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Abstract

Despite the many successes of the current standard modesifotogy on the largest physical
scales, it relies on two phenomenologically motivated tarents, cold dark matter and dark en-
ergy, which account for approximately 95% of the energytamatontent of the universe. From a
more fundamental point of view, however, the introductidraaark energy (DE) component is
theoretically challenging and extremely fine-tuned, desihie many proposals for its dynamics.
On the other hand, the concept of cold dark matter (CDM) alffiers from several issues such as
the lack of direct experimental detection, the questiotsatdsmological abundance and problems
related to the formation of structure on small scales. Ag@astmore natural solution might be that
the gravitational interaction genuinelyfidgirs from that of general relativity, which expresses itself
as either one or even both of the above dark components. Heoemsider dierent possibilities
on how to constrain hypothetical modifications to the gedional sector, focusing on the subset
of tensor-vector-scalar (TeVeS) theory as an alternative@M on galactic scales and a particular
class of chameleon models which aim at explaining the cdargies of DE. Developing an ana-
lytic model for nonspherical lenses, we begin our analydib testing TeVeS against observations
of multiple-image systems. We then approach the role ofdewsity objects such as cosmic fila-
ments in this framework and discuss potentially observaigieatures. Along these lines, we also
consider the possibility of massive neutrinos in TeVeS themd outline a general approach for
constraining this hypothesis with the help of cluster lsnsghis approach is then demonstrated
using the cluster lens A2390 with its remarkable straiglst @resenting a general framework
to explore the nonlinear clustering of density perturbaién coupled scalar field models, we
then consider a particular chameleon model and highlighptissibility of measurabldfects on
intermediate scales, i.e. those relevant for galaxy dlsistEinally, we discuss the prospects of
applying similar methods in the context of TeVeS and presersansatz which allows to cast the
linear perturbation equations into a more convenient form.
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Chapter 1

Introduction

1.1 The standard model of cosmology

Current observations of the universe at large scales itaitet it is to good approximation
isotropic and - following the Copernican principle - homongeus. Within the commonly ac-
cepted framework of general relativity (GR), this rematigadllowed cosmologists to develop
suitable theoretical models of the universe as a whole aodrstrain possible scenarios regarding
its origin and evolution as well as to pinpoint its energy dpeid With the advent of observational
evidence supporting a spatially flat spacetime geometwa# inferred that the universe’s energy
density must be close to a critical valpgi;. Naively, one expects this density to be made out of
known matter described by the standard model of particlsiphfSMPP), in which case it should
be dominated by the contribution of baryonic material. Hegvecurrent cosmological constraints
do not agree with this picture. For instance, Big Bang nutathesis (BBN), which provides
a theoretical description for the creation of light elensentthe first three minutes after the Big
Bang, gives strict limits on the amount of ordinary mattethe universel]1] and suggests that
baryons contribute less than 5% to the found valug.gf The fully isotropic and homogeneous
universe is, of course, an idealization. In reality, thevarse exhibits a plethora of structures,
ranging from large-scale filaments and cosmic voids downais sgalaxies and clusters thereof.
It is now widely believed that these originally formed fromyt quantum fluctuations in the very
early universe. According to the current picture, thesediations originated from a scalar field,
the so-called inflaton, which is also responsible for a rghidse of cosmological expansion very
shortly after the Big Bang. Once inflation sets in, the vacudluctuations quickly lose causal

contact and #ectively become classical, fixing the initial conditions the growth of perturba-
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tions driven by gravitational attraction. Since inflatiamsares that all of the observable universe
emerged from a small causally connected region, it provédssitable explanation for the found
isotropy and homogeneity on the largest scales today. &untbre, the inflationary scenario pre-
dicts a spatially flat spacetime geometry in accordance thithcurrent observational evidence
for a critical energy density. The theoretical study of pdrations and their evolution has made it
possible to make firm statistical predictions which can keetgwith the help of astronomical data.
Up to today, all of these tests consistently agree with the/that baryonic material accounts for
only a fraction of the universe’s present energy densityh i contribution of around 4 5%.
Therefore, if one assumes GR and the theory of inflation todoeect, the remaining 95 96%

must be constituted by something that is not part of the SMPP.

Indeed, the problem of missing matter is not entirely neweadly in the early 30s, an analysis
of the Coma cluster [2] pointed out that the mass inferrethftbe cluster’s luminosity distribu-
tion is not able to account for the system’s gravitationakeptal, and it was postulated that this
discrepancy might be due to the presence of dark matter (BNHe cluster, i.e. a hypothetical
form of matter which does not couple to light and thus is iflésto direct observations. This
assumption has been further strengthened by the first amaliyotation curves of spiral galaxies
[3, 4], followed by many more studies in the general contdéxdymamical investigations as well
as gravitational lensing (see, e.g., Refs.| [5-7] for recewiews), and the currently shared view
is that this DM component is essentially collisionless [83, cold dark matter (CDM). How-
ever, observations of the cosmic microwave background (L8l the ratio of CDM to baryons
measured by the combination of weak lensing and x-ray aisalygjalaxy clusters revealed that
this mysterious component alone is not able to fully accdanthe missing 95% of the critical
density. As it turned out, one had to add yet another ingredaethe cosmic inventory which is
commonly denoted as the cosmological constant or more aiyndark energy (DE) and - unlike
any other known matter field - characterized by a strong negatessure. The introduction of
such a quantity became necessary to explain a further aabproperty of the current universe, its
accelerated expansion. Although the fact that the presewtnse is undergoing a phase of expan-
sion was already discovered by Edwin Hubble at the beginafrtge twentieth century, the first
convincing evidence for an accelerated expansion came dtmsarvations on supernovae [la [9].
Sharing a common scale (in the form of the Chandrasekhar lina@i§s these objects are believed
to form standard candles, i.e. objects with known luminesjtwhich allows one to use them as

cosmological distance indicators and thus as probes of ihvense’s expansion history. Other
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evidence for DE comes from the observed peaks in the CMB @ajsospectrum, the imprint of

baryonic acoustic oscillations in the matter power speatfl0], the relative speeds of galaxies
in the local groupl[11], weak gravitational lensing|[12] betlate-time integrated Sachs-Wolfe
effect [13] which describes the energy gain of CMB photons tiagehrough the time-dependent

gravitational potentials generated by large-scale siractuch as galaxy clusters.

Putting everything together, the present view is that tted emergy density of today’s universe
is dominated by DE, followed by CDM and ordinary baryonic taatvith fractional contributions
of 20 - 25% and around 4 5%, respectively. Combined with the framework of GR and infla
tion, these constituents form the pillars of what is now knas theACDM model, the standard
model of cosmology. Over the recent years, A@DM model has been remarkably successful in
forming a coherent picture on the largest physical scaldgpanvides suitable explanations for the
observations on supernovael[14], large-scale struct&elld], weak lensing [1.7] and the CMB
[1€,[19]. Despite its achievements as a phenomenologicalriggion of the universe, however,
the ACDM model is not free of problems and as we shall discuss hét@gems intriguing that

these dficulties are related to the concepts of DE and CDM.

Cold dark matter At present, the generally accepted view is that CDM is pritpanade out of
nonbaryonic particles. Among the most common proposaksfiads so-called weakly interacting
massive particles (WIMPs), axions or sterile neutrinos $&fc[3.4.1). None of these are actually
part of the SMPP, but can arise within certain extensions #ssuming that CDM particles were
thermally produced in the very early universe, WIMPs prevalquite natural choice for DM:
Considering particle interaction rates and taking the egjmm of the universe into account, it has
been found that the abundance of a particle is directlyedltd its typical cross section [20]. The
higher the cross section is, the lower its abundance in thesrge will be and vice versa. If a
nonrelativistic particle interacts with typical weak-Bcaross sections, however, its relative abun-
dance to ordinary matter turns out to be just of the right pride. one obtains a DM contribution
which is in good accordance with current observationalewie. This is called the “WIMP Mir-
acle”. For instance, many supersymmetric models natugally rise to stable and heavy WIMPs
in the form of neutralino@, with a lightest neutralino around a mass of roughly-100*GeV
providing an excellent candidate to comprise the univer&®M. Until now, however, none of

the above particles has been directly detected in any ofxperenents conducted so far [21] and

1Having the same quantum numbers, the supersymmetric paadf2 boson, photon and the neutral Higgs boson can
mix, forming four eigenstates of the mass operator whiclcanemonly denoted as neutralinos.
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it should be emphasized that their existence still remdiesretical speculation. Furthermore,
even if such CDM candidates were found, one would still beviéh the problem that producing
the right amount of CDM is likely to require severe fine-tumiof the model parameters - even in
the case of WIMPs [22]. On the other hand, the concept of C¥d alffers from several issues
related to the formation of structure on small scales. Fstaimce, cosmological simulations pre-
dict that there should be a substantially larger numberteflga galaxies orbiting around galaxies
like the Milky Way than actually observed [23--25]. A commoplkanation is that there may exist
feedback processes such as supernovae which extinguistathi@rmation of such small galax-
ies. However, no fully convincing mechanism for this kindsgEnario has been proposed so far.
Another consequence of the CDM paradigm is the predictiamuspy density profiles in galaxies,
which appears to contradict the observed cored distributiodwarf galaxies| [26, 27]. Similar
evidence against such central cusps is also seen in therotatrves of spiral galaxies [28] where
the CDM density does not increase towards the center. Ressiinedies to this problem such as
feedback from active galactic nuclei or supernova windsckvare principally capable of reducing

the CDM density at the center of galaxies, have been found fodafficient [29].

Dark energy Even more mysterious than assuming the presence of DM legari&cthe necessity
for DE which appears to constitute most of the total energyten content of the present universe.
To be consistent with current observations supportinglacaed expansion, DE must come with
a pressure which is approximately equal to its energy densit with the opposite sign. In this
case, the fects of DE could be explained by simply allowing for a cosrgadal constant term
in the gravitational field equations, the same constantraily proposed (and later discarded)
by Einstein to enforce a static universe. To explain wheirg ¢bnstant comes from, however,
poses a great challenge to physics [30, 31]. From a quanteartical point of view, it should
be identified as the energy density of the vacuum. Followirggstandard methods of quantum
field theory [32] 33], one may obtain a rough estimate for itteo of magnitude by considering
the vacuum energy of a free scalar field. Introducing natumék where Planck’s constahtand

the speed of light are set to unity, i.ez = ¢ = 1, this leads to

10 ¢k
(Pvac) ~ > W k2 + m? (1.1)
0

if one takes the contribution of all the modes into accouninc& the integral in Eq.[(1l1) is

ultraviolet divergent, one might expect that such highrgpenodes do not contribute within a
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more fundamental theory and introduce a cfiitto the integral. A natural choice would be the
Planck scale where quanturfiects are believed to become important. Using this assumpiite
finds an estimate fqs,ac Which is approximately by a factor 3% larger than the actual observed
value. Obviously, there is a cancellatioffeet needed which should lead to the desired value.
Certain supersymmetric theories even require a cosmalbganstant that is exactly zero, which
further complicates things. This is the cosmological camisproblem, the worst problem of fine-
tuning in physics. Another related fine-tuning issue is thealled cosmic coincidence problem
which simply concerns the question why the energy contiobgtof DE and matter (mostly CDM)
have become comparable just recently. This is disturbingew of the fact that the size of the
universe at the creation of the CMB, where DE was completelyligible, has roughly grown
by a factor of 18 until the present and that after an additional increase bgctof of around
10, everything except DE will be negligible. Looked at thiaywthe transition between these
two regimes appears almost instantaneous and one woultblikederstand why this is the case.
Furthermore, it is curious that théfects of DE and DM in various systems seem to be tuned to
a common scale [34], hence requiring a coincidence in batk skectors which appears unlikely

given their current interpretation.

A perhaps more natural solution might be that the descripifggravitational interaction gen-
uinely differs from GR, which expresses itself as either one or evendfdtie above dark compo-
nents. Having only been accurately tested in the very stgpagty regime, i.e. the solar system,
there is no guarantee that GR will hold everywhere in theems®. This has motivatedftBrent
modifications to the gravity sector, either by directly opiag the underlying principles of space-
time geometry or by introducing new fields and nonstandawgloags. Typical examples afgR)
gravity [35], conformal Weyl gravity or scalar-tensor thieg, but there exist many more [34/) 36—
40]. While some of these modifications are explicitly consted to provide a phenomenological
description of observational findings, others emerge flioaotetical considerations in the context
of high energy physics. For example, there exist attemptedoncile gravitation with quantum
theory by introducing corrections to the conventional gedional interaction. Other approaches
involve strong couplings between spacetime curvature eadsfields like the Higgs field in order
to provide an explanation for DE, or introduce unconverdlorector fields to create thefects of
CDM on astrophysical scales. Finally, certain formulagiédmthe context of string theory propose
that extra-dimensions could have gravitationfieets on the visible universe, meaning that DE

and DM are not necessarily needed for a unified theory of ctugiyo



1.2. Structure and contents of the thesis

Ultimately, a modified theory of gravity must be able to cetetly explain observations
before one may consider it as a serious competitor t&atbBM model. In the following, we shall
discuss certain aspects of these theories such as theiigpraperties and possible approaches to
test and constrain them on extragalactic and cosmologiedes, restricting ourselves to a subset
of modified gravity theories which have recently gainedriesge within the scientific community.

