SNs; a systematic way

for approaching this problem has been outlined above.
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3.4.7 Concluding remarks

Here we have suggested the use of strong gravitational lensing by galaxy clusters as a test of the

combined framework of TeVeS and massive SNs. Originally motivated by theoretical and recently

also experimental particle physics [188, 231, 232], the idea of SNs with a mass around 11eV has

gained further interest as it provides a possible remedy forthe problems of TeVeS and related

theories ranging from large cosmological scales down to galaxy clusters. Unlike conventional

CDM, such a fermionic HDM component is subject to strong phase-space constraints imposed by

the TG limit. This allows one to check cluster lens models inferred within the above framework

(or related ones) for consistency.

As an example, we have studied the cluster lens A2390 with itsnotorious straight arc. Because

of its elongation and orientation, the straight image appears to be quite unusual and indicates the

need for a rather special lens configuration. Adopting the approximation for weak fields and

quasistatic systems, one of the main problems associated with the lensing analysis is the nonlinear

relation between the TeVeS metric potential and the underlying matter density distribution. This

nonlinearity prevents one from working with projected quantities and requires one to perform all

calculations in three dimensions. In addition, one is left with a nontrivial, Poisson-type partial

differential equation for the TeVeS scalar field.

To make some progress, we have considered a class of cluster models, based on the assump-

tion of hydrostatic equilibrium, and investigated their lensing properties. This has been achieved

by employing a MPI parallel solver for the TeVeS scalar field equation and simulating the corre-

sponding lensing maps on the HUYGENS supercomputer which islocated in Amsterdam. Our

results imply that such quasiequilibrium configurations are not capable of explaining the observed

straight arc. In particular, we have found no evidence for the formation of beak-to-beak or lips

catastrophes [211] due to intrinsic TeVeS effects, which could give rise to straight images. Line-of-

sight effects and the impact of perturbations are typically small, changing the quantities of interest

only on the order of a few percent. Similar to the situation inGR, a suitable TeVeS lens model

therefore needs substantially more mass as well as a specialdensity distribution in the cluster’s

core region.

Based on the above results, we have further outlined a general and systematic approach to clus-

ter lenses which significantly reduces the problem’s complexity by avoiding the need of solving

the TeVeS scalar field equation. Combined with conventionallensing tools, this opens a new win-
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dow to strong gravitational lensing in TeVeS-like modified gravity theories. As a first application,

we have explored the TeVeS analog of the bimodal lens configuration discussed in Ref. [213]. For

this model, we have derived the SN distribution necessary toproduce the desired image, using a

simplified approach. The obtained SN density profile has thenbeen compared to the maximally

allowed contribution set by the TG phase-space constraint.To this end, we have estimated the

maximal density due to the TG limit following the prescription of Ref. [190] and found a slight

excess of this limit for the model’s secondary component if its core radius is small (rC . 8′′ − 9′′).

For less compact models, however, the TG bound is not violated. Given the accuracy of our cur-

rent analysis, we therefore conclude that the bimodal TeVeSlens model appears consistent with

the hypothesis of 11eV SNs.

Note that the bimodal lens model ignores the contribution ofgalaxies. As has been shown,

these can have a significant impact on the lensing maps. A morerealistic approach, including

all visible components and other lensing constraints, should be taken into account to obtain better

bounds on the required SN distribution and to check whether such configurations remain consistent

with respect to the TG limit. Future work should address moreaccurate ways of estimating the TG

limit in this context, and we suggest extending the investigation to other massive galaxy clusters

which indicate the need for dark substructure. Unless one considers different solutions to the

missing mass problem inherent to this particular kind of modifications (see, e.g., Ref. [40]), the

basic approach presented here should apply to any class of tensor-vector or tensor-vector-scalar

theory which recovers the dynamics of MOND in the nonrelativistic limit. Lensing by galaxy

clusters could therefore provide an interesting discriminator between CDM and such modified

gravity scenarios supplemented by SNs. In addition to the above, we note that next-generation

neutrino experiments [233–235] will further constrain theplausibility of 11eV SNs. Even if they

remain viable candidates, it still needs to be seen whether such SNs do actually cluster in the

desired way [190].

Finally, we advert to the fact that our analysis neglects possible contributions due to perturba-

tions of the TeVeS vector fieldAµ. Such contributions are known to be crucial for the formation of

large-scale structure [86, 87], where they provide the key to enhanced growth while perturbations

of the scalarφ only play a subordinate role. As already pointed out in the literature [103], this typ-

ically affects scales& 0.1− 1Mpc and could be important for galaxy clusters. Owing to themore

sophisticated structure of the field equations, however, even a rough magnitude of the vector’s

impact on these scales has not been estimated yet. Thus our work emphasizes the need for a quan-
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titative description of these vector instabilities on small to intermediate scales, i.e.∼ 0.01−1Mpc.

We also note that the result of such an analysis could strongly depend on the particularly assumed

theory.

Despite the previously mentioned limitations of the present work, our numerical simulations

are probably by far the most detailed in the context of TeVeS and certainly provide the first ex-

tensive study of strong lensing features within this modified gravity framework. Applications

of our grid-based lensing code (e.g. with respect to offsets between visible matter and weak or

strong lensing features [193, 236]) hold the promise of veryconstraining limits on TeVeS-like

theories combined with HDM and other unified recipes for the dynamics of MOND and DM

[40, 115, 237, 238].
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Chapter 4

Structure formation in modified gravity

theories

In the following sections, we shall investigate how modifiedgravity models influence the process

of structure formation. Assuming a particular realizationof a chameleon field (see Sec. 2.3.2), we

discuss the nonlinear clustering of matter density perturbations in this context and point toward

potentially observable signatures which may hold the key todistinguish such frameworks from

theΛCDM model. We will then proceed to TeVeS and focus on the question whether similar

approaches are also possible in this specific class of theories.

4.1 General remarks

It is now commonly believed that the cosmological structureas seen today evolved from tiny per-

turbations around an isotropic and homogeneous spacetime in the very early universe. According

to the standard picture, these perturbations originated from random quantum fluctuations within

the universe’s energy density at that time (typically associated with the Planck scale), but the exact

physical processes occurring in this context are still unknown. A popular and remarkably success-

ful approach is the inflationary model [239, 240] which not only provides a setting for generating

the spectrum of initial perturbations, but also a suitable explanation for the observed flatness,

isotropy and homogeneity of today’s universe on large scales. Once inflation sets in, the vacuum

fluctuations (in this case those of the inflaton field) are quickly driven outside of the horizon, where

they freeze in due to the lack causal contact and effectively become classical. While this fixes the

initial conditions for perturbations right after inflation, the further evolution is governed by grav-
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itational attraction. As matter collapses into denser regions, it eventually form smaller structures

such as galaxies and then clusters of galaxies, with large regions of empty space, the so-called

voids, appearing in between.

Typically, these perturbations remain small until deep into the matter dominated era, which al-

lows one to study their evolution with the help of cosmological perturbation theory (applicable to

both GR and modified theories of gravity) by linearizing the gravitational field equations around

the FRW solution. Due to the statistical nature of primordial fluctuations, however, one cannot

make any specific statements about the their actual realization in the universe, but only infer infor-

mation about the distribution they were drawn from. In the simplest inflationary scenarios, which

are usually implemented with a single scalar field, it follows that the underlying distribution is

Gaussian1 and thus the perturbations are expected to be Gaussian random fields. In accordance

with the fundamental cosmological assumptions, the statistical properties of these random fields,

e.g. their mean or variance, do not change under rotations and translations . Taking the density

contrast defined asδ = (ρ − ρ̄)/ρ̄ whereρ̄ is the mean density, for example, the entire statistical

information is encoded into the correlation functionξ(y),

ξ(y) ≡ 〈δ(x)δ(x + y)〉 (4.1)

where the average extends over all positionsx and orientations ofy. As dictated by isotropy, the

correlation function cannot depend on the direction ofy, i.e. ξ = ξ(y). More conveniently, the

above is expressed in terms of the power spectrumP(k) which is defined by the variance ofδ in

Fourier space,
〈

δ(k)δ∗(k′)
〉

= (2π)3P(k)δD(k − k′), (4.2)

whereδD is the Dirac delta distribution which ensures that modes of different wave vectork

are uncorrelated in Fourier space to guarantee homogeneity. Note that the variance on a scale

of 8h−1Mpc, usually denoted asσ8, is often used for characterizing the amplitude of the power

spectrum.

As soon asδ or other perturbation variables approach values on the order of unity, any per-

turbative approach breaks down and nonlinear effects become important. Since this breakdown

1This property follows from the quantized harmonic oscillator in the vacuum state which predicts a Gaussian probability
distribution for each wave vectork. Since the density fluctuations arise from superpositions of enormous numbers of
statistically independent vacuum fluctuations of the inflaton field, however, Gaussianity appears more generally as a
consequence of the central limit theorem - independent of the underlying probability distributions of the individual
Fourier coefficients [240].
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occurs at times where basically all modes of interest are well within the horizon, i.e.aH/k ≪ 1,

one usually makes the assumption that time derivatives can safely be neglected compared to spatial

ones and tackles the problem using the corresponding nonrelativistic equations (while taking into

account the background evolution) since the involved gravitational fields remain small enough to

be considered as perturbations to spacetime2. In GR, for instance, this is supported by the fact

that the linearized Einstein equation for scales much smaller than the horizon becomes structurally

identical with the Poisson equation obtained in the nonrelativistic limit. Most notably, this has led

to the use of cosmologicalN-body simulations as a tool for studying the density evolution in the

nonlinear regime. In the next section, we shall see how this idea may be applied to the framework

of coupled scalar field models. Finally, note that even if theoriginal density perturbation field

is Gaussian, it must develop non-Gaussianities during the nonlinear evolution. This is evident

becauseδ ≥ −1 by definition, but may grow to arbitrarily large values. Therefore, an originally

Gaussian distribution ofδ becomes increasingly skewed as it develops a tail toward infinite δ.

4.2 Nonlinear structure growth in chameleon models

In this section, we shall investigate the the nonlinear clustering of density perturbations in the

context of coupled scalar field models. Introducing a suitable model which recovers the properties

of a chameleon scalar (see Sec. 2.3.2), we give the relevant field equations for weak fields and

quasi-static systems and outline a generalN-body scheme applicable to this particular class of

models. Accounting for spatial variations of the scalar field, we then present the first complete

N-body simulations in this framework followed by a discussion of the obtained results and their

implications.