After a general review of GR and cosmology, we will introdticese modifications in Selcl. 2.

1.2 Structure and contents of the thesis

The thesis is structured as follows:

e In Secl2, we will briefly review the basics of general religgiand cosmology, followed by

a discussion of selected possible extensions.

e The contents of SeEl] 3 are concerned with the study of gtentl lensing in tensor-vector-
scalar gravity. Starting with a test of multiple-image lesystems, we discuss the role of
low-density objects such as filaments and finally considerpbssibility of constraining

massive neutrino matter with galaxy cluster lenses.

e In Sec.[4, we shall investigate the nonlinear regime of sirecformation in the context
of coupled scalar field models. This is followed by an analysimetric perturbations in
tensor-vector-scalar gravity, aiming at how to principalpproach such problems in this

case.

e Finally, we summarize in Segl 5.



Chapter 2

Gravitation and cosmology

As the dynamics of the universe at large scales is governedrdoyity, we will begin with a
brief introduction to GR and its cosmological applicatiffe will also discuss more speculative
extensions to this framework, focusing on their motivati@md basic structure. Throughout this
thesis, we will mostly follow the conventions of Ref. [41h particular, we will assume a positive
metric signature-, +, +, +) and units where the speed of light equals unity, ce= 1. While

greek indices run from 0 to 3, latin ones run from 1 to 3.

2.1 General relativistic description of the universe

2.1.1 Basic equations

In GR, gravitation is described in terms of spacetime gegmetThe geometry is determined
by the matter content while the matter's movement is in twwegned by the geometry. More

mathematically, this interplay can be expressed in ternfielof equations which read

1
Ry — ERg‘V = 8rGT,,, (2.1)

whereG is Newton’s constantR,, is the Ricci tensor and,, denotes the energy-momentum
tensor. HereRis defined as the contraction Bf,, i.e. R = ¢’R,,, andR,, is constructed from
the metric fieldg,, according to (e.g., see Ref. [42])

MELY R VAR B MR A B (2.2)

wv,a uay ay’
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whereT is associated with the Levi-Civita connection of the metie I''s are then also called

the Christdfel symbols),

@ 1 Q.
Ty =59 "Gy + Giys — Gaya) - (2.3)

The above quantities describe the geometry of spacetinhe icdmbination defined as the Einstein

tensorG,,,

1
Gun =Ry - ERg,V, (2.4)

while T, contains the information of the matter configuration. Inrfdimensions, there are 16
field equations, but since in Einsteinian gragty andT,, are symmetric, i.eg,, = ,,, the num-
ber of independent equations is reduced to ten. In genbigkét of highly nonlinear equations is
practically impossible to solve. However, there exist rdble exceptions in cases of abundant
symmetries. In such situations, the number of independegreas of freedom can be substantially
reduced, resulting in a system of equations simple enoudpe nalytically trackable. The first
such example was found by Schwarzschild in 1915 and desdtieesacuum outside a spherically

symmetric matter distribution.

The field equations in Eq._{2.1) can be derived from the agirorciple and a suitable starting

point is given by the Einstein-Hilbert action which reads

Sg = f d“X\/—_g[l:TG +Lm (gw,TB)], (2.5)

whereg is the determinant of the covariant metgjg. The Lagrangian densit{, depends on the
metric and some collection of matter fieft§, perhaps also on their first derivatives. The form of
Eq. (Z.1) is obtained through minimization of EQ._(2.5): f#ion of the gravitational part with
respect to the dynamical variale” yields the previously defined Einstein ten§)y,. To satisfy
the structural form of the field equations, one notes thaetiergy-momentum tensor has to be

defined as the variation
1o 2 8(VGLw)
My \/_—g ogy ’

As we shall see further below, the action principt&ecs the most convenient way of introducing

(2.6)

possible modifications to the gravitational se@om particular, this approach will automatically
include necessary conservation laws through the actign'sretry properties (see Noether’s first

and second theorems).

INote that such modifications do not necessarily involve ghranthe geometric part of the action, but may be achieved
by introducing coupling terms between the metric and aolditi (new) fields.

8
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Finally, let us briefly comment on how Newtonian dynamics ryae from the framework of

GR. In the limit of weak fields and quasistatic configuratiBnme metric may be decomposed as

Ouw = M t h/lV? (2.7)

wherer,, denotes the Minkowski metric arfgj, is “small” in the sense that its components are
much smaller than unity and higher order terms are negéigiilhe equation of motion for test
particles is determined by the underlying spacetime gegnagid given by the geodesic equation,

d?x dx’ dx<

— = ——, 2.8

da? "da da 28)
whereA is some suitablefine parameter characterizing the trajectory of the pastidiésing the
decomposition in EqL(27), the geodesic equation thenoagpately takes the form (for detalils,

see again Refl_[42])

dZXi )
W = —Fbo, (29)
with
; 16hgg 0D
07 20x ~ ox (2.10)
and
AD = 4nGp, (2.11)

which directly follows from the field equations in Eq_(R.1Elearly, the above describes the
equation of motion for a Newtonian system and we idendifas the corresponding Newtonian
potential. However, it is important to note that - unlike tewtonian case - the resulting trajec-
tories are not a consequence of forces acting upon masstiegm but rather follow from (free)

propagation in a curved spacetime.

2.1.2 Friedmann-Robertson-Walker cosmology

Another example of a highly symmetric gravitational systenprovided by the universe as a
whole. Cosmological observations indicate that the usivean large physical scales is homo-

geneous and isotropl& The most general metric under these conditions is the maed-

2Here we explicitly assume that there exists a global ineztiardinate system of,, such thafl,,, has only a time-time
component and that derivatives with respect to time caryshéeneglected.
3If a spacetime is isotropic at every point (the cosmologiraiciple), it is also homogeneous.
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Robertson-Walker (FRW) metric whose line element is given b
ds’ = —dt® + a%(t) |dy® + fZ(x)dw?|, (2.12)
where we have introduced a set of polar coordingtes, () with
dw? = d@? + sir? 6dy?, (2.13)

the scale factoa and a radial functiorfx (y). The choice of the functiorik (y) is restricted by
the requirement of homogeneity. It can be shown thdl) is either linear, trigonometric or

hyperbolic iny, which corresponds to a flat, closed or open universe raspbgt

K2 sin(K/2y) (K > 0)
fk() = {x (K=0)- (2.14)

|K|~1/2 sinh(|K|1/2)() (K < 0)

HereK is a constant parameterizing the curvature of spatial syptces and bottix () and
IK|=2 have the dimension of length. There is cosmological evidehat the curvature of the
universe is negligibly small. Would there be a not too smaliivature, it should recently have
become detectable as its contribution to the expansioneainiverse would have started to domi-
nate over that of matter. A universe with= 0 is also what one expects from the simplest models
of inflation. Therefore, we will mostly concentrate on flasowlogies for which the line element

takes the particularly simple form
ds’ = &(r) [-dr? + 5j;dXdX], (2.15)

where we have used Cartesian coordinatesd introduced the conformal timewhich is related
to the coordinate timevia dt = a(r)dr. Obviously, such a metric is also conformally flat, i.e. a

Weyl transformation of the Minkowski metrig,, .

The isotropy of the universe implies that it consists of eratthich can be described as a

perfect fluid. In this case, the energy-momentum tensor itsenras

T = puyu, + P(Qyy + UyUy), (2.16)

10
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wherep andP are the fluid’'s energy density and pressure, respectivetyuadenotes the four-

velocity. Evaluating Eq.[(Z.16) in comoving coordinatese dinds

T, = diag(-p, P, P, P). (2.17)

Furthermore, homogeneity dictates that ho#ndP are functions of time only. Their relation is
called the equation of state (E0S),

w=—, (2.18)

Il
© |

and the quantity is called the EoS parameter which is generally a functiorinoét Recalling
from statistical mechanics that for relativistic matteadjation)w = 1/3, we see that this is
consistent with the theoretical result of a traceless grergmentum tensor for the Maxwell field.
In case of nonrelativistic matter (dust), the pressure npgyaximately be neglected and one has

w = 0. For any matter at hand, the energy-momentum tensor i:emng, meaning that
VAT, =0, (2.19)

Thev = 0 component of the above leads to the continuity equatiochwiétermines the evolution

of the matter density in an expanding universe,
. a
o+ 35(1 +w)p =0, (2.20)

where an overdot denotes the derivative with respect toocordl time. Assuming a constant EoS

parameter, the solution of Eq.(2120) is
p oc a 3w, (2.21)

In the case of dust, the energy density decreases invergerfiomally to the comoving volume as
the universe expands. The energy density of radiationadilfasterp « a4, where the additional

factor ofa™! can be explained with the loss of photon energy due to thicking of wavelength.

To find an evolution equation for the scale factor, one hastiarn to Eq. [(Z11). Considering

“Note that this does not generally correspond to the consenvaf energy and momentum, but emerges from the
invariance under general coordinate transformations.fin@amental problem is that vectorial quantities like gger
momentum cannot be parallelly transported to another sipae@oint in a unique way.
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2.1. General relativistic description of the universe

the equation’s time-time component, we arrive at the Frigaimequation,

3 8nG K

H2 = Tp - g, (222)

where the physical Hubble parameter is definedHas: a/a®. Again, note that there appears
an additional factor of in the denominator because we are taking the derivative i@thect to
conformal time. The spatial components of EQ.1(2.1) do neldyany additional information.
Assuming that the matter properties are given in terma,dhere remain two unknowng, and

a, which may be determined from Eqg$._(2.20) and (2.22). On therdand, given a measured

expansion history of the universe, this also allows one¢omnstruct the matter content.

Parameterization To clarify the discussion of cosmological models, it is cement to introduce
both dimensional and dimensionless parameters. In whaine] the subscript “0” will be used
to denote the values offerent quantities as measured today. We begin with definegurrent

value of the physical Hubble parameter as
Ho = 10chkm st Mpc?, (2.23)
whereh is a dimensionless constant aHg is called the Hubble constant. Current cosmological

observations indicate thht~ 0.7. Next, we define the critical density

3H2
it = —— 2.24
Pecrit 871G ( )
and expressing the energy density in termpgf leads to the dimensionless density parameter

£ (2.25)

Q .
Perit

For multiple matter fluids, we haye= Y, pi and Eq. [(2.2R) takes the form
K
1+ ﬂ = Z Qi = Qtot- (226)
|

From Eg. [[2.26), one may also understand the notion of aatitensity: If the total energy
density equalgcit, the universe is flat. Whereas the total density is smallan th.; for open
universes, it is larger in closed ones. Apart from the pd#gilof more exotic matter fluids, a

realistic universe will consist of both relativistic (e.gphoton radiation or massless neutrinos)

12



2.1. General relativistic description of the universe

and nonrelativistic (e.g., baryonic matter) density congus. Defining the curvature parameter,
Qk = —K/HZ, and allowing for a cosmological constant (which may be disd in terms of a

matter fluid withw = —1), we may recast Eq._(Z2.22) into
E%(@) = Qroa ™ + Qmoa > + Qo + Qka™2, (2.27)

where the scale factor has been normalized suctaghatl andE?(a) = H2/Hc2). Instead of using
the scale factoa, the above equations may also be written in terms of the clogjical redshiftz
which is defined as the relative increase of photon wavetebgtweera andag = 1, thus yielding

the relationz = -1+ 1/a.

From the density scaling of individual components in EGZTR, it becomes evident that rela-
tivistic matter must have been the most significant contoibat an early stage of the universe, i.e.
Q; > Qn. Nowadays, radiation has cooled down, causing other coemsrsuch a®, or Qx
to take over. With the help of cosmological observationss ftossible to put constraints on the
above parameters and there is now vast evidence suppdrth¢he known matter fields account
for only less than 5% o€ in the present universe. For instance, one may infer thatiadi
contribution ag)o ~ 4.7 x 107° from the CMB temperature which is well described by a thermal
black body spectrum at arouid = 2.7K. On the other hand, one may also estimate the bary-
onic content of the universe, either from direct astroptglsineasurements or using the predicted
primordial abundance of light elements produced at big bardeosynthesis (BBN) which took
place during the first minutes of the universe. Althoughetespears some discrepancy between
these approaches, both imigty < 0.05, which is also consistent with recent observations of CMB
anisotropies [18]. If the framework of GR indeed holds trilren the missing energy density has
to be described by something which is not rooted within tldard model of particle physics.
The ACDM model provides the most simplistic example of considgesxplaining observational

data by incorporating such unknown physics in a phenomeigalbway.

Cosmological distancesGiven a curved spacetime geometry, distance measures domger
unigue and need to be defined according to idealizations asunement prescriptions. The co-
moving distancd¢ is defined as the distance on the spatial hypersurface abnst between the
world lines of a source and an observer moving with the meamanflow. Therefore, one has the

relationdDc = dy (see Eq.[(2.12) above) and because light rays propagatedamgoods = 0,

13



2.2. Tensor-vector-scalar theory

integration yields the result

a(Zl)d 1 a(z) q

a a

Dc [a(z), a(z)] = - = ——. 2.28

cla.a@l= [ T [ 755 (2.28)
a(z2) a(z2)

Usingda = —a’dz we can alternatively express EQ. (2.28) in terms of retighif

2

Dc(z1, ) = Hio f Edé,), (2.29)

pAl

whereE(2) is given by Eq.[(2.27),

]1/2

E@ = [Qro(1+2* + Quo(1 + 2)° + Qno + Q«(1 + 2 (2.30)

In preparation for Sed_] 3, we also introduce the angular eiamdistanceDa. It is defined in
accordance with the relation in Euclidean space betweeartaA and the solid angléw of an
object,éwDiE = 6A. As the solid angle of spheres of constant radial coordigdtescaled by
fk (v) in Eq. (2.12), one must have

oA _ (2.31)
4ra’(2) 12 [Dc(z1, )] 4
From the above, it follows that
Da(z1, 22) = &(z) f(Dc(z1, 22)) = fk [Dc(z1,22)] - (2.32)

1+2

The angular diameter distance shows that cosmologicardies are not necessarily monotonic.
Assuming a universe filled with pressureless matter onlyexample Da(0, 2) has a maximum at

z = 5/4 and gently decreases for larger valueg, efhich is a consequence of spacetime curvature.

2.2 Tensor-vector-scalar theory

In the following sections, we will discuss possible modificas to the gravitational sector which
are motivated by observational findings or more fundamehtairetical ideas. To begin with, we
give an introduction to Bekenstein’s tensor-vector-scéh@ory [43] which has originally been

constructed to explain empirical relations in galaxies.

14



2.2. Tensor-vector-scalar theory

2.2.1 Modified Newtonian dynamics

Without resorting to CDM, the modified Newtonian dynamicsaaigm (MOND) aims at solv-
ing the missing mass problem on a nonrelativistic level bstpating an acceleration-dependent

change of Newton’s law which is characterized by a seglf@4-471]:

ﬁ(%)a:—V®N+S. (2.33)

Here, @y denotes the common Newtonian potential of a matter sourd& &na solenoidal vector
field determined by the condition thatan be expressed as the gradient of a scalar potential. The

function, controlling the modification of Newton’s law, has the follmg asymptotic behavior:

a(x) ~ x X<,
(2.34)
ax) ~ 1 x> 1,

For nonspherical geometries, one typically Bas 0 and finding the solution of Eq._(Z2.33) usually
requires the use of a numerical solver [46-50]. The law gbseiq. [2.3B) has been constructed
to agree with the fact that the rotation curves of spiral xjalbecome flat outside their central
parts. In such regions, the Newtonian potential caused kplaxg of massM is approximately
spherical § ~ 0) and we have

IVON| ~ GMr2. (2.35)

Now let us consider the situation in whi€¥ ®y| < ag such that the first expression in EQ. (2.34)

is satisfied. Introducing the centripetal acceleratifr with circular velocityvc, we arrive at

Ve _ VGMag (2.36)
r r ’ :

and thus
Ve = GMay. (2.37)

Assuming a constant mass-to-luminosity ratio in a specHsjgettral band, the luminosity in that
band should therefore scale\ési.e.
L oc VA (2.38)

The above relation corresponds to the well-known TullykEislaw [53] which is shown in the

right panel of Fig.[Z]1 for the Ursa Major spirals in the nedrared (K band) [52]. Analyzing
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100 — i —T o L "]
1 [ |
051 B
. T i ]
- —

- - 0+ —
i an L i
= o - ]
= L ]
—0s E

1

1.8 2 2.2 2.4
r (kpe) log(V,,,)

Figure 2.1: Left The points show the observed 21cm line rotation curve ofldhesurface brightness
galaxy NGC 1560 (the figure is taken from Ref. |[51]). The dbted dashed lines are the Newtonian
rotation curves of the visible and gaseous components dfitfikeand the solid line is the MOND rotation
curve withag = 1.2x1071°m s2. The only free parameter is the mass-to-light ratio of tiséoke component.
Right The near-infrared (Kband) Tully-Fisher relation of Ursa Major spirals (the figis taken from Ref.
[52]). The rotation velocity is the asymptotically condtamlue in units of km st and the luminosity is
given in 10°L,. The unshaded points are galaxies with disturbed kinemafice line is a least-square fit
to the data and has a slope 093 0.2.

observational data, Milgrom estimated an acceleratiotesifaag ~ 1.2 x 101%mn s2. For exam-

ple, using this value foag and choosing the so-called standard form of the interpgeftinction

A(x),
X

Vit x2

it is possible to fit the observed rotation curve of the gallC 1560 as shown in the left panel

(2.39)

A =

of Fig.[2.1. Since accelerations in the solar system aragttompared tay, Eq. (2.3B8) will turn

into the classical Newtonian law there.

The MOND paradigm still appears suitable to explain the plesk“conspiracy” between the
distribution of baryons and the gravitational field in spigalaxies [54=57]. It is striking that
such a simple prescription leads to extremely successtdigtions for galaxies ranging over
five decades in mass (see Refs.| [58, 59] for reviews), inatudur own Milky Way [60-62],
dwarf spheroidals [63—65], x-ray dim elliptical galaxi@&6[|67], and tidal dwarf galaxies [68—
70]. In addition to the Tully-Fisher law [71, 72], MOND suasfully reproduces empirical galaxy
scaling relations such as the Faber-Jackson relation #1&nd, more recently, the central surface
brightness predicted by dark halos|[75—77]. In the view of M these empirical laws emerge

as a consequence of dynamics in the low acceleration regime.
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2.2. Tensor-vector-scalar theory

While the framework of MONDian dynamics appears to work extely well on galactic
scales, the situation in galaxy groups and clusters is giifiterent: Several studies of such sys-
tems [7380] have shown that an additional nonluminousenattimponent is required to explain
observations, even after taking into account the grawitaliboost induced by the MOND formula.
In galaxy clusters, for example, this discrepancy is abdattor of two at very large radii, mean-
ing that there should be as much dark matter (mainly in thérgleparts) as observed baryons.
Assuming that MOND is a viable description for such graviigtsystems, this result has led to
the question of what the needed matter component should iseolvious that any possible form
of exotic CDM is disfavored as it would cause the originabidé Eg. [2.3B) to become redundant.
Possible remedies range from undiscovered baryonic rabgerch as cold molecular gas clouds
to the hypothesis of massive neutrinos accounting for thesimg mass [81]. We shall address this

issue further when considering the situation of gravitaldens systems in S€d. 3.

A further problem arises from the fact that the original MON®Pmulation does not spec-
ify cosmology or the nature of gravitational light deflectioRecent developments in the theory
of gravity, however, have been able to embed MONDian dynannito fully Lorentz-covariant
theories by means of a dynamical four-vector field [43, 82—88though still lacking a deriva-
tion from fundamental principles underpinning the MONDags#igm, these theories allow for new
predictions regarding cosmology and structure formai81-B9] as well as gravitational lensing
[50,190+94]. As it turns out, another appealing feature ahsonodifications is also that they
might be able to simultaneously explain the observedces of DE [40, 95-100], but we do not
consider this possibility in this thesis. In the next sattive will introduce the first proposed
relativistic theory of MOND, Bekenstein’s tensor-vectmalar theory (TeVeS), and discuss some

of its properties in more detail.

2.2.2 Fundamentals of TeVeS

In this section, we shall briefly review the basics of TeVasparticular, we will focus on its
implications for quasistatic systems and cosmology andeeethe theory is related to MOND.
Finally, we also comment on more general constructions elposnary motivation goes beyond

the interpretation of astrophysical observations.
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2.2. Tensor-vector-scalar theory

2.2.2 A Fields and action

TeVeS [43] is a bimetric theory of gravity and based on thrngeadhical fields: an Einstein metric

0.y, a time-like vector field\, such that

FAA, = -1, (2.40)

and a scalar fielg. Furthermore, there is a second metj¢ which is needed for gravity-matter

coupling only and obtained from the non-conformal relation

O = € 2%, — 2A,A, sinh(2p). (2.41)

The frames delineated by the metric fielgls andg,, will be called Einstein frameand matter

frame respectively. The geometric part of the action is exatttydame as in GR:

1 S .
Se=1Tag f &R, /-0d*x, (2.42)

whereR,, is the Ricci tensor of);, andg'the determinant of,. Note that the TeVeS constat
must not be mistaken for the Newtonian gravitational cansgg, (see Sed._2.2.2]B). The vector

field’s actionS, reads as follows:

1 , =

Sv=-a f [KF# Fpy = A(AA + 1)] Y=3d*x, (2.43)
with F,, = %Ay—ﬁyA# and indices being raised and lowered with respegf,tpi.e. A = A,
Here the constarkg describes the coupling of the vector field to gravity anid a Lagrangian
multiplier enforcing the normalization condition given By. (Z.40). Equatiori(2.43) corresponds
to the classical Maxwell action, the fielJ, now having an ffective mass. The actiofs of the

scalar fieldp involves an additional nondynamical scalar field, and takes the form

1
Se=-=
=5 [

whereh” = & — A*A” andF is an initially arbitrary function. Furthermore, there ajpptwo new

. . G4
angvﬂ¢vv¢+$F(kBGazB) V=-gd*x, (2.44)

B

constantskg andlg, wherekg is dimensionless arl@ corresponds to a length scale. As there is no
kinetic term forog, it is related to the invariarh“vﬁ,@ﬁv(p and could in principle be eliminated

from the action. This follows from the fact that the field etjoia obtained from variation of Eq.
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2.2. Tensor-vector-scalar theory

(2.442) with respect torg just corresponds to an algebraic relation betwegrand derivatives of
the fieldg. From this point of view, the introduction ofg may simply be regarded as an auxiliary
construction which allows one to write the scalar field atiioa clearly arranged form. To get a
better insight into the structure of the scalar field actiwa,follow the approach of Ref. [101] by

introducingu = 87Go3 and

2 4 GZ 4
K F = 22 78F (eGod), (2.45)

V(u) =
&) 16712 12

where we absorb the consta into the definition ofV(u). Using the above allows one may

rewrite Eq. [Z.44) as

Se = —ﬁ f |t 9,9, + V()| V=8*x (2.46)
From Eq. [2.46), one identifies both a kinetic-like and a ptigé-like term and the action now
resembles other popular scalar field constructions likegxample, k-essence models [102] which
are based on noncanonical kinetic terms for the scalar flalthe following, however, we shall
stick to the form of the scalar field action in Ed._(2.44). Nttat whether TeVeS recovers the
dynamics of MOND in the nonrelativistic limit depends on #wtual choice of the potenti® or

equivalentlyF. In the next section, we will discuss this issue in more dletai

Finally, matter is required to obey the weak equivalenceqipie, and thus the matter action
is given by

Sm= f Lin(g. T, VT®) v=gd'x, (2.47)

where B is a generic collection of matter fields. Note that world $inere by construction
geodesics of the metrig,, rather thang,,. As usual, the corresponding equations of motion
can be derived by varying the total acti6n= Sy + Sy + Ss + Sy, with respect to the basic fields
(see, e.g., Refs.| [43, 101]). As already pointed out in Rdf],[a requirement for obtaining
Newton’s law in the nonrelativistic high acceleration regi@ > ap) is thatkg, Kg < 1 (also see
Ref. [43] for a discussion on lower boundsl)f Therefore, TeVeS is kept close to GR in a sense
that it will recover well-known features of GR, but there Mde modifications induced by the
other fields. Albeit not a unique extension, TeVeS is the mpopular “MONDian representative”
so far, and a variety of its aspects have been extensivetljestin the literature (see Ref. [103]

for a review). Although the original formulation of TeVeSt&rs from several problems, e.g. in
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2.2. Tensor-vector-scalar theory

the strong gravity regime [104, 105] or - at least for certaindels - in the cosmological domain

[89,1106], it still provides a viable description of relagtic MOND on extragalactic scales.