4.2.1 Scalar field model with coupling to CDM

In the following, let us consider the specific coupled scalarfield model introduced in Ref. [127]

which is described by an action of the form (In accordance with most of the literature on this

subject, we temporarily switch to a negative metric signature)

Ls =
1

8πG

∫

d4x
√−g

[

R
2
− 1

2
gµν∇µφ∇νφ + Veff(φ)

]

, (4.3)

2Note that there is still no mathematically rigorous proof justifying such an approach.
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whereG = GN, Rdenotes the Ricci scalar,φ is a dimensionless scalar field with canonical kinetic

term andVeff(φ) is an effective potential assumed as

Veff(φ) = V(φ) − 8πGC(φ)LCDM. (4.4)

While LCDM denotes the Lagrangian of CDM particles3, the potentialV(φ) and the coupling

functionC(φ) are given by

V(φ) ≡ Λ0

(

1− e−φ
)−µ

(4.5)

and

C(φ) ≡ eγφ, (4.6)

respectively, whereµ andγ are two dimensionless parameters andΛ0 is a constant on the order of

the cosmological constant. Considering the nonrelativistic, weak field limit of Eq. (4.4) (φ ≪ 1),

Veff(φ) ≈ Λ0φ
−µ + 8πG(1+ γφ)ρCDM, (4.7)

the meaning of this particular parameterization can be understood as follows: As the scalar fieldφ

tends to minimize the effective potential, the potential termΛ0φ
−µ and the coupling (1+ γφ) to the

CDM density lead to competing effects, favoring smaller and larger values ofφ, respectively. The

balance of these two effects is controlled by the parametersµ andγ. The parameterµ is assumed

to be very small and controls the time when the effect of the scalar field (mainly exerting a finite-

ranged scalar force on CDM particles on galaxy cluster scales) becomes important for cosmology

while the parameterγ determines how large it will ultimately be [127].

From variation of the action defined in Eq. (4.3), one finds that the scalar field’s equation of

motion (EOM) is

∇µ∇νφ + V′(φ) + 8πGγeγφρCDM = 0, (4.8)

where the prime denotes the derivative with respect toφ, i.e. V′ ≡ dV/dφ. Furthermore, Einstein’s

equations can be expressed as

Gµν = 8πG
(

eγφρCDMuµuν + T(φ)
µν

)

, (4.9)

3The CDM LagrangianLCDM specifies the geodesic flow for many point-like particles of four-velocityuµ and density
ρCDM
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4.2. Nonlinear structure growth in chameleon models

Figure 4.1: Overdensity fields atz = 0 for theφCDM model withγ = 1, µ = 10−5 (left) and theΛCDM
model (right). As can be seen, the former has developed more small-scale structure within the void.

whereGµν is the Einstein tensor and the right-hand side corresponds the energy-momentum tensors

of CDM particles with four-velocityuµand the scalar field, with the latter given by

8πGT(φ)
µν = ∇µφ∇νφ − gµν

(

1
2
∇κφ∇κφ − V(φ)

)

. (4.10)

Note that because of their coupling, the energy-momentum tensors for the scalar fieldφ and CDM

particles are not individually conserved whereas their sumis.

The above equations summarize all the physics that will be used in our analysis. An immediate

application is the prediction of a uniform Hubble expansion[127]. For values ofγ ∼ O(1) and

µ ≪ 1, the model’s background expansion is completely indistinguishable fromΛCDM, with an

actual difference on the order ofO(µ). Basically, this is due to the large enough effective mass of

the scalar which forces the field near the potential minimum and is almost time-independent for

µ ≪ 1 (for a more quantitative explanation, see Ref. [127])

4.2.2 Nonrelativistic approximations

The first step towards a numerical simulation is to obtain therelevant equations of motion in the

nonrelativistic and quasistatic limit (in the sense that the time derivatives can be safely neglected

compared with the spatial derivatives). This task has already been performed in Ref. [127] where

it was shown that the scalar field’s EOM in Eq. (4.8) and the modified Poisson equation can be

simplified to

∂2
xφ = 8πGa2 [

ρCDMC′(φ) − ρ̄CDMC′
(

φ̄
)]

+ a2 [

V′(φ) − V′
(

φ̄
)]

(4.11)
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and

∂2
xΦ = 4πGa3 [

ρCDMC(φ) − ρ̄CDMC
(

φ̄
)] − a3 [

V(φ) − V
(

φ̄
)]

, (4.12)

respectively, where the bar denotes background quantities, ∂2
x ≡ −∇2

x and∇x is the covariant

spatial derivative with respect to the conformal coordinatex. Note that the auxiliary dimensionless

potentialΦ is related to the usual nonrelativistic metric potentialW through

Φ ≡ aW+
1
2

äx2, (4.13)

where the dot denotes the derivative with respect to conformal time. Finally, introducing the

canonical momentum conjugate tox, p = aẋ, the EOM for CDM particles reads

ẋ =
p
a
,

ṗ = −∇xΦ − γa∇xφ.

(4.14)

Note that the two terms on the right hand side appearing in thesecond relation of Eq. (4.14)

correspond to gravity and scalar force, respectively [127]. Assuming that bothφ andΦ are known

from solving Eqs (4.11) and (4.12), the above may be used to evaluate the forces on CDM particles

and to evolve their positions and momenta in time.

The validity and limitation of the approximation present inthe above equations, in particular

neglecting the time derivatives, have been extensively discussed in Ref. [127]. We emphasize

that these approximations do not hold in linear regime wherethe scalar field’s time dependence

is essential for structure growth. However such terms have indeed been shown to be negligible

on scales much smaller than the horizon scale [241]. In the following, we will analyze the first

completeN-body simulations in the above framework. Compared to previous work [242, 243], our

analysis does not involve any additional assumptions for solving the field equations and thus takes

the spatial variation ofφ into full account, leading to more quantitative and rigorous predictions.

Considering the linear regime, it has already been possibleto constrain the parametersµ andγ

to a fairly narrow range. Here we setγ on the order of unity to force a significant ratio of the

scalar force to gravity (∼ 2γ) and explore the range 10−7 ≤ µ ≤ 10−5, covering three orders of

magnitude. Restricting ourselves to the above should suffice as the model is either essentially

indistinguishable fromΛCDM or deviates too much from it (already at the linear level)beyond

this parameter space, thus being of no further interest [127].
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4.2.3 A modified N-body code for coupled scalar field models

For the purposes of this work, we have adapted the Multi-Level Adaptive Particle Mesh (MLAPM)

code [244] to include the scalar field and its coupling to the CDM N-body particles. One benefit

of the adaptive scheme is that the majority of computing resources is dedicated to few high density

regions to ensure higher resolution, which is desirable since we expect the behavior of the scalar

field to be more complex there. The main modifications to the MLAPM code for our model can

be summarized as:

(a) We have added a parallel solver for the scalar field based on Eq. (4.11). The solver uses a

similar nonlinear Gauss-Seidel method [245] and the same criterion for convergence as the

Poisson solver.

(b) The resulting value forφ after the first simulation step is used to calculate the localmass

density of the scalar field and thus the source term for the modified Poisson equation which

is solved using a fast Fourier transform to obtain the local gravitational potentialΦ given by

Eq. (4.12).

(c) The scalar force is obtained by differentiatingφ, and the gravitational force is calculated by

differentiatingΦ, as required from Eq. (4.14).

(d) The momenta and positions of the CDM particles are then updated, taking into account both

gravity and the scalar force, just as in normalN-body codes.

More technical details on the code as well as on how the field equations are implemented into

MLAPM using its own internal units have been given in Ref. [127] and will not be presented here.

4.2.4 Matter power spectra from N-body simulations

Using the modifiedN-body code introduced in the last section, we have performed6 simulation

runs with parametersγ = 0.5, 1 andµ = 10−5, 10−6, 10−7, respectively. For all these runs, we

consider 1283 CDM particles, 128 domain grid cells in each direction, and the simulation box size

is chosen asB = 64h−1 Mpc. We further assume aΛCDM background cosmology which provides

a very good approximation forµ ≪ 1 [127], adopting present values for the fractional energy

densities of CDM and dark energy,ΩCDM = 0.28 andΩΛ = 0.72. In addition, the normalization

of the power spectrum is chosen asσ8 = 0.88. Note that the current simulations only take CDM
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Figure 4.2: Ratios of calculated nonlinear matter power spectra forγ = 1 andµ = 10−5 (red line), 10−6

(blue line) and 10−7 (green line) as well as forΛCDM (black dotted line): Shown are the results for two
redshifts,z= 1 andz= 0. At large scales (smallk) the curves converge toward theΛCDM result (identical
to 1). Note that the difference decreases at higher redshift and is expected to be small on both large and
very small scales. Error bars of future lensing observations are likely small enough to detect any deviation
fromΛCDM on intermediate scales (k = 0.1− 10hMpc−1) at a 30% level.

into account and that baryons will be added in a forthcoming study to investigate the bias effect

caused by the coupling to dark matter. Given the above parameters, the mass and spatial resolution

of the simulation are 9.71× 109M⊙ and 23.44h−1kpc (for the most refined regions), respectively.

This spatial resolution in high density regions is necessary and sufficient to precisely probe the

scalar field in regions where the scalar force is considerably short-ranged.

All simulations started at redshiftz = 49. In principle, one would need to generate modified

initial conditions for the coupled scalar field model, i.e. the initial displacements and velocities of

particles which are obtained from a given linear matter power spectrum, because the scalar field

coupling also has an impact on the Zel’dovich approximation[246]. In practice, however, we find

that the effect on the linear matter power spectrum at this high redshiftis negligible, with a relative

deviation. 10−4 for our choice of the parametersγ andµ. Concerning the CDM particles in our

simulations, we thus simply use the initial conditions for aΛCDM model which are generated

with the help of the GRAFIC tool [247], where we again assumeΩCDM = 0.28,ΩΛ = 0.72 and

σ8 = 0.88. An example of the final density field obtained at redshiftz= 0 is illustrated in Fig. 4.1.
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Figure 4.3: Same as Fig. 4.2, but now assumingγ = 0.5.

For comparison, the figure also shows the corresponding result of a standardΛCDM simulation.

The matter power spectra have been computed with the help of a(fast) Fourier transform of the

matter density field, computed on a regular gridNG × NG × NG from the particle distribution via a

Cloud-in-Cell algorithm (see, e.g. Ref. [248]). For the actual calculation, we setNG = 256 which

gives a maximum mode ofk ≈ 20hMpc−1 well above the simulation resolution. The nonlinear

matter power spectra of the models withγ = 1 andγ = 0.5 are displayed in Figs. 4.2 and 4.3,

respectively.