2.2.2 B The free function, quasistatic systems and relatioto MOND

Following the lines of Ref.|[43], the “equation of motion”rfe-g suggests the introduction of a

new functionug(y) H which is implicitly given by
1 ’ 1 ’ VO 4O
— HBF (ug) = SHEF (ue) = =5 (4GF) = kelgh" V.0V, =, (2.48)

with
keGog = s (el ¥,.09,9) = ua(y). (2.49)

Here the prime denotes the derivative with respegtstd.e. F’ = dF/dug. Whether or not TeVeS
recovers the dynamics of MOND in the nonrelativistic limépgnds on the assumed form of the

function F which determines the properties of. Originally, Bekenstein made the choice

_§ud4+a@—¢@+u@+zmga_ﬂ@2

F
2
8 Hg

, (2.50)

which leads to , ,
y:%ﬂ#?ifl. (2.51)
The functiony(ug) is illustrated in Fig[2.2. What are the essential featofeahis function? First
of all, we note that quasistatic systems and cosmologit#tsons will be characterized byy> 0
andy < 0, respectively. This directly follows from the definitiof win Eq. (2.48) and our sign
convention for the metric. Next we need to specify the ptalbiaelevant branches gfug) if we
require the function to be single-valued, thus avoidingptublem of ambiguity in the theory. Let
us begin by considering the situation of quasistatic systigns 0). The denominator in Eq. (Z.51)
ensures thag — oo whenug approaches unity, which, as will become clear shortly, $poasible
for TeVeS to have a Newtonian limit. In Eq_(2151), this bebavs realized by a simple pole
atug = 1, but one may also constructfidirent expressions fd¥ (and thusy) which lead to a
singularity of higher order at this point. Likewise, the beior for small values of, i.e.y ~ 3;1%

for 0 < y < 1, forces the MONDian limit to be contained in the theory. for 0, we therefore

choose the branch covering the range g < 1 as the physical one. Considering cosmological

SNote that we could also use the previously defined fieldhich is related tqug(y) throughug(y) = (k/8r)u. In the
following, however, we shall stick to the original notatiohRef. [43].
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Figure 2.2: lllustration of the free functiory(ug) given by Eq. [2.5l1): Shown are the regimes for quasi-
static systemsy(> 0) and cosmologyy(< 0). Our choice of the physical brancheswis) is denoted by
solid lines, branches without any physical relevance byeddines.

situations ¥ < 0), we have to make a similar choice. As can be seen from[ER).cRe branch
ranges fromug = 1 to the extremum atg = 2 while the other one ranges from the extremum
to infinity. It can be shown that the energy density contgbuby the cosmological scalar field
depends on the slope of a particularly chosen branch [43}thEanonotonically increasing branch
(1 < up < 2), this contribution will be strictly negative whereas iillvoe strictly positive for the
monotonically decreasing one €2ug < ). In accordance with previous work, we shall exclude
such negative contributions to the energy density and tlefieedthe decreasing branch as the
physical one (see Sdc. 2.2.2 C). This is also the reasonddattor fig — 2)? in Eq. (Z.51) which
ensures the existence of a monotonically decreasing bianaring the whole rangge [0, —).
Note, however, that a negative energy contribution of ttadesdield does not necessarily violate
the requirement of a positive overall energy density [43] eould provide an interesting scenario

for future studies.

To obtain the theory’s nonrelativistic limit, one may apge usual approximations for weak

fields and quasistatic systems. In this case, ong/ha8, and therefore & ug < 1 in accordance
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with our assumptions. Using that also< O for the given range, the resulting metgg, turns out
to be identical to the metric obtained in GR if the nonrelatie gravitational potentiab (cf. Sec.
[2.11) is replaced by

O = EON + ¢ = Dior, (2.52)

where

E=ec(1+Kg/2)t. (2.53)

The quantitygc is the cosmological value of the scalar figlct the time the system in question
breaks away from the cosmological expansion @fdis the Newtonian potential generated by
the matter densitpH. In this approximation, it is consistent to assume #Rais pointing into the

direction of the timelike Killing vector associated withetgtatic spacetime. Then we have
W9,0V,¢ — (V¢) = [V4ll3 (2.54)
and the equation of the scalar field reduces to
V - (us (kel3(V9)?) V) = keGp. (2.55)

As has been shown in Rel. [43], Eq§.(2.52) dnd (2.55) coorespo the MOND paradigm: If
ug — 1 (corresponding toV¢| — o), the theory reaches its (exact) Newtonian limit, and the

measured gravitational constaay, is given by

(2.56)

—2pc
G :( c kB)G.

1+Kg/2 ' 4n
Similarly, the theory reaches its MONDian limit ag — 0 and the acceleration constagtcan

be defined in terms of the TeVeS parameters,

a = e2¢0@(1 + Kg/2). (2.57)
47T|B

As can be seen from abova, depends owc and may therefore, in principal, change with time.
For viable cosmological models (see Sdct. 2.2.2 C), howeurmh changes are expected to be
basically imperceptible [107]. Moreover, we will see thasialso viable to assumec| < 1 and

together withkg, Kg < 1 this yieldsG ~ Gy. Thus we will assume thdd = Gy andE = 1

®Note that forgc # 0, g,, does not asymptotically correspond to a Minkowski metric aready remarked in Ref.
[43], however, this is easily remedied by an appropriateaksg of coordinates.

22



2.2. Tensor-vector-scalar theory

throughout this thesis when working within the quasistapproximation.

As is obvious from the above, the TeVeS functignplays a similar role as the MOND inter-
polating functionu"from Sec[2.2]1 and the resulting dynamics is charactetigats asymptotic
behavior. More generally, it turns out that one needs ondyréguiremeny o« yé fory < 1
to guarantee a MONDian limit in TeVeS because the propaatignconstant may always be ab-
sorbed into the definition ddg [50]. Unlike i, however, the functiomg does not depend on the
gradient of the nonrelativistic potential, but 8. This means that there is generally no direct
correspondence between the two except for symmetric caafigns which require the aforemen-
tioned gradients to be parallel (cf. SEc.]3.4). For an apmatspchoice ofug, such configurations
further allow one to express the total nonrelativistic ptitd in particularly simple form. To see
this, we follow the lines of Ref. [92] and redefipg andy in terms of two new functiongys and

d4, according to

b gy @)‘1
T- = ko 1 > ) HB (2.58)
and ,
4 K y
2 _ (1 _B) A 2.

wherebs is defined as the value g3 in the limity — 0. Using Eq.[(2.51), we have; = 3 and

a bit of algebra reveals the relation

(1 Ks (1 KB) Hs )2
, _B(1_2B
Hs 8 2)1-ps

62 = . (2.60)
¢ (1 —ps)? l—ﬁ(l—&) HUs
An 2/)1-pus
Sincekg andKg are much smaller than unity, we take the litkit Kg — 0 and obtain
2 52

¢ T W-ug? ST @x a2

Note that this implicitly defines a neyg which will be close to the one given in Eql_(2151).
Next, we substitute:g for us in Eq. (2.5%). Restricting ourselves to spherically or mgtically

symmetric systems, it then follows from Gauss’ theorem that

_ 1-ps
Hs

Ve V. (2.62)
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Using Eq. [2.54) together with the definitionaf in Eq. (2.59), we also find

(V¢)?
a

85 = . (2.63)

Combining the above relations, one finally arrives at

IVl = vaol VOnl, (2.64)

which allows one to express the gradient of the total notivédtic potential in terms oV ®y. As
we shall see, the choice of Eq. {2.61) and the correspondisigiting relations will be extremely

useful for analytic studies of the quasistatic limit in T&Aef. Sec[B).

2.2.2 C Modified FRW cosmology

Similar to the case of GR, it is possible to derive a cosmalzginodel in TeVeS. Imposing the
usual assumptions of an isotropic and homogeneous spacétatng,, andg,, are given by FRW
metrics with scale factora andb = a€’, respectively. For a flat univers& (= 0), the analog of
the Friedmann equation then reads [43, 101]

b2

3? = 8nGale™™ (p¢ +p) (2.65)

while the equation governing the evolution of the dengitgmains the same as in GR (see Sec.
[2.1.2). Here the overdot denotes the derivative with rasjgethe conformal time coordinate in

the matter frame anal is the energy density of the scalar field,

_ MBez¢ _
Py = H212G (usF —2y). (2.66)

For cosmological models in TeVeS, we have the condifiagn0. Requiring that the functiopg

is single-valued, one is free to choose between two posgdikntial branches given the form of
F in Eq. (2.50). One branch ranges fram = 1 to the extremum atg = 2 while the other
one ranges from the extremum to infinity. In accordance wielvipus work, we define the latter

possibility as the physical one.

To find solutions for the evolution of the scale factarand b, one additionally needs to
consider the equation of motion for the scalar figldsee Sec.[413) which leads to a closed

system of equations. For Eq._(2/50) and more general clasthe potential, it has been shown
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that the cosmological scalar field evolves slowly in time #mat its absolute value is much less
than unity throughout cosmological history [43) 96]. THere, its contribution to the Hubble
expansion is negligibly small, with a ratio 6f(k) compared to the contribution of other matter
fields. Settingos = 0 and using tha| < 1 at the background level, the Hubble parameter in
the matter frame takes the form of Ef. (2.22) with= 0 and the background evolution in TeVeS
becomes structurally identical with that of a standAGDM modeIH. While this approximation
will suffice in many cases, a more detailed treatment of the cosmaldgickground will become

necessary when dealing with the growth of TeVeS metric peations in Sed. 413.

2.2.3 Aether-type theories and beyond

Despite its explicit bimetric construction, TeVeS may bétten in pure tensor-vector form [108]
and provides a particular example for an Aether-type th¢®2y whose action involves a four-

vector fieldA, and is of the general form

S— f d4x\/—_g[ + L@ A)| +Sm, (2.67)

167G

where £ is constructed to be generally covariant and local wBilecouples only to the metric
and not toA, . If we require the Lagrangian to depend on covariant davieatof A, only and the

field A, to be both timelike and of unit norm, the theory may be wriitethe form
L(g, A%) = M2F(K) + A(A"A, + 1), (2.68)

where

K = M2KP NV, AVA7,
(2.69)
K7 = C107P Gy + C26205 + C30%S,
and thec; are dimensionless constants. Hbtés a constant with the dimension of mass (in natural
units) andAa is a Lagrange multiplier, enforcing the unit-timelike cdiah for A,. Given the
form in Egs. [[2.6B) and(2.69), the Aether action includég@herally covariant terms with two
derivatives (without total divergences). The particulami of 7 (K) is principally unconstrained

and one may also construct more complicated expression& fttran specified in Eq.[(2.69),

"Note that this “identity” does not apply to the matter comtefithe universe since we assume that there is no CDM in
TeVeS. In Sed]3, we shall address this issue and its imjgitain more detail and comment on viable cosmological
models in such a framework.
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2.3. Dynamical dark energy models

including higher-order terms of the field, and its derivatives. Indeed, the framework of TeVeS
does correspond to a theory with such an exterifed herefore, Aether theory can be regarded

as generalized formulation of the Einstein-Aether framdgwib09].

A basic feature of these theories is the violation of locatdntz invariance (and thus also
gauge invariance) which is a consequence of the Aetherdialah-vanishing expectation value.
In other words, the Aether field dynamically selects a preféframe at each point of spacetime
which is given in terms of a distinct spacetime foliation defi byA,,. Traditionally, formulations
of this type have been designed as possifilecéive field theories and are used as phenomenologi-
cal probes of Lorentz-violatingf®cts in quantum gravity. In the context of more fundametnz t
ories like, for instance, string theory or M-theory, sufiieets are expected to generically occur via
spontaneous symmetry breaking at some early stage of thiersai(see, e.g., Refs. [110, 111]).
Nevertheless, it is still unknown whether constructionghig type exist as quantum field theories
or whether they can be derived from first principles usingiftbeoretical methods. Employing
different approaches like classical tests of gravitation instheng field limit [112, 113] or the
analysis of cosmological observations, one ultimatelygsap detect intrinsic signatures pointing
towards the existence of Lorentz-violation or to falsifisthlass of theories. In any case, this will
likely help to constrain theoretical gravity models in thighlhenergy sector. Note that this gives
phenomenological models like TeVeS, which has been desiffoen empirical evidence only, a
more fundamental motivation and encourages one to explmfe fsameworks in more detail. Of
course, fective descriptions like Eq._(Z2.67) are not the most gemaralels one can think of and
there exist many others like, for instance, generalizede®M5], scalar-Aether inflation models

[114] or the generalized dark fluid theory [115, 116].