As can be seen from the figures, the nonlinear power spectra can be substantially modified

compared to aΛCDM model. Qualitatively, the basic features of the resultsmay be understood

from our previous discussion of the chameleon effect in Sec. 2.3.2: For smaller values ofµ

and largerρCDM (higher redshift), the scalar force is significantly suppressed and thus one obtains

smaller deviations fromΛCDM. On the other hand, increasing the value ofγ strengthens the scalar

force and causes larger deviations from theΛCDM model. Since large scales are beyond the probe

of the scalar force [127], the power spectrum for smallk is not significantly affected. Similarly,

when moving to very largek, the chameleon effect suppresses the scalar force because the density

on small scales is high, therefore softening the deviation fromΛCDM. Interestingly, the difference

between the models becomes largest on intermediate scales which are relevant for galaxy clusters
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(∼ 102 − 103kpc). Observationally, this would most likely appear as a change ofσ8 on the order

of 15-20% for models withγ ∼ 0.5− 1 andµ = 10−6 (see Figs. 4.2 and 4.3). For current lensing

measurements such as the CFHT Legacy Survey (see, e.g., Ref.[249] or Fig. 11 of Ref. [250])

over a rather limited range, one cannot constrain these models since any variation ofσ8 appears

to be lower than 30%. Future surveys such as the Kilo-Degree Survey (KIDS), however, will be

able to measure the scale dependence within the rangek = 0.1 − 10hMpc−1 where the deviation

of the models fromΛCDM is maximal, and therefore open a new window to test these models

and to constrain the interesting part of their parameter space. Finally, note that although we have

restricted our analysis to the models introduced in Ref. [127], the general framework introduced

here is also applicable to other possible constructions of coupled scalar fields.

4.3 Metric perturbations in TeVeS

As we have seen in the last section, it is generally possible to study modified frameworks with

the help of conventional methods and tools. Now we shall investigate whether similar approaches

may, in principal, be achieved in the context of TeVeS. In this case, one may not simply start with

the nonrelativistic field equations because these do not include contributions of the vector field

which are known to be crucial for the formation of structure on large scales [87]. Introducing a

more general class of potential functions, we revisit the cosmological background evolution before

turning our attention to metric perturbations in the conformal Newtonian gauge. Making an ansatz

for scalar field perturbations in the modified Einstein-de Sitter cosmology, we demonstrate how

the field equations can be cast into convenient form and discuss the resulting TeVeS analog of the

growth equation. Finally, we outline several possible applications of our results.

4.3.1 Choice of the scalar field potential

For the purposes of our analysis, it is convenient to work with the notation introduced in Eq. (2.45)

(see Sec. 2.2.2 A). This allows one to rewrite Eq. (2.50) as

V(µ) =
3µ2

0

128πl2B

[

µ̂
(

4+ 2µ̂ − 4µ̂2 + µ̂3
)

+ 2 log (1− µ̂)2
]

, (4.15)

where we have defined ˆµ ≡ µ/µ0 andµ0 is a dimensionless constant related tokB throughµ0 =

8π/kB. Again, note that the choice ofV = µ2F/16πl2B fixes the theory’s behavior in the nonrela-

tivistic limit as well as the dynamics on cosmological scales. In order to avoid ambiguities in the
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Figure 4.4: Illustration of the generalized potentialVn(µ) given by Eq. (4.16) forn = 2 (solid line), 3
(dotted line), and 6 (dashed line).

theory, one needs to specify the physically relevant branches ofV. Translating the results from

Sec. 2.2.2 B, one finds that quasistatic systems are characterized by the conditionV′ ≡ dV/dµ < 0.

If we want TeVeS to reproduce the dynamics of MOND in the nonrelativistic approximation, we

have to choose the branch covering the range 0< µ < µ0 since it is the singularity atµ = µ0 which

ensures the existence of a Newtonian limit. Similarly, cosmological models satisfy the condition

V′ ≥ 0. To guarantee that the cosmological scalar field yields a strictly positive contribution to the

energy density, one has to assume the monotonically increasing branch as the physical one (see

Sec. 2.2.2 B). Since cosmological models requireV′ ≥ 0, one obtainsµ > µ0 and thus cannot

use the same potential branch as for quasistatic systems (µ < µ0). BecauseV turns singular at

µ = µ0, potentials like the one specified in Eq. (4.15) therefore exhibit a disconnection between

the regimes relevant for cosmology and quasistatic systems, respectively. Lacking a smooth transi-

tion between these two regimes, however, it is unclear how bound systems such as galaxies would

decouple from the Hubble flow or if such a decoupling results in the quasistatic limit discussed

above4. To resolve this issue, an interesting alternative has beenproposed in Ref. [227], with its

cosmology studied in Ref. [98]. In the following, however, we will not take this approach.

4There isa priori no guarantee for reaching the domain of quasistatic systemsif one considers the growth of initial
perturbations around a FRW background.
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Instead - for reasons that will become clear below - we shall assume the following general

class of potentials [96]:

Vn(µ) =
3µ2

0

32πl2B

[

n+ 4+ (n+ 1)µ̂
(n+ 1)(n+ 2)

(µ̂ − 2)n+1

+
(−1)n

2
log (1− µ̂)2 +

n
∑

m=1

(−1)n−m

m
(µ̂ − 2)m















,

(4.16)

wheren ≥ 2 5. Adopting different values ofn, Fig. 4.4 illustrates the resulting potential shape as

a function ofµ̂. Note that the such generalized potential reduces to Bekenstein’s toy model in Eq.

(4.15) if n = 2. The derivative ofVn(µ) takes a simpler form and can be expressed as

V′n(µ) =
3µ0

32πl2B
µ̂2 (µ̂ − 2)n

µ̂ − 1
. (4.17)

As already mentioned, cosmological models in TeVeS must satisfy the conditionV′ ≥ 0. As we

have already seen in Sec. 2.2.2 B, one is, in principal, always free to choose between two possible

potential branches if one requires thatV′ is single-valued. In accordance with previous investiga-

tions and to ensure a positive contribution of the scalar field to the energy density for every choice

of n, we will use the branch ranging from the extremum at ¯µ = 2µ0 to infinity. Under these prelim-

inaries, it was found that the potential in Eq. (4.16) gives rise to tracker solutions of the scalar field

[96], with a background evolution similar to other general cosmological theories involving tracker

fields [120, 251, 252]. We shall further elaborate on this behavior and an approximate analytic

treatment in Sect. 4.3.2 B.

4.3.2 Revisiting the cosmological background in TeVeS

4.3.2 A Evolution equations

Imposing the usual assumptions of an isotropic and homogeneous spacetime, bothgµν andg̃µν are

given by FRW metrics with scale factorsa andb = aeφ̄, respectively, wherēφ is the background

value of the scalar field (see our previous discussion in Sec.2.2.2 C). For a spatially flat universe,

the modified Friedmann equation in the matter frame reads

3H2 = 8πGeff

(

ρ̄φ + ρ̄
)

, (4.18)

5As previously pointed out in Ref. [96], this class of potentials will modify the dynamics of quasistatic systems ifn , 2.
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where we have expressed Eq. (2.65) in a more convenient way (the physical Hubble parameter is

still defined asH = ȧ/a2 and the overdot denotes the derivative with respect to conformal time).

Hereρ̄ corresponds to the FRW background density of the fluid and thescalar field density takes

the form

ρ̄φ =
e2φ̄

16πG
(

µ̄V′ + V
)

. (4.19)

The effective gravitational coupling strength is given by

Geff = Ge−4φ̄
(

1+
dφ̄

d loga

)−2

(4.20)

which is generally time-varying through its dependence on the scalar field̄φ. Just as in GR, the

energy density ¯ρ evolves according to

˙̄ρ = −3
ȧ
a

(1+ w)ρ̄, (4.21)

wherew is again the EoS parameter of the matter fluid. In case of multiple background fluids, i.e.

ρ̄ =
∑

i ρ̄i , the relative densitiesΩi are defined as

Ωi = 8πGeff
ρ̄i

3H2
=
ρ̄i

ρ̄ + ρ̄φ
. (4.22)

The evolution of the scalar field̄φ is governed by

¨̄φ = ˙̄φ
( ȧ
a
− ˙̄φ

)

− 1
U

[

3µ̄
ḃ
b

˙̄φ + 4πGa2e−4φ̄
(

ρ̄ + 3P̄
)

]

, (4.23)

whereP̄ is the fluid’s background pressure and the functionU is related to the potentialV,

U(µ̄) = µ̄ + 2
V′

V′′
. (4.24)

In addition, the scalar field obeys the constraint equation

˙̄φ2 =
1
2

a2e−2φ̄V′ (4.25)

which can be inverted to obtain ¯µ(a, φ̄, ˙̄φ). For later use, we also introduce the relation

2
ȧ
a

ḃ
b
− b̈

b
− µ̄ ˙̄φ2 = 4πGa2e−4φ̄

(

ρ̄ + P̄
)

(4.26)

119



4.3. Metric perturbations in TeVeS

which follows from combining Eq. (4.18) with Eq. (4.25) and the corresponding Raychaudhuri

equation (see Ref. [101]).

As already mentioned in Sec. 2.2.2 C, previous investigations [43, 86, 96] have shown that a

broad range of expressions for the potentialV (including the choice in Eq. (4.16)) leads toeφ̄ ≈ 1

andρ̄φ ≪ 1 throughout cosmological history. Therefore, the background evolution is very similar

to the standard case of GR, with only small corrections induced by the scalar field.

4.3.2 B Tracker solutions of the scalar field

For the class of potentials specified in Eq. (4.16), it has been found that the scalar field exhibits a

(stable) tracking behavior and synchronizes its energy density with the dominant component of the

universe [86, 96]. Tracking occurs asV′ tends to its zero point where ¯µ = 2µ0, and the evolution

of the fieldφ̄ during tracking is approximately given by

φ̄ = φ̄0 +
|1+ 3w|

2βµ0|1− w|−|1+ 3w| loga, (4.27)

whereφ̄0 is an integration constant andβ = ±1, with the actual sign depending on the background

fluid’s EoS parameterw and Eq. (4.23). Its density ¯ρφ then exactly scales like that of the fluid, and

the relative density parameterΩφ turns approximately into a constant,

Ωφ =
(1+ 3w)2

6µ0 (1− w)2
. (4.28)

Note that the right-hand side of Eq. (4.27) slightly differs from the expression presented in Ref.

[96]. In App. D.1, we discuss why this is the case and show thatEq. (4.27) is indeed the correct

result.

Following the lines of Ref. [96], ¯µ may then be expressed as ¯µ = 2µ0(1 + ǫ) with 0 < ǫ ≪ 1.

UsingV′(2µ0) = 0 and expandingV′ to lowest order inǫ, Eq. (4.25) leads to

ǫ =
1
2













16πl2B
3µ0

e2φ̄

a2
˙̄φ2













1/n

. (4.29)

It turns out that this is the only stage at which the constantlB enters the evolution equations. In

preparation for Sect. 4.3.3, we further take the time derivative of the above, which yields the useful

relation

˙̄φǫ̇ =
2
n

(

˙̄φ2 − ˙̄φ
ȧ
a
+ ¨̄φ

)

ǫ. (4.30)
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Figure 4.5: Relative deviation of the Hubble expansion in the modified Einstein-de Sitter cosmology from
the ordinary GR case: Shown are the results forµ0 = 200 (dotted line), 500 (dashed line), and 1000 (solid
line).

Note that stable tracking requiresǫ to asymptotically decrease to zero, i.e.ǫ → 0. Therefore one

has the condition ˙ǫ < 0 which may be used to infer the proper sign of the parameterβ in Eq. (4.27)

(see App. D.1).

4.3.2 C Modified Einstein-de Sitter cosmology

In what follows, we shall assume a universe entirely made of pressureless matter with perfect

tracking of the scalar field, corresponding to the Einstein-de Sitter model in GR. SettinḡP = w = 0

fixesβ = −1, and thus the scalar field can be written as

φ̄ = φ̄0 −
1

2µ0 + 1
loga. (4.31)

To find the proper value ofβ, one may either insert Eq. (4.27) into Eq. (4.23), or use the argument

presented in App. D.1. Since the fluid evolves according to Eq. (4.21), the density takes the form

ρ̄ = ρ̄0a−3, with ρ̄0 being the background density’s value today. Thus exploiting Eq. (4.28) allows

one to rewrite the modified Friedmann equation in the matter frame as

H2 = H2
0a−3+4/(2µ0+1), (4.32)
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where we have used the definition

H2
0 = e−4φ̄0

8πGρ̄0

3

(

1+
1

6µ0 − 1

) (

1− 1
2µ0 + 1

)−2

. (4.33)

From Eq. (4.32), it is evident that the deviation of the Hubble expansion from the ordinary

Einstein-de Sitter case is entirely characterized by the parameterµ0. For several reasons [43],

µ0 should take a rather large value on the order of 100− 1000, and thus this deviation will be

small. Assuming different choices ofµ0, Fig. 4.4 shows the relative difference between the mod-

els as a function of the scale factora, indicating that the change of the expansion is only at the

percent level.

4.3.3 Perturbations in conformal Newtonian gauge

4.3.3 A Preliminaries

Now we will turn to metric perturbations around a spatially flat FRW spacetime in TeVeS. Starting

point is the set of linear perturbation equations for TeVeS which have been derived in fully covari-

ant form in Ref. [101]. For simplicity, we shall restrict theanalysis to scalar modes only and work

within the conformal Newtonian gauge. In this case, metric perturbations are characterized by two

scalar potentialsΨ andΦ, and the line element in the matter frame is given by

ds2 = a2
[

−(1+ 2Ψ)dτ2 + (1− 2Φ)δi j dxidxj
]

. (4.34)

Similarly, one needs to consider perturbations of the otherfields: While the fluid perturbation

variables are defined in the usual way, i.e. the density perturbation, for instance, is expressed in

terms of the density contrastδ,

ρ = ρ̄ + δρ = ρ̄ (1+ δ) , (4.35)

the scalar field is perturbed as

φ = φ̄ + ϕ, (4.36)

whereϕ is the scalar field perturbation. Finally, the perturbed vector field is written as

Aµ = ae−φ̄
(

Āµ + αµ
)

, (4.37)

122



4.3. Metric perturbations in TeVeS

whereĀµ = (1, 0, 0, 0) and

αµ = (Ψ − ϕ,∇α) . (4.38)

Note that the time component of the vector field perturbationis constrained to be a combination

of metric and scalar field perturbations, which is a consequence of the unit-norm condition given

by Eq. (2.40). Therefore, one needs to consider only the longitudinal perturbation componentα.

The full set of perturbation equations is given in App. D.2.

4.3.3 B A closer look at scalar field perturbations

To begin with, we consider perturbations of the scalar field.From previous numerical analysis,

these have been found to play only a negligible role for structure formation [86, 89]. Since the

perturbed scalar field equation is of second order, it is helpful to introduce an auxiliary perturbation

field γ which allows one to split the scalar field equation into a system of two first-order equations.

Performing this split, the two resulting equations (expressed in Fourier space) are given by

γ̇ =
µ̄

a
e−3φ̄k2

(

ϕ + ˙̄φα
)

− 2
µ̄

a
eφ̄ ˙̄φ

(

3 ˙̃Φ + k2ζ̃
)

− 3
ḃ
b
γ + 8πGae−3φ̄ρ̄

[(

1+ 3C2
s

)

δ + (1+ 3w)
(

Ψ̃ − 2ϕ
)]

(4.39)

and

ϕ̇ = − 1
2U

ae−φ̄γ + ˙̄φΨ̃. (4.40)

HereΨ̃ = Ψ−ϕ andΦ̃ = Φ−ϕ are the metric potentials expressed in the Einstein frame,k = |k | is

the modulus of the comoving wave vectork, andCs denotes the matter fluid’s sound speed which

is defined as the ratio between the fluid’s pressure perturbation δP and the corresponding density

perturbationδρ, i.e. C2
s = δP/δρ. The perturbatioñζ is related toα through

ζ̃ =
(

e−4φ̄ − 1
)

α. (4.41)

Assuming a general matter fluid whose background evolution is given by Eq. (4.21) together with

a cosmological constant, we take the time derivative of Eq. (D.21) and eliminatėθ with the help of

Eq. (D.15) from the resulting expression. The next step is toget rid of the time derivatives of̃Φ.

This can be achieved by exploiting an algebraic relation which is obtained from combining Eqs.
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(D.22) and (D.23). Finally, using Eqs. (D.11) and (4.39), one arrives at

[

2
ȧ
a

ḃ
b
− b̈

b
− µ̄ ˙̄φ2 − 4πGa2e−4φ̄ρ̄(1+ w)

]

Ψ̃

=

[

µ̄

(

4˙̄φ2 + 2˙̄φ
ȧ
a
+ ¨̄φ

)

+ ˙̄µ ˙̄φ + 4πGa2e−4φ̄ρ̄(1+ 3w)
]

ϕ.

(4.42)

From Eq. (4.26), one immediately sees that the coefficient in front ofΨ̃ vanishes. Thus the above

gives a trivial identity and we cannot infer any informationon the relation between the scalar field

perturbationϕ and the metric potential̃Ψ. This somewhat reflects the fact thatϕ corresponds to

a full degree of freedom in the theory and the occurrence of trivial relations like in Eq. (4.42) is

indeed a generic feature of modified gravity theories of thiskind 6. For purposes that will become

clear below, however, let us introduce a functionBϕ such that

Ψ̃ = Bϕϕ. (4.43)

In general,Bϕ will be a function of time and perhaps even depend on scale. Moreover, it is likely

that its particular form will also depend on the used cosmological model and the choice of the

scalar potentialV.

As for the auxiliary perturbationγ, it is possible to arrive at a similar relation as given in Eq.

(4.42). To see this, we multiply Eq. (D.20) with the scale factor b and take the time derivative.

Combining the result with Eqs. (D.18) and (D.23), we eliminate Ė and the time derivative of

ζ̃, respectively. Substituting ˙ϕ and γ̇ with the help of Eqs. (4.39) and (4.40), respectively, one

eventually ends up with

ae−φ̄
[

3
ḃ
b
µ̄

U
˙̄φ − ȧ

a
˙̄φ + ˙̄φ2 + ¨̄φ +

1
U

4πGa2e−4φ̄ρ̄(1+ 3w)

]

γ

−6
ḃ
b

[

˙̄µ ˙̄φ + µ̄ ¨̄φ + 2

(

˙̄φ +
ḃ
b

)

µ̄ ˙̄φ + 4πGa2e−4φ̄ρ̄(1+ 3w)

]

ϕ

−2

[

2
ḃ
b

(

˙̄φ − ḃ
b

)

+
b̈
b
+ µ̄ ˙̄φ2 + 4πGa2e−4φ̄ρ̄(1+ w)

] (

3 ˙̃Φ + k2ζ̃ + 3
ḃ
b
Ψ̃

)

= 0.

(4.44)

Using the background relations presented in Sec. 4.3.2 A, wefind that Eq. (4.44) again yields

a trivial identity, with a general structure very similar tothat found before. A direct comparison

6From private communication with C. Skordis.
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4.3. Metric perturbations in TeVeS

between Eqs. (4.42) and (4.44) suggests the definition of another functionBγ which is given by

(

3 ˙̃Φ + k2ζ̃
)

+ ae−φ̄Bγγ = 0. (4.45)

Now assuming that the functionsBϕ and Bγ (corresponding to the new degrees of freedom of

scalar and vector field, respectively) are known, one can show from a suitable combination of the

perturbation equations in App. D.2 that the metric potentials are solely expressible in terms of the

matter fluid variables, putting the equations into a form more suitable for further investigations.

Sinceγ corresponds to an auxiliary perturbation field related toϕ, however, one might expect that

these functions will not be fully independent from each other.

Taking the view thatBϕ andBγ emerge from a mathematically well-defined limiting process

of the above equations, the algebraic structure of Eqs. (4.42) and (4.44) suggests that they may

be related according to the corresponding coefficients of the scalar field perturbationsϕ andγ. In

situations where ¯µ is close to its minimum (such as during tracking), i.e. ¯µ = 2µ0(1+ǫ), we further

have the two first-order expressions
µ̄

U
= 1− 2

n
ǫ (4.46)

and
2µ0

U
= 1− n+ 2

n
ǫ, (4.47)

which can be exploited in Eq. (4.44), leading to the the ansatz

4µ0

(

3 ˙̃Φ + k2ζ̃
)

+ ae−φ̄
(

1− n+ 2
n
ǫ

)

Bϕγ = 0 (4.48)

to first order inǫ. If indeed such a relation exists or at least provides a suitable approximation,

it should be possible to verify this with the help of the field equations or directly by numerical

analysis. Current work is investigating this issue in more detail. One obvious concern is that

such an approach could introduce inconsistencies which would spoil any results obtained under

the assumption of Eq. (4.48). As we shall see in the next section, however, this does not appear to

be the case. The above relations may then be used to eliminatethe scalar field variablesϕ andγ

from the perturbation equations. As will become clear, thisforms the key to deriving approximate

expressions for the metric potentials in analogy to the framework of GR. In accordance with the

findings of Ref. [87],Bϕ should take values on the order ofµ0 and, for simplicity, we will further

assume thatBϕ may be treated as a constant.
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4.3. Metric perturbations in TeVeS

4.3.4 Applications on subhorizon scales

4.3.4 A Modified Poisson equations

In the following, we shall assume the previously discussed modified Einstein-de Sitter cosmology

with perfect tracking of the scalar field̄φ. This allows one to use the corresponding background

expressions presented in Sec. 4.3.2 C and considerably simplifies the analysis of the modified

equations. Adopting the relations forϕ andγ presented in Sect. 4.3.3 B and assuming thatBϕ =

const, one may now express metric perturbations solely in terms of the matter fluid variables and a

detailed derivation of this result can be found in App. D. As afirst application, we shall investigate

the behavior of this model for scales much smaller than the horizon. In this case, one hasaH/k≪ 1

and the metric potentials approximately take the form (again see App. D for details)

Ψ̃, Φ̃ ∝ δ
k2
. (4.49)

Just as in GR, the potentials depend on the density contrast only and they also exhibit the same

scale dependence (which is not too surprising as we are working within the linearized approxi-

mation). Unlike the ordinary Einstein-de Sitter case, however, the time dependence of the metric

potentials is more complex and involves the fieldφ̄which is therefore expected to have a significant

impact on the growth of density perturbations.