2.3 Dynamical dark energy models

Assuming that CDM exists and accounts for the missing matiatent in the universe, one still
has to face the problem of what is driving the acceleratecamesipn of the universe. In this
section, we shall present a selection of phenomenologiEamiddels which involve a scalar field

and promote DE to a dynamical quantity with generally tinepehdent EoS.

2.3.1 Quintessence

The dfects of dynamical DE on the background expansion are fulbcrileed by its generally

time-dependent EoS. If DE does not correspond to the cogiiwaloconstant, i.ewge = —1, its
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2.3. Dynamical dark energy models

interpretation as vacuum energy becomes unviable and arte taink of something else. Current
observational constraints givel.34 < Wge < —0.79 (assumingv = const) anddwge/dz = 1.0ié:g
for a possible variation (assuming a simple parametrima{ibl7]. More recently, it was possible
to improve these limits by combiningfiirent distance indicators [118], givimge = —0.96+0.08
orwge = —0.87 + 0.1 (depending on the data set of supernova observations)Eawibh constant
EoS. Although a cosmological constant provides a good fhidcatvailable data, it still allows one

to have more general models for DE, including the so-callehppm DE models withvge < —1.

The most popular candidate for dynamical DE is a light sdaddat [119, 120] which is gener-
ically called quintessence. Its action takes the form of mimmally coupled, self-interacting scalar

field with canonical kinetic term,

Sp = - f d4X\/—_g[%g’”Vﬂ¢Vy¢ +V(9)| (2.70)

which yields its contribution to the cosmological energysiey and pressure as

_ L1
Py = 550"+ V(9) (2.71)
and
_ L
Po = 529"~ V(9). (2.72)

respectively. Under slow-rolling conditions, i.e. comalits where the kinetic term is much smaller
than the potential energy, i.¥(¢) > a2¢2/2 the scalar field's EoS turns negative Wit ~ -1,
thus mimicking the behavior of a cosmological constant. iAgguintessence should be regarded
as dfective phenomenological description of physics rootedhiwitnore fundamental theoretical
frameworks. For example, the occurrence of such scalaisfisldommonly predicted in super-

symmetric field theories and string theory.

Quintessence models may be classified in terms of the asspatedtial shape. In accor-
dance with today’s observations, the scalar field must hmtgitl in a sfiiciently flat region of
its potential for the slow roll condition to apply. Furthesnstraints on viable potentials can be
obtained if one requires the field to exhibit a so-calledkirag behavior, implying the existence
of an attractor solution which is reached for a wide rangeifiE€rent initial conditions and thus
avoiding fine-tuning issues. During tracking, the evolntaf the scalar's energy density will be

determined by the evolution of the background fluid, Mg, = w,(wg), wherewg denotes the
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2.3. Dynamical dark energy models

EoS of the background fluid. For exponential potentd(s) ~ e'¢ which naturally appear in
high-energy physics, however, it has been found that thisking is exact, meaning, = wg.
Therefore, exponential models are either fine-tuned or iimggact on the cosmological expansion
is indistinguishable from the background, suggesting that= 0. This has motivated a vari-
ety of different plausible scenarios for such scalar fields, rangimg frotential modifications as
in power-law models or Planck-scale quintessencel [121]deeraomplicated constructions such
as general k-essence (phantom DE models) [99] or extendategsencel [122]. Finally, note
these dynamical DE models will generally exhibit clustgnomoperties (similar to ordinary matter
fluids) which will have an impact on the formation of struetuindependent of the background
evolution, this dfers additional ways of constraining the viability of such p®posals (cf. Sec.
[4.2).

2.3.2 Chameleon fields

In the last section, we have discussed quintessence madeisassible candidate for DE. In order
to explain the cosmological expansion of the universe,ettseslar fields must currently have a
mas:g on the order of the Hubble expansibly (in Heaviside units), thus leading to the situation
of an essentially massless scalar on solar system scalesn the high-energy physics point
of view, however, it is commonly expected that such scalddgishould also couple to matter,
leading to an additional force acting on matter particlesthis case, however, experimental tests
of the equivalence principlé [112] would constrain thisgling to be unnaturally small due to the
field’'s low effective mass. An interesting approach to avoid this probkemgivien in terms of the
chameleon mechanism [123, 124] where one allows the delfacting scalar fielg to also have

a strong coupling to matter. The key input here is that theadvios ofg is no longer governed by

its potentialV(¢), but instead by anfiective potential which takes the general form
Veir = V(#) — C(¢)Lm, (2.73)

whereC(¢) denotes the coupling to matter axi¢y) is typically assumed to be of runaway form,
i.e. a monotonically decreasing function satisfyMg— o for ¢ — 0 andV — 0 for ¢ — oo,

which is generically predicted for non-perturbative paigs in string theory. Assuming a species

8The presence of a self-interaction potential for the sdéal allows to introduce the notion of arffective mass in
analogy to the mass term appearing in the action of the vt Klein-Gordon field.
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2.3. Dynamical dark energy models

of nonrelativistic matter particles with densjty,, Eq. [2.78) may approximately be written as

Vet = V(4) + C(d)om. (2.74)

If C(¢) is chosen to be of exponential form (cf. Sdc. _4.3.1), i.e. amaotonically increasing
function of ¢, Veg exhibits a minimumgn,in and an &ective massng, usually defined by the

Taylor expansion around the minimum,
Vo = V($min) + %(d’ = Gmin)°, (2.75)

which are determined by the local matter density. For thergiwonstruction, it turns out that
¢min andmgg are then decreasing and increasing functionghgfrespectively, meaning that if
the matter density is low (cosmological situationsly becomes small and the scalar field may
act as dynamical DE. On the other handp/fis very large (e.g., in the solar system), sarig
and the scalar force is significantly suppressed, thus tedifgyto evade experimental detection.
Therefore, models of this kind are called chameleon fieldiso Aote that such coupled scalar
field models are mathematically equivalent to the framevadrk(R) gravity, which can be shown

by performing an appropriate conformal transformatiorh ordan frame.

To completely evade the constraints from solar system tégjgavity, one may also consider
models where the scalar field only couples to CDM patrticlehis Tdea has recently gained a
lot of interest because the physics of CDM are unknown anti sucoupling could alleviate
the coincidence problem of DE [125, 126]. Typically, theseimled scalar field models yield a
background evolution which is virtually indistinguishalitom a standard CDM cosmology and
one has to look out for other potentially observable discrators. An interesting approach into
this direction is to consider the nonlinear clustering ofgity perturbations in this context. In
Sec[4.P, we shall investigate the impact of such scalare@matter power spectrum and discuss
the prospects of observing characteristic signaturespsihg the particular coupled scalar field

model of Ref. |[127]

9Given a scalar-tensor theory and using an appropriate ooafdransformation of the metric tensor, it is possible to
express the Lagrangian in tBgnstein framein which the Ricci scalar enters in the form of the usual tgimsHilbert
action, or in theJordan framewhere the Ricci scalar is multiplied by the scalar field or action thereof. For the
models we consider here, the non-minimal coupling to matiaishes in the Jordan frame and the Lagrangian takes
the form of a particular (honlinearf(R) gravity theory.
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Chapter 3

Gravitational lensing in relativistic

formulations of MOND

With the advent of fully relativistic theories for the MONagadigm, it has become possible to
extend the analysis of such modifications beyond the fieldatdajic dynamics. It is clear that
any theory trying to get along without CDM ultimately needddce observations and a powerful
tool to challenge these models is gravitational lensing.optihg the framework of TeVeS, we
will begin with a brief introduction to its basics, discussdevant details on the cosmological

background and present several applications thereafter.

3.1 Gravitational lensing in a nutshell

3.1.1 Light deflection in slightly curved spacetime

For any metric theory, the propagation of light rays is geliedetermined by the null geodesics

of the metricg,, (assuming that this is the metric matter fields couple te), i.

dx dx’
== _ 1
Guv da da 0 (3-1)

whereA is some suitablefine parameter for the light ray. In general, finding solutitersEq.
(3.1) is a very complicated problem. However, in the limitxafak fields and quasi-static systems,
i.e. if the metric potential given by Eg[(Z]52) and the p&aulelocity v of the lens are small
(P, v < 1), one can presume a locally flat spacetime which is onlyisd close to inhomo-

geneities acting as gravitational lenses; these conditioa typically well satisfied for galaxies
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3.1. Gravitational lensing in a nutshell

and galaxy clusters. In this case, the line element appiateiy takes the forrH
dg = —(1+ 20)de + (1 - 20)5;;dX dx. (3.2)

Since light rays obey Eq.(3.1), we ha¥s= 0, which allows one to express the refractive index

i.e. the ratio between the speed of light in the vacuum andritibe gravitational field asi{ < 1)

[1-20
= ~1-20. 3.3
: 1+20 (33)

Note that the gravitational potential is attractive, id.< 0, leading ton > 1 and therefore to a

slower light propagation in the gravitational field than lie tvacuum. Next, we consider the light

travel time between two poins andB which is given by the expression

B

Atag = f nx()]dl, (3.4)

A

wherex(l) denotes the light path. According to Fermat’s principlght rays traverse the path
between two points which takes the least time. Thereforeneezl to find the light path which
minimizes Eq.[(314). Clearly, this is a standard variatiggrablem which leads to the well-known

Euler-Lagrange equations. Introducing the curve paramieted definingd’ = dx /dA, we have
dl = /6ijXxida = [x|dA (3.5

the variational problem can be written as

A A
s | Lok )di=s | nx]xida=o. (3.6)
Jrowoase ]

From the corresponding Euler-Lagrange equations,

—— - — =0, (3.7)

INote that a more rigorous treatment should consider peatiartis around a FRW spacetime in which the potentials in
the time-time and space-space components of the metriortans not necessarily the same. In TeVeS, for instance,
such a diference may be induced by both anisotropic stress of the nfiatittand the growth of vector perturbations.
We shall further comment on this at a later point in the thesis
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3.1. Gravitational lensing in a nutshell

it then immediately follows that
d

X .
9 (nm) — X' Vn=0. (3.8)

Evidently, x is a tangent vector to the light path, which we can assume toobmalized by a
suitable choice for the curve paramefeWe thus sejx| = 1 and writee = x for the unit tangent

vector to the light path. Then Ed._(8.8) takes the form
ne=Vn-(e-Vn)e (3.9

As the second term on the right-hand side of Eq.](3.9) is thwat&ve along the light path, the
whole right-hand side corresponds¥o n, the gradient oh perpendicular to the direction of light

propagation, and we finally arrive at
.1
e= EVLn:VLIognz—ZVLCD, (3.10)

where we have again used thit< 1. The deflection angle can now be obtained by integrating

—ealong the light path, i.e.
A
a = ZfVLCDd/l. (3.11)
AA
Given our present assumptions, the deflection of light rajtsywically be very small. In this case,
we may apply Born’s approximation and integrate along theeuturbed light path. Identifying

@ with the Newtonian potentiaby and assuming that the unperturbed light rays propagatg alon

the z-axis, the total deflection angle in GR finally reads
dGR = ZfVJ_q)dZ (312)
Because all of the above is based on the metric approach if{E2), our results may directly

be transferred to the framework of TeVeS. Using Eq. (2.38 deflection angle of a light ray in

TeVeS under the given assumptions can therefore be exgrasse

&= zfv&mtdl - dGR+2fVL¢dI, (3.13)

2As previously mentioned in Sec. 2.2.2 B, we assumedhatl andG = Gy in the context of quasi-static systems.
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3.1. Gravitational lensing in a nutshell

Source plane
T

Observer

Figure 3.1: lllustration of a gravitational lens system. The distartoetsveen source and observer, lens and
observer, and lens and source Bxg Dy, andDgys, respectively (the figure is taken from Ref. [128]).

In addition to the deflection angle caused by the Newtonidargial @y, there is a contribution
arising from the scalar field. Compared to the distances between lens and source and&bser
and source, however, we may still assume that most of theitgodcurs within a small range
around the lens [43, 50]. Assuming that the nonrelativisiigtric potential®y; is known from
solving the corresponding field equations, one can thezafwectly proceed to calculate the usual
lensing quantities, fully adopting the standard GR forsmaliwhich is briefly reviewed in the

following section.