4.3.4 B Growth of density perturbations

Equipped with an analytic expression for the the potentialΨ̃ (or equivalentlyΨ), we now proceed

with the analysis of structure growth in the context of TeVeS. As is well known, the ordinary

Einstein-de Sitter model in GR gives rise to a growth equation of the form

d2δ

da2
+

3
2a

dδ
da
− 3

2a2
δ = 0, (4.50)

with the two solutionsδ ∝ a−3/2 andδ ∝ a. Following the same derivation as in GR, the TeVeS

analog of Eq. (4.50) for our present assumptions reads

d2δ

da2
+

1
2a

(

3+
4

2µ0 + 1

)

dδ
da
− Ã

a2

(

1+ B−1
ϕ

)

δ = 0, (4.51)
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4.3. Metric perturbations in TeVeS

Figure 4.6: Evolution of subhorizon density perturbations in the modified Einstein-de Sitter cosmology:
Assuming a potential withn = 4 and a scalar perturbation ratioBϕ = 3µ0/2, the figure illustrates results for
KB = 1 (dashed line), 0.1 (dotted line), and 0.09 (dashed-dotted line). For comparison, the corresponding
evolution in the ordinary Einstein-de Sitter model is also shown (solid line).

whereÃ depends on̄φ and is given by Eq. (D.30). AssumingBϕ = 3µ0/2 and settingµ0 = 1000,

lB = 100Mpc,φ̄0 = −0.003 7 andn = 4 for the scalar potential, Fig. 4.6 shows the numerically

calculated evolution ofδ for different values ofKB and an arbitrary, but fixed choice of initial

conditions ata = 0.01. As can be seen from the figure, our simple model recovers the enhanced

growth reported in Ref. [87] for small values ofKB (∼ 0.1). For larger values ofKB (& 1),

however, this enhancement does not occur and the density contrast follows a power law with

δ ∝ a1.27, thus still growing faster than in the ordinary Einstein-deSitter case. This behavior can

be better understood by expanding the functionÃ in terms of the scalar field̄φ which is much

smaller than unity, i.e.|φ̄| ≪ 1. This immediately yields

Ã ≈
3Bϕ
2µ0
+ 6

[

3
Bϕ
µ0
+

4
KB

(

1−
Bϕ
µ0

)]

φ̄ + O
(

φ̄2
)

, (4.52)

where we have additionally neglected terms proportional toǫ and used thatµ0 ≫ 1. If KB is

sufficiently large compared tōφ, the zeroth-order term in the above will dominate and thusÃ ≈
7Note that the choice of a small negative value forφ̄ does not automatically violate causality [43, 253] and is in
accordance with the results of Ref. [87].
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4.3. Metric perturbations in TeVeS

Figure 4.7: Metric perturbationsΨ andΦ for a top-hat overdensity at redshiftz = 1 (a = 0.5): Assuming
KB = 0.1, the figure shows the resulting potentialsΨ (dashed line),Φ (solid line) and the corresponding GR
result (dotted line; the potentials are the same) as a function of the physical radial coordinater.

3Bϕ/2µ0. In this case, one can solve Eq. (4.51) analytically and we find δ ∝ ap with

p =
1
4



















√

1+ 24
Bϕ
µ0
− 1



















(4.53)

for the growing solution. On the other hand, ifKB is chosen small enough, the term proportional

to φ̄ in Eq. (4.52) will become important, leading to the enhancedgrowth observed in Fig. 4.6.

Although likely related to our present approximations, Eq.(4.52) suggests that forBϕ = µ0, which

would correspond to Eq. (4.50) in the limit of largeKB, additional growth should be suppressed

since the term proportional tōφ/KB vanishes; indeed, we have numerically verified that enhanced

growth does not occur in this case. Whether such a feature remains for more realistic time-varying

choices ofBϕ (possibly motivated from numerical analysis) remains to beseen. Also note that

all models which exhibit enhanced growth eventually run into a singularity which appears to be

connected to the used logarithmic approximation forφ̄ in Eq. (4.31), but could also arise as a

consequence of our assumption thatBϕ = const. Clearly, this warrants further investigation and

should ideally include cosmologies which also account for the effects of DE.

To conclude this section, we demonstrate how the mechanism responsible for enhanced growth

generates differences between the matter frame potentialsΨ andΦ (Remember that in GR, such
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4.3. Metric perturbations in TeVeS

Figure 4.8: Same as Fig. 4.7, but now assumingKB = 1.

a difference can only be caused by anisotropic stress). For this purpose, we switch to physical

coordinates and use the two different Poisson equations specified by Eqs. (D.28) and (D.28) to

calculate the potentials for a spherical top-hat distribution at redshiftz = 1 with a radiusR =

50Mpc and overdensityδ0 = 0.1, keeping the same parameters as before. The resulting potentials

are illustrated in Figs. 4.7 and 4.8 forKB = 0.1 andKB = 1, respectively. A small value ofKB

drives the potentials apart, corresponding to relative deviation of around 10% in Fig. 4.7, whereas

the two potentials are basically identical forKB & 1.

4.3.5 Summary and further applications

Here we have considered the growth of perturbations in the context of TeVeS. The structure of the

linearized perturbation equations suggests the introduction of two new functions,Bϕ andBγ, which

fully characterize the new degrees of freedom arising from the scalar and vector field, respectively.

Assuming these functions to be approximately constant and choosing a cosmological background

corresponding to the Einstein-de Sitter model in GR, we havederived the TeVeS analog of the

growth equation and discussed its dependence on the theory’s parameters. In accordance with

the findings of Ref. [87], enhanced growth only occurs for small values of the constantKB, which

also results in a difference between the matter frame potentialsΨ andΦ, the so-called gravitational

slip. For larger values ofKB, the solution of the growth equation essentially follows a power law
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4.3. Metric perturbations in TeVeS

whose exponent is determined by the assumed values ofBϕ andBγ and may differ from that of the

ordinary Einstein-de Sitter model in GR.

If supplemented with numerical estimates for the functionsBϕ andBγ, the framework intro-

duced in the last section appears as a particularly suitableparametrization for detailed studies of

the growth factor in TeVeS. Such parameterizations have recently gained interest as a general way

of investigating potentially observable signatures of modified gravity [254, 255] and open the pos-

sibility to adopt conventional methods and tests which are frequently applied in the context of GR.

Taking weak gravitational lensing, for example, it would beinteresting to see how the enhanced

growth quantitatively affects estimates on different signals such as galaxy number counts and es-

pecially the associated noise which is expected to drop in a theory where structure grows faster

than in GR. A first application into this direction regardingthe detectability of large-scale voids

in a TeVeS-like universe is currently in progress. Furthermore, one might consider our results as

a first approach toward investigations of the nonlinear clustering of density perturbations in these

theories. Although one expects the linearity in the gravitational sector to break down at some

point, mainly because of nonlinearities arising from the potential terms which are responsible for

the theory’s MONDian limit, this approximation should holdlong enough to investigate the influ-

ence of vector perturbations on cluster scales. For instance, a particular criterion for the validity

of such an approach would be the requirement that the perturbed expression for the functionµ

derived in Ref. [101] is satisfied,

δµ = 2
V′

V′′
Ψ̃ + 4˙̄φ

e2φ̄

a2V′′
ϕ̇. (4.54)

The above prospects on new and potentially powerful ways of constraining the theory underline

the importance of further research in this field which, regarding a systematic analysis of TeVeS-

like models, is still at a very early stage. Future work should also extend investigations to more

general tensor-vector theories and explore whether similar approaches are also applicable in these

frameworks. Finally, note that even if the presently made assumptions turn out to be a bad de-

scription of the growth in TeVeS, our model provides an interesting tool for generically studying

effects in modified gravity with enhanced growth.
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Chapter 5

Summary

In this thesis, we have tried to address several possibilities on how to constrain hypothetical mod-

ifications to the gravitational sector, focusing on the subset of tensor-vector-scalar theory as an

alternative to CDM on galactic scales and a particular classof chameleon models which aim at

explaining the coincidences in the DE sector.

Beginning with the framework of TeVeS theory, we have developed analytic models for non-

spherical lenses which allowed us to test the theory againstobservations of multiple-image sys-

tems. While isolated double-image lenses are generally well explained, the situation for quadruple-

image systems and lenses in dense environments such as groups or clusters appears challenging.

Nevertheless, we have argued that the found problems are mainly related to our simplistic lens

model which does not account for any effects due to environment and may strictly be applied to

isolated systems only. Despite being inconclusive, our analysis has pinpointed certain systems

which call for a more detailed analysis in the future and could hold the key to make solid state-

ments about theory’s performance in the domain of galactic lenses.

As the next step, we have investigated the role of intercluster filaments in TeVeS. The typically

very low density of these large-scale objects suggests thatdepartures from GR are expected to be

quite significant. Modeling filaments as infinitely long cylinders, we have analyzed their lensing

properties and confirmed this expectation. Furthermore, wehave shown that a single filament can

contribute a shear signal on the order of 0.01 and considering multiple filaments along the line

of sight, this can add up, leading to a significant and compleximpact on the shear measurements

of other objects. In principle, our findings also allow one tofalsify TeVeS by excluding a large

lensing signal through measurements around the position ofa known filament. Given the current
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observational uncertainties, however, this seems practically impossible.

We then moved to the missing mass problem in TeVeS and considered the possibility of mas-

sive sterile neutrinos with a mass of 11eV. To test this hypothesis, we have outlined how to use

cluster lenses with a significant level of substructure to constrain the allowed neutrino density set

by the Tremaine-Gunn bound. The key input here is that if one detects a sufficiently dense dark

matter concentration within such a lens system, then neutrinos within a given mass range would be

immediately ruled out. A preliminary analysis of the lensing cluster Abell 2390, however, appears

to be consistent with a mass of 11eV. Nevertheless, we have suggested the search for other cluster

lens candidates combined with a more detailed analysis which is likely to give tighter constraints

than the analysis presented in this thesis.

Leaving the field of TeVeS for a little bit, we further considered coupled scalar field models

and presented a general framework for exploring the nonlinear clustering of density perturbations

by means ofN-body simulations. Choosing a particular realization for achameleon model where

the scalar field only couples to CDM particles, we have performed the first complete simulations

in the sense that the spatial variation of the scalar field on small scales has been fully taken into

account. For a reasonable range of model parameters, our results predict that the best chance of

discriminating such theories from the standardΛCDM model might come from observations on

intermediate scales which are relevant for galaxy clusters(∼ 102 − 103kpc) and there is a good

chance that future surveys such as the Kilo-Degree Survey might be able to detect such a signal.

Finally, we have discussed the prospects of applying similar methods or techniques to study

the linear and nonlinear evolution of density perturbations in TeVeS. The main obstacle arising for

this class of theories is that one cannot start from the nonrelativistic field equations because these

do not include contributions of the vector field which are known to be crucial for the formation

of structure on large scales. To find a possible way around this problem, we have tried to moti-

vate an ansatz for the perturbations of the scalar field, which allows one to cast the perturbation

equations into a more convenient form. Although there are still several open questions regard-

ing our approach, it allowed us obtain the TeVeS analog of thegrowth equation in the modified

Einstein-de Sitter cosmology and appears as a useful framework for general studies of gravity the-

ories with enhanced growth. On a more speculative level, we have further outlined the possibility

of investigating the nonlinear regime of structure formation at least to some extent.
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Appendix A

Partially degenerate neutrino gas in

galaxy clusters

A.1 Nonrelativistic Fermi gas

For a system of identical fermionic particles in thermal equilibrium, the average number of states

with energyǫi is given by

〈ni〉 = gi

(

e(ǫi−µ)/κBT + 1
)−1
, (A.1)

whereκB is the Boltzmann constant,µ is the chemical potential andgi denotes the degeneracy

factor. Using thatgi = g andǫi = p2
i /2m for nonrelativistic particles, taking the continuum limit

gives rise to the distribution function (m is the particle mass)

f (ǫ)dǫ = g

√
2m3/2

2π2~3

√
ǫ
(

e(ǫ−µ)/κBT + 1
)−1

dǫ (A.2)

which allows one to determine the corresponding thermodynamic properties of the gas. Consid-

ering spherically symmetric configurations and introducing the radial velocity dispersionσ, the

corresponding equation of state is given parametrically as

ρ = g

√
2m4

2π2~3
σ3F1/2(χ) (A.3)

and

P = g

√
2m4

3π2~3
σ5F3/2(χ), (A.4)
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where

Fp(χ) =

∞
∫

0

xp (

ex−χ + 1
)−1 dx (A.5)

andχ = µ/κBT (for a derivation see, e.g., Ref. [256]). In the limit of fulldegeneracy (corre-

sponding to very large positive values ofχ), this yieldsP ∝ ρ5/3 while the non-degenerate limit

(corresponding to very large negative values ofχ) leads to the classical resultP ∝ ρσ2.

A.2 Massive neutrinos in hydrostatic equilibrium

In an expanding and cooling universe, neutrinos (ordinary or sterile) with a mass on the order of

several eV or larger may be considered as nonrelativistic particles at the late stages of cosmological

evolution (matter era and further stages). This applies in particular to galaxy clusters where such

neutrinos should move with velocities much smaller than thespeed of light [81, 190]. As these

particles are fermions, we may treat them using the relations presented in the last section. The

equation of state given by Eqs. (A.3) and (A.4) formally depends on the chemical potential, but

there is no independent way of estimatingχ apart from numerical simulations of a collapsing

baryon-neutrino fluid. Lacking such simulations in the modified framework, however, we will

start from the estimated densityρν to obtain the chemical potential necessary for an equilibrium

configuration. In the following, we will outline the procedure applied in Sec. 3.4 to calculate the

TG bound.

Assuming that the neutrino gas is in hydrostatic equilibrium, the pressure obeys

d
dr

Pν(r) = −ρν(r)g(r), (A.6)

whereg(r) is the total gravitational force at radiusr. Combining the above with Eqs. (A.3) and

(A.4), we determineχ as a function of radius (one possibility of achieving this isdescribed in e.g.

Ref. [190]). This result is used to calculate the corresponding velocity dispersionσν which will

generally differ from that of the ICM. Insertingσν into Eq. (3.74), we then find the maximally

allowed neutrino densityρν,max. Sinceσν generally varies with the radius, this obviously yields the

TG bound as a function of position. Finally, note that futuresimulations of galaxy clusters in this

context will not only probe the estimated values ofχ, but also tell us whether the such obtained

differences between the velocity dispersions of neutrinos and ICM are actually realistic.
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Appendix B

Modeling the baryonic content of A2390

B.1 X-ray gas and central mass distribution

To derive a reasonable model for the gas distribution in A2390, we use the results given in Ref.

[202]. The intrinsic electron density derived from CHANDRAobservations (shown in Fig. 10 of

Ref. [202]) can be well described by a spherical profile of thefollowing form:

ne(r) =
n0

(

1+ (r/r0)2
)1/2
, (B.1)

wheren0 = 0.1cm−3 and r0 = 10kpc. Assuming a mean molecular weight ofw = 0.6 and

an additional factor of 1.2 to account for the global effect of the cluster’s stellar components,

we thus obtain an expression for the effective central density profile with a central density of

ρ0 = 1.8 × 106M⊙ kpc−3. Since the volume integral of Eq. (B.1) diverges, we smoothly cut the

profile at radiusRwithin a range of 200kpc. The cutoff scale is set toR= 1Mpc which corresponds

to 0.7r500
1 as given in Ref. [204]. This yields a total integrated mass ofM ∼ 1.3× 1014M⊙ and

a surface density profile which is in good agreement with a 10− 20% gas fraction of the enclosed

projected lensing mass estimated in the framework of GR [206, 208]. The density distribution

specified by Eq. (B.1) is illustrated in Fig. 3.18 (dotted line).

Although our choice for the density profile is less accurate and results in a slightly smaller mass

than typicalβ models [202, 213] or more flexible ones [204], it will be sufficient for our analysis.

As is shown in Sec. 3.4.4 B, the relevant lensing mass is mostly dominated by the contribution of

1Assuming the framework of GR with CDM, the overdensity radius r500 is the radius within which the mean matter
density is 500 times the critical density of the universe at the cluster’s redshift.
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B.1. X-ray gas and central mass distribution

Figure B.1: Enclosed projected (Newtonian) dynamical mass profiles forour TeVeS equilibrium model
(gas+ SNs; solid line) and an NFW model (dashed line). The lower mass of the TeVeS model is mostly
caused by the approximate description of the gas density given in Eq. (B.1); triangles indicate the estimates
from weak lensing observations. At the arc’s position (θ ≈ 38′′), the relative difference between the models
is about 10%.

SNs. Thus the strong lensing results, which we are primarilyinterested in here, will be relatively

insensitive to the actual assumption of the central baryonic distribution. Adopting the more realis-

tic density models above in a few selected simulation runs, otherwise identical to those presented

in Sec. 3.4.5, we find only small differences on the order of a few percent in the corresponding

results and confirm our argument. This is also indicated by comparing the enclosed projected dy-

namical mass profiles of our cluster model (gas+ SNs) to the Navarro-Frenk-White (NFW) profile

[257] estimated in Ref. [204] (see Fig. B.1). Although the TeVeS model underestimates the mass,

the discrepancy from the NFW model is only about 10% at the arc’s position (θ ≈ 38′′). In addi-

tion, the figure shows the weak lensing results obtained fromthe Canada-France-Hawaii Telescope

(CFHT) for a photometric redshift distribution based on theCFHT Legacy Survey data [208, 258].

The relative good agreement between dynamical and weak lensing mass estimates further implies

that structure along the line of sight plays no significant role and does not affect our analysis. All

presented quantities have been corrected for the cosmological model specified in Eq. 3.67. Note,

however, that a rather accurate description of the gas density as well as its temperature profile is

important to estimate the neutrino content necessary for hydrostatic equilibrium in TeVeS [190].
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B.2. Galaxy morphology and masses

B.2 Galaxy morphology and masses

Since a rather detailed model of the cluster might be important in TeVeS, we also need to take the

contribution of individual galaxies into account. For simplicity, we only consider the most massive

member galaxies in the immediate vicinity of the straight arc’s observed position; galaxies which

are located farther away are unlikely to affect the TeVeS lensing maps in this region, which is

confirmed by our results presented in Sec. 3.4.5. Although A2390 exhibits a rich class of galaxy

morphologies, with many galaxies showing elliptical or lenticular shapes, the impact of individual

morphologies on the arc’s environment can safely be neglected due to the galaxies’ sufficiently

large distances. While this is not necessarily true for the galaxy 2592 (see Fig. 3.17) which

resides directly adjacent to the arc, a spherical density model provides a good description, which

is indicated by the rather mild ellipticity seen in the optical HST image. As can be seen in Sec.

3.4.5, this approximation does not affect the basic results of our analysis - at least in the case of

quasiequilibrium configurations.

Furthermore, we assume that all considered galaxies can be modeled by a matter distribution

of the form

ρ(r) =
MrH

2π(r + ǫ)(r + rH)3
, (B.2)

whereρ(0) = M/(2πǫr2
H) is the central matter density, and the profile’s core radiusis universally

set torH = 3kpc. The length scaleǫ corresponds to a smoothing parameter becoming necessary

due to the limited resolution of our simulations and is specified in App. C.2. Forǫ = 0, Eq. (B.2)

reduces to the well-known Hernquist profile [139] which closely approximates the de Vaucouleurs

R1/4 law for elliptical galaxies.

To infer the masses of individual galaxies, needed for our strong lensing analysis, we consider

the data of the spectro-photometric catalog compiled in Ref. [219], which lists magnitudes for

48 galaxies inside the cluster A2390. All magnitudes are given in the Gunnr band [259], and a

simple formula [260] to convert theR Johnson magnitude and theB− V color index to the Gunn

r band can be found in the literature2. Accordingly, we have computedr⊙, the Gunnr magnitude

of the sun, adoptingR⊙ = 4.42 [261] and (B− V)⊙ = 0.64 [262]. We have foundr⊙ = 4.95 which

is rather close to ther value inferred from SDSS, the corresponding band being quite similar to

the Gunnr band. Our result forr⊙ has then been used to evaluate the absolute luminosities of the

2For further reference, an excellent description of the Gunnmagnitude system is given on the website
http://ulisse.pd.astro.it/Astro/ADPS/.
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B.3. Role of the central cD galaxy

galaxies given in Ref. [219].

Next, we need a realistic mass-to-light ratio (M/L) in order to determine the galaxy masses.

To this end, we have followed a twofold approach: First, we have adopted a constantM/L derived

by combining the relation betweenM/L and theg − r color index presented in Ref. [263] with

theg − r colors for massive ellipticals in the red sequence of the SDSS given in Ref. [264]. The

corresponding masses are labeled asM1. Second, we have also consideredM/L as a function of

M in agreement with the results for the galaxies of A2390 discussed in Ref. [219]. For this, a

dynamical mass estimate based on measured velocity dispersions was used. As elliptical galaxies

are mostly subject to the strong gravity regime within theirhalf-light radius, however, estimates in

both MOND/TeVeS and Newtonian dynamics should be roughly the same. This second mass esti-

mate, denoted asM2, is probably more reliable since it involves fewer assumptions. The properties

of the such obtained galaxy models are listed in Table 3.4.