3.1.2 Lensing formalism

The dfects of gravitational lensing can mathematically be dbsdrias a mapping in a two-
dimensional space. Given the assumptions introduced ilaghaection, Fig._3]1 shows a typical

gravitational lens system. As one may directly reédite figure, the mapping of light rays from
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3.1. Gravitational lensing in a nutshell

the source to the lens plane takes the formi[128, 129]

n = D26 - Dasi(6) (3.14)
d

where¢ denotes the two-dimensional position vector in the lenaglg is the two-dimensional
position vector in the source plane abd, D4, andDys are the (angular diameter) distances be-
tween source and observer, lens and observer, and lensuned s@spectively. Introducing angu-
lar coordinates byd = n/Dsandf = £/Dy, Eq. [3.14) may be rewritten in terms of dimensionless
quantities,

B=6- DFOIS&(DdH) =0 - a(f), (3.15)

where we have used the definition of the scaled deflectioreangt Dysx/Ds. The relation in
Eq. (3.15) is called the lens equation and determines thelangositiond of the image for a
given source positio@. If there is more than one solution for a fixed valugdpthe lens produces

multiple images. Furthermore, it is convenient to intragltive deflection potenti&lf(0):

Dds
Y() =2
(6) DD

S

f ro(Dab. 20z (3.16)

where we have chosen coordinates such that unperturbedrdigh propagate parallel to the
axis. Since light rays are deflectedfdrentially, shapes of images and sources willedifrom
each other. If a source is much smaller than the angular epalhich the lens properties change,
the lens mapping can locally be linearized. Thus, the distoiof an image can be described by

the Jacobian matrix

1—x— _
AB) = Z—g e G (3.17)
—Y2 l-k+y

The convergence is directly related to the deflection potentifthrough

1 _1(02\1! 32\11) (3.18)

k=AY = = | — + —
2% "2\ 02 " o2

and the shear componentsandy- are given by

1(0%¥% 0¥ Y >
_ = AL = y= : 3.19
71 2(89% aeg) V2= g VYt 75 (3.19)

As there is no absorption or emission of photons in grawviteti lensing, Liouville's theorem im-

plies that lensing conserves surface brightness, i¥9{f3) is the surface brightness distribution
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3.1. Gravitational lensing in a nutshell

Figure 3.2: Imaging of an extended source by a non-singular circulantyraetric lens (the figure is taken
from Ref. [128]): Closed curves in the lens plafeft] are denoted asritical curves those in the source
plane ¢ight) ascaustics Because of their image properties, the outer and innacariturves are called
tangentialandradial, respectively.

in the source plane, the observed surface brightnesshdititn in the lens plane is

1(6) = 19 (3(8)). (3.20)

The fluxes observed from image and unlensed source can hdatatt by integrating over the
corresponding brightness distributions and their ratioléfined as the magnification which is

given as the inverse of the Jacobi determinant,
detA=1L-«k—y)L-«+7). (3.22)

While the convergence causes an isotropic focusing of bghtles, the shear, acting anisotropi-
cally within the lens mapping, causes changes in both shagsiae of the image. Points in the
lens plane where

detA = 0, (3.22)

form closed curves, theritical curves Their corresponding image curves residing in the source
plane are calledaustics Because of Eq.[(3.22), sources on caustics should be medybifi an
infinitely large factor. Since every astrophysical souc@xtended, however, its magnification
remains finite. An infinitely large magnification simply doast occur in reality. Nevertheless,
images near critical curves can be significantly magnifiedi distorted, which, for instance, is
indicated by the giant luminous arcs formed from sourcexg@éanear caustics. Knowledge about

the exact shape and location of these curves already alloegcomake solid statements about
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3.1. Gravitational lensing in a nutshell

the system’s matter distribution. In Fig._B.2, the mappihgmextended source is demonstrated
for a non-singular circularly symmetric lens. A source elés the point caustic at the lens center
produces two tangentially oriented arcs close to the ouitgral curve and a faint image at the lens
center. A source on the outer caustic produces a radialhgated image on the inner critical curve
and a tangentially oriented image outside the outer clitideve. Due to these image properties,

the outer and inner critical curve are denotedaagentialandradial, respectively.

In addition to the lens mapping, the deflection by the gréwital potential also causes a time
delay for light rays traveling from a source to an observéiisTan be understood from the fact
that the path of a photon traveling in a curved geometry igdorthan in a flat one. Assuming an

observer at redshift = 0, the traveling time of light rays can be expressed as

1+7
D

1(8) =

3002 16)| (3.29

wherez is the redshift of the lens ard = Dy</(DsDgy). If the deflection potential is known, Eq.

(3.23) allows to calculate the relative time delay betweidieent images.

Considering lensing in the framework of TeVeS, we also neezpecify the form of the free
functionug. Unless we use the simplistic form of the free function idtroed at the end of Sec.
[2.2.Z B, this also includes a choice for the constan{or equivalentlylg) after rewriting the
equations in terms of the MOND acceleration constntising Eq. [(2.5]7) (Remember that we
work with Kg, ¢c ~ 0). If not specified in any other way, we shall ggt= 0.01 in these cases.
This is justified following the analysis of Ref. [50] wheretheVeS lensing maps have been shown
to be generally insensitive to variations of the paramigtexs long as it is smalkg < 0.01. Also,
we will assumeng = 1.2 x 107°m s72 in accordance with SeE._2.2.1 and particular constructions

of the free function will be given when needed.

3.1.3 Background cosmology

To calculate angular diameter distances in the context afitional lensing, we still need to
choose a cosmological model in TeVeS. Throughout this sheg will assume that the cosmo-
logical branch ofug (or equivalentlyF) is chosen in such a way that the basic regulpy, < 1
presented in Se€. 2.2.2 C remains valid. There we have gltisclissed the resulting background
eqguations and found them to be structurally identical te¢hobtained in the framework of GR,

but we are still left with the problem of specifying the energatter content in a TeVeS universe.
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3.1. Gravitational lensing in a nutshell

Since previous constraints on the baryonic contributiazhsas from BBN still apply in this case
[9€] and we assume that there is ho CDM, finding a suitable drackhd model poses a serious
challenge to the theory. First attempts of reconciling T®@véth observations on supernovae of
type la [92] have led to the development of an open minimakena@osmology with (In the fol-
lowing, we will always refer to present-day values of theroobgical parameters and therefore
skip the subscript “0")

Om~004 Qp~046 h~07 (3.24)

and although it is able to fit the data up to a redshift ef 1 — 2, it was Quickly realized that such
a model will not be able to explain observations of CMB anigoiesd and the present matter

power spectrum_[86]. Similarly, a flat minimal-matter cosagy with
Qm~005 Qy~095 h~07 (3.25)

sufers from the same issues while providing a worse fit to thersigpae data.

An interesting solution for this problem is to consider thatitrinos have masses. Assuming
three species of left-handed ordinary neutrinos with a raa®snd 2eV and their antiparticles, it
has been possible to obtain power spectra for both CMB apjgies and matter which are able to
describe the observational data in a qualitatively actdptaay [86] (although the corresponding
fits do not match the excellent agreement {@DM model). Interestingly, the idea of massive
neutrinos around 2eV has already been discussed to prowsdtuion to the lack of matter on
cluster scales [78, 79, 81] and to explain the observed wedirlg map of the galaxy cluster
1E0657- 558 (“bullet cluster”) [[98} 130]. It should be mentionedtttize needed neutrino mass
of 2eV is barely consistent with the current upper limit oa tdectron neutrino’s mass (e.g., see
Ref. [131]). Depending on how the current data sets are aed)yon obtains an upper mass limit
of 2.2eV or 28eV, future measurements such as the Karlsruhe Tritiumriveutiass Experiment
(KATRIN) [132,133] will be able to explore a mass range weadldw the 2eV threshold. While
such neutrinos must have been relativistic in the earlyars®, they should behave like nonrela-
tivistic matter today, with their density evolving ps « a 3. If we assume that these neutrinos
followed a thermal distribution at the time of decouplingeanay estimate their current total con-
tribution to the energy budget of the universetgs~ 0.032h=?m, /eV (see, e.g., Ref. [20]). Here

we have assumed three neutrino generations together withahtiparticles andn, denotes the

3Here the main dficulty is the resulting angular-distance relation whichas able to match the observed position of
the peaks in the angular power spectrum of the CMB.
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3.2. Analytic model for nonspherical lenses in TeVeS

mass of a single neutrino in eV. From this, one obtains theadled flat modified hot dark matter

(uHDM) cosmology whose parameters read
Om=0+Q, ~005+017=022 Q) ~078 h~07, (3.26)

where we have generously sgf = 2.6eV, leading ta2, ~ 0.17 in accordance with the analysis
of Ref. [86]. In situations relevant for gravitational lémg, the background of theHDM model

is close to a standardCDM cosmology parametrized by
Qm~03, Qx~07,  h~07, (3.27)

and for several applications it will fiice to consider the latter. As we shall discuss in §e¢. 3.4, one
is not bound to use ordinary neutrinos and there is eviddrateatmassive sterile neutrino provides

a much better candidate to account for the missing energgigein TeVeS or related theories.
Furthermore, it is also possible to construct covarianmidations of MOND [[40; 115] which
yield a background evolution indistinguishable frax®€DM without the need for an additional

matter fluid. In the present thesis, however, we will not adessuch alternatives.

3.2 Analytic model for nonspherical lenses in TeVeS

Equipped with the covariant framework of TeVeS, it is now gibke to investigate the conse-
guences and viability of the MOND paradigm beyond “cladsidamain of fitting observed rota-
tion curves. Building on an earlier noncovariant approd&dj,[for instance, this allowed several
authors to test MOND against multiple-image lens systemom fthe CfA-Arizona Space Tele-
scope Lens Survey (CASTLEQS[&M-] (see, e.g., Refs. [92, 135-137]). Their analysis vea®en
theless restricted to models sifherical geometryand thus only able to account for the size of the
Einstein ring of observed lenses, but not for the exact jpwsdf collinear images in double-image
systems, and of course not for quadruple-image systems.ifthinsic limitation is due to the fact

that the MONDian acceleratiogy is related to the Newtonian one according to Eq. (2.33).

In the following sections, we will demonstrate how to cresitaple analytic models afon-
spherical lensein TeVeS, corresponding to the situation®f& 0 in MOND. Without resorting
to a numerical Poisson solver, these analytic models cantibuwised to fit image positions in

double-image and quadrupled-image systems of the CASTlaESsdmple.

4cfa-www.harvard.edu/castles
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3.2. Analytic model for nonspherical lenses in TeVeS

3.2.1 The Hernquist-Kuzmin Model
3.2.1 A Potential-density pair
The Kuzmin disk![138], defined by a Newtonian gravitationatgmtial of the form

-GM
q)N,K = b> O, (328)

V2 +y2+ (4 + b2

is a well-known and simple model for a nonspherical densityfiguration: Foz > 0, Eq. [3.28)
corresponds to the Newtonian potential generated by a puass located at (0, —b), in case of
Zz < 0 it turns into the Newtonian potential of a point mass lodade (Q 0, b). Thus, above and
below the disk, wefectively have a spherical Newtonian potential, which irmplhat trulyS = 0

in Eq. (2.33).

Hereafter, the idea is simply to model lens galaxies by m¥pdathe auxiliary point lens po-
tential of the Kuzmin disk with an auxiliary Hernquist potiah [139]; we shall refer to this model
as the Hernquist-Kuzmin (HK) model. A similar approachngsPlummer’s model and a smooth
transition atz = 0 instead, leads to the Plummer-Kuzmin model derived in H&f0] which
provides a qualitatively good fit to the mass profile of obsdrgalaxies. Although our proposed
model is not a very good description of real galaxies, it é&mlis to derive fully analytic lens
models in the context of MOND (see Séc. 3.2]11 B) and to studyrtfluence of nonsphericity on

the ability to fit image positions.
The Newtonian potential of the HK model takes the form

-GM
VY +(4+0)2+h

DK = (3.29)

with b being the Kuzmin parameter anddenoting the core radius of the Hernquist profile.
Choosing diferent ratiodh/b, this model will produce dierent Hubble type galaxies, going from
a pure Kuzmin disk galaxy fdn/b — 0 to a pure Hernquist sphere fofb — . To clarify this
situation and to characterize the nonsphericity of the hote may simply expand the right-hand
side of Eq. [[3.20) far away from the disk(= x* + y* + 7°):

_ —GM 12 b 5
DK = r+h(1_(r+h)r)+0(b)' (3.30)
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Figure 3.3: Contours of equal density in th&(2) plane for the HK lens mod€l[{3.81) whéyib = 0.1 (top
right), h/b = 1 (bottom lefy andh/b = 10 (bottom righ). Contour levels are (01,0.003 0.001, ...)M/b?
(top right); (0.001, ...)M/b? (bottom lef}; (0.0003 ...)M/b? (bottom righ). Thetop left panelllustrates the
HK model: At the point R, —|Z) below the disk, the potential Eq. (3]129) is identical whiatof a Hernquist
distribution whose origin is located at a distatc&bove the disk’s center.