B.3 Role of the central cD galaxy

Assuming an equilibrium model for A2390, it has been found that 11eV SNs reach their densest

possible configuration forr . 20kpc (see Sec. 3.4.4 B). Since Eq. (3.78) takes the TG bound

into account, our cluster model misses some mass in the central part and does not correspond

to a genuine equilibrium situation. A way of compensating for this is to consider an additional

contribution due to the central cD galaxy. Following the lines of Ref. [190], one can estimate a

total galaxy mass of approximatelyM = 1.8× 1012M⊙. As the central region of A2390 is neither

spherically symmetric nor in equilibrium [202, 204], it is important to note that such an approach

has no real physical meaning, but rather offers a convenient way to tweak our cluster model.

What does the above mean for our lensing analysis? Modeling the cD galaxy as a point

mass, a straightforward calculation shows that its impact on the TeVeS lensing maps can be safely

neglected. At the position of the straight arc (38′′ or 140kpc from the cluster center), the additional

matter gives rise to changes of 1− 2%. Moving to smaller radii, the deviation grows, but we are

not interested in this region anyway. Thus we consider the cluster model presented in Sec. 3.4.4

as sufficient for our investigation.
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Appendix C

Numerical tools and setup for A2390

C.1 Solving the scalar field equation

Having set the framework of gravitational lensing and cosmology in Sec. 3.1, we may proceed

with calculating the desired TeVeS lensing maps. The main problem associated with this task is to

solve the scalar field equation specified in Eq. (2.55) which can be rewritten as

∆φ = ρ̄, (C.1)

where the effective density ¯ρ(ρ, ∂iφ, ∂i∂ jφ) is

ρ̄ =
kBG
µB
ρ − 2

kBl2B
µB

∂µB

∂y

(

(∂iφ)(∂ jφ)(∂i∂ jφ)
)

, (C.2)

and indices run from 1 to 3. Equation (C.1) corresponds to a nonlinear second order elliptic

boundary value problem and can be tackled numerically. A Fourier-based solver operating on an

equidistant grid has been presented in Ref. [50] where the basic algorithm and involved approx-

imations are extensively discussed. The main idea is to employ an iterative relaxation scheme of

the form (ρ̄(0) is calculated from an appropriate initial guessφ(0))

∆φ̃(n) = ρ̄(n), φ(n+1) = ωφ̃(n) + (1− ω)φ(n), (C.3)
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C.1. Solving the scalar field equation

where we have introduced the relaxation parameterω ∈ R, an additional iteration field̃φ(n) and

ρ̄(n) =
kBG

µ
(n)
B

ρ − 2

(

∂µB

∂y

)(n) kBl2B
µ

(n)
B

((

∂iφ
(n)

) (

∂ jφ
(n)

) (

∂i∂ jφ
(n)

))

,

µ
(n)
B = µB

(

y(n)
)

,

(

∂µB

∂y

)(n)

=
∂µB

∂y

(

y(n)
)

, y(n) = kBl2B|∇φ(n)|.
(C.4)

As the scalar field’s gradient decreases much more slowly compared to the Newtonian gradient far

away from the lens, one would actually be obliged to move to very large volumes to neglect contri-

butions from outside the box and obtain correct results for the deflection angle. Assuming a fixed

grid size, this would excessively degrade the resolution ofthe corresponding two-dimensional

lensing maps. Fortunately, there is a way of avoiding this problem: Considering a finite grid with

N + 1 points per dimension (N is chosen as an even number), we may rewrite the scalar part of

the deflection angle as the sum of contributions coming from both inside and outside the grid’s

volume:

α̂s = 2

N
2 ∆x
∫

−N
2 ∆x

∇⊥φ
(in)dz+ 2

−N
2 ∆x

∫

−∞

∇⊥φ
(out)dz+ 2

∞
∫

N
2 ∆x

∇⊥φ
(out)dz, (C.5)

where the quantity∆x denotes the distance between neighboring grid points. Assuming that the

scalar field at the boundaries is approximately given by thatof a point lens, i.e.

φ(out) ≈
√

GMa0 log(r), (C.6)

we obtain the following expression (M denotes the total mass inside the volume):

α̂s = 2

N
2 ∆x
∫

−N
2 ∆x

∇⊥φ
(in)dz+ 4A, (C.7)

where

A =
√

GMa0

q

[

π

2
− arctan

(

N∆x
2q

)]





















x

y





















(C.8)

andq2 = x2 + y2. Thus, if the point lens approximation is applicable, we need to perform the

integration only over our finite grid since all contributions from outside the box can be expressed

analytically.

One of the numerical challenges of our analysis of A2390 is that we need to resolve galac-
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C.1. Solving the scalar field equation

tic scales in a cluster-wide box, which requires a relatively large number of grid points. Since

all calculations have to be performed in three dimensions, this clearly exceeds the capacity of a

single-processor machine, in terms of both needed time and memory, and therefore calls for a

more powerful computer architecture. For this reason, we have implemented a parallel version of

the original solver using the Message Passing Interface (MPI) standard. The parallelization as well

as all calculations presented in Sec. 3.4 have been carried out on the HUYGENS supercomputer

at SARA in Amsterdam within the HPC-EUROPA Transnational Access Programme. The HUY-

GENS system consists of 104 nodes, with 16 dual core processors (IBM Power6, 4.7 GHz) as well

as either 128 GBytes or 256 GBytes of memory per node, thus providing an excellent environment

for our needs.

The parallel solver has been tested with analytic TeVeS models such as the Hernquist lens

(see, e.g., Ref. [50, 92]), and has also been compared to previous calculations for the “bullet

cluster” [50], yielding exactly the same results - up to machine accuracy - as the serial version for

identical input parameters. Considering the numerical setup for A2390, we choose a physical box

size ofV = d3 = (4Mpc)3 in order to meet the requirements of the point lens approximation at the

grid’s boundaries. Performing a variety of test runs, we have found that the solver’s convergence

property quickly deteriorates if we increase the number of grid points per dimensionN, meaning

that the code takes many iteration steps or even fails to converge1. Typically, this problem already

occurs atN = 512 and manifests itself through extreme fine-tuning of the constant relaxation

parameterω. Depending on the particularly used density model of the cluster, acceptable values

for ω vary within a range of 0.7 − 0.9, but allow them to be easily identified just after a few

iterations. Compared to the analysis of Ref. [50], we thus obtain no universal value for the

relaxation parameter. Similarly, we also note that the solver’s behavior becomes more sensitive

with respect to the scalar’s initial guess. This is expectedbecause the effective deviation from

the desired solution increases withN and can usually be accounted for by slightly modifying the

original point mass ansatz of Ref. [50] to achieve a finite core,

φ(0)(r) ∝ log(r + rc), (C.9)

whererc is on the order of a fewd/N. While more elaborated guesses are also possible, they

typically do not yield a much better performance.

1It is quite likely that the problem is partly related to the destabilizing influence of high frequency modes. These modes
are able to “see” and amplify numerical artifacts which are present both in regions around local extrema, where the
derivative of scalar potential exhibits values close to zero, and at the grid’s boundaries.
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C.2. Numerical setup for A2390

Figure C.1: Predicted critical curves for an isolated galaxy given by Eq. (B.2): Assuming an aperture mass
of 3.5×1011M⊙ within a 3′′ (∼ 11kpc) diameter as well as a lens and source redshift ofzl = 0.23 andzs = 1,
respectively, we present results for both a high resolution(∼ 0.05′′, solid line) and a low resolution setting
(∼ 1.2′′, dashed line) with subsequent interpolation.

C.2 Numerical setup for A2390

In all simulation runs, we set the number of grid points per dimension toN = 896. This yields

a resolution of approximately 1.2′′ (∼ 4.5kpc) for our choice ofd = 4Mpc. To improve the

numerical stability of our Fourier solver, we further require all density components to be centered

within their respective subcube, which can lead to a maximaldeviation of 0.6′′ from the positions

listed in Table 3.4. In addition, we assume a smoothing parameterǫ = 1kpc for the galaxy profile

given by Eq. (B.2). Once the desired fields and derivatives are calculated, we use a cubic spline to

interpolate our results and determine the relevant lensingquantities. For the given specifications,

individual simulation runs typically require 30− 50 iteration steps to converge, and can last up to

24 hours using 32 processors.

The interpolation approach is justified because the exact result is expected to be relatively

smooth. To support this argument, we performed a small numerical experiment: Assuming an

aperture mass of 3.5 × 1011M⊙ within a 3′′ (∼ 11kpc) diameter and the parameters from above,

we compared the predicted critical curves of an isolated galaxy given by Eq. (B.2) for low res-
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olution (∼ 1.2′′) with subsequent interpolation to those calculated for a higher resolution setting

(∼ 0.05′′). Choosing a lens and source redshift ofzl = 0.23 andzs = 1, respectively, the results

are shown in Fig. C.1. While the radial critical curve is not very well recovered, the radius of the

tangential critical curve, which is relevant for our considerations on the straight arc2, is only un-

derestimated by roughly 10% on average. Considering the full cluster model of A2390, however,

galaxies are not isolated, but reside within the cluster’s background field, which leads to a boost

of their corresponding Einstein radii. Therefore, we expect the accuracy of the calculated lensing

properties, including critical curves and caustics, to be significantly improved and sufficient for

our analysis in this case.

2Although radial caustics can produce straight images, the resulting orientation (pointing towards the center of the
corresponding lens) is not compatible with the observed arc.
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Appendix D

Perturbation equations in TeVeS

D.1 Scalar field evolution during tracking

In the following, we will assume the potential defined in Eq. (4.16) and use the notation and

definitions of Ref. [96]. There it has been found that the scalar field evolves during tracking as

φ̄ = φ̄0 + φ1 loga, (D.1)

where

φ1 ≡
dφ̄

d loga
(D.2)

is approximately constant. Indeed, following the derivation presented in Ref. [96], one can show

that

φ1

1+ φ1
=
β

2µ0

√

(

1+ 3w
1− w

)2

, (D.3)

whereβ = ±1 denotes the sign of the scalar field’s time derivative, i.e.

β ≡ sgn˙̄φ. (D.4)

To see that the sign in Eq. (D.3) is chosen appropriately, oneuses Eq. (D.1) and finds that

β = sgn
(

φ1
ȧ
a

)

= sgnφ1 = sgnβ, (D.5)

where we have assumed that|φ1| ≪ 1 for the last equality. Note that this is justified because ofthe

requirementµ0 ≫ 1 for viable cosmological models.
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D.2. Perturbation equations in conformal Newtonian gauge

Here the right-hand side of Eq. (D.3) deserves special attention: Naively evaluating the square

root, one obtains the result of Ref. [96]. As the argument’s sign does depend on the actual choice

of w, however, one has
√

(

1+ 3w
1− w

)2

=
|1+ 3w|
|1− w| , (D.6)

which eventually gives the result in Eq. (4.27). During tracking, the fieldµ̄ (see Sec. 4.3.2 B)

evolves as ¯µ = 2µ0(1+ ǫ), where

logǫ ∝ −2φ1 + 3(1+ w)
n

loga, (D.7)

and thus 2φ1 + 3(1+ w) > 0 emerges as a condition for stable tracking. For a universe dominated

by a cosmological constantΛ, one hasw = −1 and thereforeβ = 1. Since the time derivative of

φ̄ changes its sign when passing from the matter to theΛ era (resulting in ¯ρφ momentarily going

to zero) [86], it follows thatβ = −1 during matter domination. This result is in accordance with

previous work [43, 87] where it has been shown thatφ̄ decreases with time during the matter era.

D.2 Perturbation equations in conformal Newtonian gauge

The fully covariant form of the linear perturbation equations in TeVeS has been derived in Ref.

[101]. Here we will summarize the resulting perturbation equations for scalar modes in conformal

Newtonian gauge. Furthermore, we shall assume a spatially flat spacetime geometry and introduce

the fluid’s sound speedCs which is defined as the ratio between the fluid’s pressure perturbation

δP and the corresponding density perturbationδρ, i.e. C2
s = δP/δρ. As usual, we express the

equations in Fourier space using the comoving wave vectork in accordance with the coordinate

system specified in Sec. 4.3.

Einstein frame perturbations Instead of using Eq. (4.34), one may also express perturbations in

the Einstein frame [86, 101]. In this case, the perturbed Einstein frame metric ˜gµν may be written

as

g̃00 = −b2e−4φ̄
(

1+ 2Ψ̃
)

, (D.8)

g̃0i = −b2∂i ζ̃, (D.9)

g̃i j = b2
(

1− 2Φ̃
)

δi j . (D.10)
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D.2. Perturbation equations in conformal Newtonian gauge

In terms of matter frame variables, the Einstein frame perturbations are given by the following

relations:

Ψ̃ = Ψ − ϕ, (D.11)

Φ̃ = Φ − ϕ, (D.12)

ζ̃ =
(

e−4φ̄ − 1
)

α. (D.13)

To avoid lengthy expressions in the perturbed field equations, it is convenient to make use of

variables from both frames.

Matter fluid equations The density contrast for scalar modes in conformal Newtonian gauge

evolves as

δ̇ = −(1+ w)
(

k2θ + 3Φ̇
)

− 3
ȧ
a

(

C2
s − w

)

δ, (D.14)

where the velocity potentialθ obeys

θ̇ = − ȧ
a

(1− 3w)θ +
C2

s

1+ w
δ − ẇ

1+ w
θ − k22

3
Σ + Ψ, (D.15)

the quantityΣ denotes the shear of the matter fluid andk = |k |. Note that the equations for

perturbations of the matter fluid remain unaltered comparedto the standard case of GR.

Scalar field equation The perturbed scalar field equation yields

γ̇ =
µ̄

a
e−3φ̄k2

(

ϕ + ˙̄φα
)

− 2
µ̄

a
eφ̄ ˙̄φ

(

3 ˙̃Φ + k2ζ̃
)

− 3
ḃ
b
γ + 8πGae−3φ̄ρ̄

[(

1+ 3C2
s

)

δ + (1+ 3w)
(

Ψ̃ − 2ϕ
)]

(D.16)

and

ϕ̇ = − 1
2U

ae−φ̄γ + ˙̄φΨ̃. (D.17)

Hereγ denotes the perturbation of an auxiliary field introduced tosplit the scalar field equation

into two first-order equations [101].

Vector field equation The two first-order equations coming from the perturbed vector equation

are

KB

(

Ė +
ḃ
b

E

)

= 8πGa2ρ̄(1+ w)
(

1− e−4φ̄
)

(θ − α) − µ̄ ˙̄φ
(

ϕ − ˙̄φα
)

(D.18)
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and

α̇ = E + Ψ̃ +
(

˙̄φ − ȧ
a

)

α, (D.19)

where the auxiliary scalar modeE is gauge-invariant and related toFµν, the field strength tensor

of Aµ which appears in Eq. (2.43) [101].

Generalized Einstein equations From the scalar modes of the perturbed generalized Einstein

equations, one obtains the Hamiltonian constraint

− 2k2Φ̃ − 2e4φ̄ ḃ
b

(

3 ˙̃Φ + k2ζ̃ + 3
ḃ
b
Ψ̃

)

+ ae3φ̄ ˙̄φγ − KBk2E = 8πGa2ρ̄ (δ − 2ϕ) (D.20)

and the momentum constraint equation

˙̃Φ +
ḃ
b
Ψ̃ − µ̄ ˙̄φϕ = 4πGa2e−4φ̄ρ̄(1+ w)θ. (D.21)

Finally, the two propagation equations read

6 ¨̃Φ + 2k2
( ˙̃ζ − e−4φ̄Ψ̃

)

+ 2e−4φ̄k2Φ̃ + 2
ḃ
b

(

6 ˙̃Φ + 3 ˙̃Ψ + 2k2ζ̃
)

+ 4˙̄φ
(

3 ˙̃Φ + k2ζ̃
)

+3
µ̄

U
ae−φ̄ ˙̄φγ − 6

(

−2
b̈
b
+

ḃ2

b2
− 4˙̄φ

ḃ
b

)

Ψ̃ = 24πGa2e−4φ̄ρ̄
(

C2
sδ − 2wϕ

)

(D.22)

and

Φ̃ − Ψ̃ + e4φ̄
[

˙̃ζ + 2

(

ḃ
b
+ ˙̄φ

)

ζ̃

]

= 8πGa2ρ̄(1+ w)Σ. (D.23)

D.3 Approximation for subhorizon scales

In what follows, we will assume the modified Einstein-de Sitter cosmology introduced in Sec.

(4.3.2 C). The first step is to express the metric potentials in terms of matter fluid variables only,

using Eqs. (4.42) and (4.48) together with the perturbationequations. Starting from Eq. (4.48),

we take its time derivative and after a bit of algebra, we finally arrive at (Bϕ = const)

e−4φ̄

2

(

3k2Ψ̃ − 2k2Φ̃ + k2Bϕ ˙̄φα +
4Bϕ
µ0
πGa2ρ̄δ

)

+















9

(

2µ0

Bϕ
˙̄φ − ḃ

b

)2

+ (1− 6µ0) ˙̄φ2 +
2Bϕ
µ0
πGa2e−4φ̄ρ̄















Ψ̃

+

[

3

(

2µ0

Bϕ
˙̄φ − ḃ

b

)

− Bϕ ˙̄φ

]

(

k2ζ̃ + 12πGa2e−4φ̄ρ̄θ
)

= O(ǫ).

(D.24)
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As can be seen from above, Eq. (D.24) relates the three (gravitational) fieldsΨ, Φ andα, where

α is related toζ̃ through Eq. (D.13), to the matter perturbation variablesδ andθ. For the next

equation, we eliminate the time derivative ofζ̃ between Eqs. (D.19) and (D.23), which leads to

Φ̃ +
(

1− e4φ̄
)

E − e4φ̄Ψ̃ − 4˙̄φα + e4φ̄
( ȧ
a
+ 5˙̄φ

)

ζ̃ = 0. (D.25)

Differentiating the above and eliminating all remaining time derivatives by suitable combination

of the perturbation equations, one finds

− e4φ̄k2ζ̃ +













2µ0
1− e4φ̄

KB

˙̄φ2 − 16
1+ e4φ̄

1− e4φ̄
˙̄φ2 − 8˙̄φ2

− 4¨̄φ +
(

1− e4φ̄
)

(

ä
a
− 2

ȧ2

a2
− 4˙̄φ

ȧ
a
+ 5¨̄φ + 5˙̄φ2

)]

α

+













4e4φ̄ 1+ e4φ̄

1− e4φ̄
˙̄φ
( ȧ
a
+ 5˙̄φ

)

+
1− e4φ̄

KB
8πGa2ρ̄













ζ̃

+

























1− 1− e4φ̄

KB













2µ0

Bϕ
˙̄φ − e4φ̄













4
1+ e4φ̄

1− e4φ̄
˙̄φ +

ȧ
a
+ 5˙̄φ













− e4φ̄
(

Bϕ ˙̄φ +
6µ0

Bϕ
˙̄φ − 3

ḃ
b

)]

Ψ̃ + 4˙̄φ













1+ e4φ̄

1− e4φ̄
− 1













Φ̃

+





















1− 3e4φ̄ − 2

(

1− e4φ̄
)2
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



















4πGa2e−4φ̄ρ̄θ = O(ǫ).

(D.26)

Finally, the last equation is obtained from eliminatingE between Eqs. (D.25) and (D.20). Together

with the relations presented in Sec. 4.3.3 B, one eventuallyends up with

− k2
(

2− KB

1− e4φ̄

)

Φ̃ − k2 KBe4φ̄

1− e4φ̄
Ψ̃ − k2 4KB

1− e4φ̄
˙̄φα

− e4φ̄
[

2

(

ḃ
b
+

2µ0

Bϕ
˙̄φ

)

− KB

1− e4φ̄

( ȧ
a
+ 5˙̄φ

)

]

k2ζ̃

+
4e4φ̄

Bϕ















4πGa2e−4φ̄ρ̄ −
6µ2

0

Bϕ
˙̄φ2















Ψ̃ −
(

ḃ
b
+

2µ0

Bϕ
˙̄φ

)

× 24πGa2ρ̄θ − 8πGa2ρ̄δ = O(ǫ).

(D.27)

Since Eqs. (D.24), (D.26) and (D.27) form a closed system forthe fieldsΨ, Φ andα, the corre-

sponding solution of this system will give the fields as expressions of the matter fluid variables

only. Inserting the logarithmic approximation for the evolution of φ̄ specified in Eq. (4.31) and

using that for subhorizon scalesaH/k≪ 1, we expand the corresponding equations for the matter
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frame potentialsΨ andΦ in powers ofaH/k and find to lowest order:

Ψ̃ = −Ã
a2H2

k2
δ, (D.28)

Φ̃ = −B̃
a2H2

k2
δ, (D.29)

where

Ã =
6µ0 − 1

(2µ0 + 1)2

(

4µ0 + 2Bϕ
) (

2e4φ̄ − e8φ̄ − 1
)

+ KBBϕ
(

1− e4φ̄
)

6
(

2− e4φ̄ − e−4φ̄
)

+ KB

(

2e4φ̄ + 3e−4φ̄ − 5
) + O(ǫ) (D.30)

and

B̃ =
6µ0 − 1

(2µ0 + 1)2

6µ0

(

2e4φ̄ − e8φ̄ − 1
)

+ KBBϕ
(

e4φ̄ − e8φ̄
)

6
(

2− e4φ̄ − e−4φ̄
)

+ KB

(

2e4φ̄ + 3e−4φ̄ − 5
) + O(ǫ). (D.31)

Note that although we have not presented the resulting expressions to first order inǫ for clarity,

their contribution is fully taken into account for all calculations conducted in Sec. 4.3.4.
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