Using Poisson’s equation, we find that the underlying dgmkgtribution is given by

Mh
2n R+ (4 + bR (VR + (4 + DR + )’

PHK = (3.31)

where we have used the definiti®d = x? + y2. The corresponding density contours in tReZ)

plane are plotted in Fi§. 3.3 forfiierent values of/b.

Considering the HK model for gravitational lensing, we cé®thez-axis such that it is parallel
to the line-of-sight andx,y) are the Cartesian coordinates spanning the lens planeauBeave

need to account for ffierent possible orientations of galaxies, we additionadlyehto rotate the
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3.2. Analytic model for nonspherical lenses in TeVeS

disk. Defining €)% = (X)? + (y)? + (1Z| + b)?, where

X = (XcOoS$ — ysing) cosd — zsiné,
y = Xsing + ycosg, (3.32)

Z = (xcosg — ysing) sind + zcoso,

the angle £/2) — 6 being the inclination of the galaxy’s symmetry plane withgect to the line of

sight andp the galaxy’s position angle (PA), Ed._(3129) turns into

-GM
(DN’HK = m (333)

3.2.1 B Lensing Properties

Assuming spherical symmetric configurations and choosiagimplistic form of the free function
ug introduced at the end of Sdc. 2.2.P B, we have the followitation for the total gravitational

acceleration in TeVeS:

om(r) = gn(r) + vVan(r)ao, (3.34)

whereag = 1.2 x 10 1%ms 2. Exploiting the above and introducirg = (xcos¢ — ysing) tane,

the deflection angle’s-component yields

2
3 dz( GM VGMag
aX_Z(x—bcos¢>c036?)fr—,((r,Jrh)2 + T h )
- (3.35)
dz{ GM VGMag
+2(x+bcos¢cos€)fr—,((r,+h)2+ T oh )
V)

The integral[(3.35) can be evaluated by means of elemengdeylas, but as the resulting expres-
sion is quite lengthy, we shall skip its presentation at pluisit. Analogously, the closed analytic
form for ay can be derived, and as as a consequence, this is also trieflensing quantities

andy.

Concerning the calculation of distances in gravitatiomaising, we shall adopt a standard
flat ACDM cosmology withQ, = 0.3, Q, = 0.7 andh = 0.7. This choice is justified by the
fact that many covariant formulations of MOND mimic the beba of a ACDM, accounting for

marginal diferences that will have no significant impact on our analysigarticular, this is true
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3.2. Analytic model for nonspherical lenses in TeVeS

for thegyHDM cosmology based on the assumption of massive neutnmos\eS or for covariant
approaches [40] yielding a Hubble expansion which is vilfuiadistinguishable from thes.CDM

model within the redshift range relevant for the lens systera consider here (see SEc. 3.1.3).

3.2.2 Fitting procedure for CASTLE lenses

To model individual lens systems from the CASTLES samplewiefollow the approach pre-

sented in Ref.[[141]: For each pair of imagesnd j, when tracing one light-ray back for each
observed image to the source plane, the source positiomettérom Eq. [[(3.I4) should be the
same for both images. We can thus simply compare the regutinrce position for each image

by computing their squared deviation,

A2 =" ((xsi = %)) + (ysi = Vs))?). (3.36)
i#]
where xs andys denote the source position in E4._(3.14). This is a measurenfehow well
the images retrace back to a single point in the source pkanether quantity to minimize is the

deviation of the lens center from the observed optical cegieen by
A? =X+ VP, (3.37)

However, our model has generally 9 fitting parameters (the leasdMl, the Kuzmin lengttb,
the Hernquist lengtth, the PA angle, the inclination the source positionx,ys) and the lens
position (,Y;)), while for a double-image system we have only four comstsafrom the two
image positions, and another two constraints from the @bdeens optical center. The problem

is thus ill-posed.

To cure this and to ensure the uniqueness of the solutiomseetia regularization term in the
minimization. This term is penalizing solutions deviatiingm the fundamental plane as well as
face—orH and disky solutions, and solutions with an anomalous nmaigftt ratio or a large flux
anomaly:

2
+

log v

2
o ] . (3.38)

b 2
P = [(Iog FP)? + (cosi)? + (b—)

+ [Iog ff%:s

*

The deviation from the fundamental plane is measured b¥ Bg log(h/h;) — 1.26 log(M/My),

SAs there is strong observational evidence supporting bieesystem B0218357 corresponds to a nearly face-on spiral
galaxy [142| 143], we choose the regularization term fog garticular lens such that edge-on solutions are penalized
instead. Further relaxing the penalties with respect th fmtdamental plane and observed flux ratio in Eq. (3.38),
the fit substantially improves, corresponding to a factd2®fn As.
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3.2. Analytic model for nonspherical lenses in TeVeS

whereh; = 0.72kpc andVl; = 1.5 x 101M,, [144].

Choosing a very small regularization paramefier; (0.003)?, we minimize the following
regularized %?-like” quantity,

n? = A2 + A2+ 2P, (3.39)

for 14 double-image systems and four quadruple-image mgstd the CASTLES data sample.
Note that we also check that our results are insensitiveg@#tailed choice of the regularization
parameteH and that due to the flicient number of constraints (position of lens and images),
the fitting procedure for quadruple-image lenses is perormithA = 0. The results are shown
in Table[3.1 and Table_3.2, respectively. Finally, note thatobserved mass of each lens was

calculated according to Sec. 7.1 of Ref./[92].

3.2.3 Fitting results
3.2.3 A Double-image systems

SettingAs < 0.01” as a reasonable threshold for acceptable fits of the HK leasle[3.1
shows that our model is able to describe the observed imagjiéqms of all double-image sys-
tems, with quite a number of these systems yielding plaggibrameters within the context of
MOND/TeVeS. For a better presentation, Figs.] B.4] 3.5[and 3.Bduillustrate this in terms of
the found relations between modeled and observed lens sasdeflux ratios, respectively. As
can be seen from Fi._3.5, for example, the HK model seems &blecto explain the flux ratios

of these binaries in most cases.

However, there are a few outliers which we will discuss in fibllowing. Since the model
should be capable of reproducing all observational coims¢rand the lens mass should have a
value close to the stellar mags¥l (M, ~ 1) in TeVeS, these are characterized by very poor fitting
parameters in terms of largefidirences between predicted and observed flux ratios or aoomal

mass ratiodM/M., (deviation larger than a factor of 3).

RXJ0921+4529 The system RXJ0924529 contains twas = 1.66 quasar images andHa =
182 spiral galaxy located in between the quasar images. Thasygéens is quite likely to be a

member of & = 0.32 x-ray cluster centered on the observed field|[145]. GleRKJ0921+4529

6In case of RXJ09244529, however, our choice afcreates an over-regularizatioffect, which results in a best-fit
lens mass that is roughly by a factor 10 smaller than estuiatRef. [92] from fitting the system’s Einstein ring size.
Decreasing the regularization parameted to (3 x 10*”)? is able to resolve this issue, with dropping by a factor
10 and the lens mass now being in accordance with the pregiiimate of Ref.[[92] (see Talile B.1).
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Table 3.1: Fitting results for selected 2-image lens systems from tAET2_ES sample: In the table, the observed lens masss calculated according to Sec. 7.1
of Ref. [92], the parameter, is the Hernquist length expected from half-light measumasiévalues are taken from Ref._[92]). We do not gi¥ebut instead we
list As and compare the inferred values of PA, the Hernquist lehgthass and flux ratio to observations. Additionally, we peediclination and time delay for
the particular lens models. Outliers are characterizea@igel diferences between predicted and observed flux ratig®aadomalous mass ratids/M. (deviation
larger than a factor of 3) like, for instance, in case of RXIDZU529 which resides in a cluster. Note that the fitted lenstiposis given by &, yi) ~ (0, 0) for all
lenses.

Lens 2 b/h hrh M (fit/obs) PA incli. Ag fag (fit/obs) 6t (fit/obs)
[kpc] [10"Mo) [°] [”] [days]
Q0142-100 0.49 0.25 1.346 1.704.08 72.2 90.0 23x 104 8.068.22 151.%
B0218+357 0.68 1.0 2.14.8 2.692.67 -22.6 6.94 75x107° 0.7590.587 7.5210.5
HE0512-3329 0.93 0.24 1.468 1.492.912 28.2 90.0 P0x 1076 0.00131.175 19.6
SDSS09035028 0.39 0.76 1.83.8 2.773.80 -30.4 90.0 90x 104 2.292.17 135.2-
RXJ0921-4529 0.31 0.037 7.59.8 20.00.34 60.2 90.0 B5x 1074 3.6233.591 167.2
FBQ09512635 0.24 0.13 1.20.32 0.470.31 60.3 90.0 P3x 10 2.743.53 13.2-
BRI0952-0115 0.41 0.055 2.2m29 0.580.27 124.1 90.0 B4x 104 3.523.52 8.11-
QO095%561 0.36 1.55 1.25.23 6.948.44 40.0 90.0 P7x10°3 14.31.08 752.4417.0
Q1017-207 0.78 0.0092 23919 0.830.74 88.8 89.9 A6x 104 0.730.72 29.0-
B1030+071 0.60 0.10 0.84.50 1.8%31.66 29.3 90.0 B4x10°° 36.636.6 346.8
HE1104-1805 0.73 0.33 0.5848 4.913.32 61.9 90.0 P6x 1073 0.353.85 321.2
B1600+434 0.41 0.18 1.64.8 1.070.40 36.8 90.0 PIx 1074 0.830.84 32.251.0
PKS1830-211 0.89 0.48 2./158 1.331.48 62.3 90.0 44x10* 157.3157.3 32.726.0
HE2149-2745 0.50 0.026 0.94.4 1.042.00 -30.0 90.0 B0x 104 6.534.19 90.7103.0
SBS0909523 0.83 0.19 3.02.8 2.9213.52 49.2 90.0 184x 1073 1.421.42 65.9

2 Note that the analysis of Ref. [92] assumed féedent value foM. based on a wrong magnitude in an older version of the CASTLHS skt.
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3.2. Analytic model for nonspherical lenses in TeVeS
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Figure 3.4: lllustration of the resulting ratios between modeled lermssM and the corresponding stellar
massM,. for double-image systems in the CASTLES data set: Showreisatio M/M. plotted againsA.
Since there is no additional DM on galactic scales, accéptabs models in TeVeS should cluster around
M/M., = 1; outliers are labeled with their names.

does not correspond to an isolated system, which compdichéesituation in TeVeS and provides
a possible explanation for the extremely poofnfiss ratio /M, ~ 59). The presence of a
cluster could have causedtitulties in fitting the lens as the impact of an external fieldter
nonlinear &ects may be important. In addition, remember that theretdirargresolved issues in

MOND and its extensions concerning clusters [50/ 73| 79981,

Q0957561 The gravitational lens Q095661 is the most thoroughly studied one in literature.
The system involves a radio-loud quasar at redghift 1.41 which is mapped into two images by
a brightest cluster galaxy (BCG) and its parent cluster @ghift z = 0.36 [146, 147]. It is also

known that the lens galaxy has a small ellipticity gradiemd sophote twist which are properties
the simple HK model cannot account for. Together with the flaat the lens is embedded into a
cluster, this might be a reason for the huge discrepancydstwbserved and predicted flux ratio

in the context of modified gravity.

HE1104-1805 The lens galaxy’s colors are in agreement with a high-rédehrly-type galaxy,
and its redshift is roughly estimated as= 0.77 [148]. Concerning its lensing properties, the

system HE1104-1805 is quite uncommon in a the sense thatrikad closer to the bright image,

45



3.2. Analytic model for nonspherical lenses in TeVeS

0.01 F T T T T ]
I HE1104-1805 Q09574561 |
L & S o ]
0.001 |- & .
— i SO |
8
% 0]
Q - —
E 0.0001 E <X> E
& i ]
le-05 F E
6 4
I HE0512-3329 1
16_06 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.001 0.01 0.1 1 10 100

SaB i) fAB,obs
Figure 3.5: lllustration of the resulting relation between modeled ahderved flux ratios for double-
image systems in the CASTLES data set: Shown is the fagifa/ fasobs plotted againsis. As is obvious,
acceptable lens models in TeVeS should cluster ardupél/ fasobs = 1; outliers are labeled with their
names.
rather than the faint one. As is known from lensing within gtendard GR- CDM paradigm,
simple models can create such configurations only for a waramge of parameters due to the
peculiar flux ratio. Assuming simple ellipsoidal lens majdiowever, these parameters imply a
large misalignment between the light and the projectedityerBhe only possibility to align the
mass with the light, is to have a shear field being approxipatéce as strong as estimated from

the particular lens model.

Furthermore, the observed image separation is by a factoB farger than that of a typical
lens, strongly suggesting that the separation is enhangdldetpresence of a group or a cluster.
So far, however, there has been no direct observationaéev@for such a structure in the lens’
surrounding area. Analog to the aforementioned lens systdra unsatisfying fit and the corre-
spondingly inferred flux ratio might be a result of both lemyionment and model limitations
(see also Se€. 3.2.3 C and 3.213 D).

SBS0909523 SBS0909532 shows two images of a background quasar soureg -at1.377
separated by.11"” [148]. Optical and infrared HST images indicate that thesileg galaxy has a

large dfective radius and a correspondingly low surface brightnadslitionally, the lens galaxy’s
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Figure 3.6: Mass ratioM/M.,. plotted against the ratio of modeled and observed flux ratidéuble-image
systems in the CASTLES data set: Note that acceptable ledgelsiim TeVeS should cluster close to the
point (1, 1); outliers are labeled with their names.

redshift is estimated ag = 0.83 [149], and its total magnitude in ti¢-band has been measured
asH = 16.75+ 0.74. Although the lens galaxy’s colors are poorly measutegly seem consistent

with those of an early-type galaxy at the observed redshift.

The large uncertainties are a result of théidulty in subtracting the close pair of quasar
images|[148]. For instance, the uncertainty in tHeand magnitudel, = 18.85 + 0.45, allows a
deviation of the mass estimalé, by a factor of roughly 3B at the 2 level, where we have used
Egs. (73) and (74) of [92]. Thus we argue that the low masse (#iited in Tabld_3]1) may be
entirely due to these uncertainties in observed magnituditls better constrained observations

possibly softening the found problem in TeVeS.

HE0512-3329 The system HE0512-3329 was discovered as a gravitationslcgndidate in the
course of a snapshot survey with the Space Telescope Im8giegirograph (STIS), with the im-
ages of the lensed quasar source being separated®®¥0[150]. Although the lens galaxy has
not been detected yet, measurements of strong metal albsolipes at redshifz = 0.93, identi-

fied in the integrated spectrum, hint towards a dampeddystem intervening at this redshift.
Analyzing separate spectra of both image components, ib&as pointed out that both dif-
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Figure 3.7: Left panel Shown are the critical curves (black lines) and caustied (ines) of the best-fit
Hernquist-Kuzmin model for Q2237030. The empty and filled squares denote the observed pusitio
images and source, respectivaRight panel Convergence mapof the best-fit Hernquist-Kuzmin model
for Q2237%030, with the outer contour level startingsa& 0.7 and increasing in steps ofl0up to a level
of k = 2.0.
ferential extinction and microlensingfects significantly contribute to the spectrafdiences and
that one cannot be analyzed without taking into account therg150]. For lens modeling pur-
poses, the observed flux ratio can therefore only be usedcaiteecting for both fects. Thus the
large discrepancy between predicted and observed fluxmégiot be a consequence of neglecting

the above mentionedfects, rather than being intrinsic to TeVeS.

3.2.3 B Quadruple-image systems

As we can see from Table 3.2, most of the quadruple-imagemgsare very poorly fitted by the
analytic HK model. In accordance with our goodness-of-itedion (As < 0.01”) introduced in
Sec.[3.2.3'A, there is just one system where the model is algeetlict the image positions in a

satisfying manner. Additionally, none of the observed flatas can be explained.

The only acceptable fit is given for Q228730, the nearby Einstein crosg € 0.04 [151]),
which is the only true bulge-disk system in our set. Also,pitgysical Einstein ring size in the
lens plane is very smalRe ~ 0.7kpc (in B1422-231, for instance, it is already by a factor of
roughly 10 largerl[152]). Nevertheless, it is not possibl@ive a reasonable explanation for the
flux ratios using the smooth HK model. Takinffexts due to microlensing into account, which
are not considered in the present analysis, could be abldaw the situation. Note that the lens

galaxy actually contains a bar feature [153] which is igddreour analysis.
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Table 3.2: Fitting results for selected 4-image lens systems from tA8STLES sample: Note that all positions (RA and declinatiarg given in units of’. The
observed position angle and inclination of Q22830 (major-axis) are PA 77.2° andi = 64.5°, respectively, assuming a circular face-on disk. Reptatire

auxiliary Hernquist with a I&e profile barely changes the numbers: inclination and PAghéy about 5 the predicted mass by roughly 10% .

PG1115-080 Q223#030 B1422-231 SDSS09240219
Z 0.31 0.04 0.34 0.39
Zs 1.72 1.69 3.62 1.52
D, [kpc] 957.2 163.6 1020.2 1116.6
Ds [kpc] 1874.2 1874.0 1637.6 1867.0
Dis [kpc] 1413.2 1810.8 1341.7 1252.1
Image A ¢0.947,-0.690) + 0.003 (+0.075-0.939) + 0.003 (0375 0.973)+ 0.003 (+0.162 0.847)+ 0.003
Image B ¢1.096 -0.232) + 0.003 (0598 0.758) + 0.003 (0760,0.656) + 0.003 (+0.213 -0.944)+ 0.003
Image C (0722 -0.617)+ 0.003 (+0.7100.271)+ 0.003 (1097,-0.095) + 0.003 (0823 0.182)+ 0.003
Image D (0381,1.344)+ 0.003 (0791 -0.411)+ 0.003 (+1.087,-0.047)+ 0.003 (+0.701,0.388)+ 0.003
Source €0.011,0.091) (Q027,-0.0051) (0089 0.030) (+0.024 -0.047)
Lens (0.0011 -0.0041) (000066 0.00096) (¢0.000930.0065) (0019 -0.0051)
M (Mgit/M.) [10Mg] 7.80/1.23 078/1.19 483/0.77 280/0.32
h [kpc] 2.25 044 842 157
b/h 0.56 185 029 217
PA angle f] 244.8 2466 1179 2664
Inclination ] 445 306 486 405
As[”] 0.0402 00026 00593 00612
Flux ratio (obs) 4.03:2.53:0.65:1 2.62:1.64:1.30:1 33416:18.4:1 12.5:5.68:4.81:1
Flux ratio (fit) 3.98:4.15:1.40:1 0.81:0.66:0.68:1 8.56387.51:1 1.66:0.69:0.86:1
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3.2. Analytic model for nonspherical lenses in TeVeS

PG1115+080 The lens galaxy in PG113#®80 and its three neighbors belong to a single group
atz = 0.311, with the group being centered southwest of the lensxgal@osition [154/) 155].
Reasonable fits of this lens typically involve a significamioant of external shear in the context of
GR + CDM. Moreover, the observed anomaly of the flux ratioQ(9) between two of the images
strongly hints towards an additional perturbation of thetesn caused by a satellite galaxy or a
globular cluster. Similar to Selc. 3.2.3 A, we have a gragitetlly bound system which will likely

involve a diferent approach than provided by the isolated HK model.

B1422+231 The system B142p231 shows almost the same characteristics as PGIDRBIb
[156]. Again, the lens belongs to a galaxy group which is emtt south of the lens galaxy
(z = 3.62). In Ref. [15[], the lensing system was fit using a very flaglar isothermal ellipsoid
(SIE) [158, 159] plus an external shear field. However, HS3eolmtions revealed that the lens
galaxy’s optical axis ratio is much closer to unity than assd for the flat SIE, favoring rounder

lens models with larger external shear.

SDSS09240219 Estimated colors and magnitudes of the lens galaxy are stensiwith those

of a typical elliptical galaxy ag = 0.4 [160]. Although the lens environment does not show any
nearby objects perturbing the system, quite an amount efmadtshear is needed to obtain a satis-
fying fit to observations, with the lens being typically maatkby a (flattened) singular isothermal
sphere (SIS). Additionally, microlensing plays an impbtteole in explaining the observed flux

ratios within GR+ CDM, which is likely to be true in TeVeS as well.

3.2.3C Maximum nonspherical shear of a Kuzmin lens

As we have seen, the outliers in our selection of quadrupbgge lenses correspond to systems
with a large external shear. In PG1#BO0, for example, this is due to a neighboring galaxy
group. However, the same situation also appears in uncebeldronments, usually constraining
the lensing potential to require a substantial ellipticifyrom Sec.[[3.2.31B, it seems that our
present analytic model is not able to generate such a paktémtnost cases. As is known, almost
all quadruple-image systems show evidence for the need ettemnal shear field [158, 161, 162]
by violating a certain inequality of the image positionsslperhaps not surprising that the current
isolated HK model fails to fit these IenﬂsTo gain a better understanding about this issue, we

consider a pure edge-on Kuzmin leds=£ 0) and derive the maximum variation of the shear at

"Note that our analysis does not take into account extermarsffects, which would complicate the relation between
lens mapping and associated density distribution due ttimearity in modified gravity. While our main task is to
explore the capability of the HK model, such contributiohewdd certainly be addressed in future work.
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Figure 3.8: Nonspherical shear paramet@rfor a simple TeVeS Kuzmin lens (solid line), assuming
agD/c? = 0.03: Additionally, we show the results for a SIE model with agudial axis ratio of ® (dotted-
dashed line), @ (dotted line) and @ (dashed line), respectively.

the Einstein radiu®e by comparing its values on the major and minor axis. For géson, let us

introduce a quantity) which is given as follows:

¥(Re. 0) — ¥(0, Rg)

¥(Re, 0) + ¥(0,Rg)’ (3.40)

Q=

The parameter defined above will indicate the level of thasheld’s nonsphericity at the Einstein
radius and is a function of the dimensionless radiggb. Note that in case of the Kuzmin lens,

the quantityQ depends on redshift.

Figure[3.8 shows) as function ofRg/b for the pure Kuzmin model (solid line), assuming
aoD = 0.03. This value has been chosen in accordance with the nyagfriens redshifts in
the CASTLES sample, and changing it does have no significaalitgtive impact on the basic
outcome. Additionally, we also present the result for timgsiar isothermal ellipsoid (SIE) model
[159], with the potential axis ratio varying from7to 09 (shown by horizontal lines). As we can

see, the Kuzmin model becomes comparable to a very round &b > 10.

To obtain a sfficiently strong quadruple moment, i.e. honspherical sta¢#ne Einstein radius

(Q > 0.2), these disk-only models must satisfy the condition 0.2Rg. In case of PG1115, the

51



3.2. Analytic model for nonspherical lenses in TeVeS

observed ring size can be estimatedRasy 5kpc, so to fit four images, one might actually expect
thatb 2 1kpc. However, trying to fit the above mentioned Einsteig size using the stellar mass
only, we also find that this would need a Kuzmin parameterectoszero p ~ 0), corresponding
to a very concentrated point-like lens. Although we haveyajiven a plausibility argument,
rather than a rigorous proof, this could explain why we carimal a value ofb that meets both

requirements and why the HK model mostly fails to fit quadedphage systems.

3.2.3D Experimenting with hypothetical lenses

Another possibility of investigating the fitting capabjliof our model is to generally explore its
parameter space and to study the structure of critical slamd caustics. To avoid any limitations
that might be due to the particularly chosen radial profile, farthermore replace the auxiliary
Hernquist profile with the more general Dehnen profile [16[3$. Newtonian potential and the

corresponding density profile read as

GM e Mh(1 + a)
@ =20 (—— -
o) == [ +(r +h) ] o) = s

(3.41)

whereh is a characteristic length of the model. Depending on theevaf «, the Dehnen model
represents dierent density distributions, ranging from quite cuspy torenbroadened profiles.
Fora = 0 anda = 1, Eq. [3.41) reduces to the models oftdd164] and Hernquist, respectively.
Allowing different values for, we repeat the fitting procedure for the quadruple-imagéesys
discussed in SeE._3.2.3 B. The result is basically the sarioe e HK model, with the parameters
listed in Table_3.2 not significantly changing. In case of dlage profile ¢ = 0), for instance,
inclination and PA are altered by about&nd the predicted mass by approximately 10%.

To further illuminate the indticiency of our model, let us have a more detailed look at the
caustic structure, taking the system PG14030 as an example: Choosing a plausible setting for
the lens system in MOND, we fix its size tbo= 0.72kpc and the PA to 72° (observed value).

In accordance with the best-fit results, we additionallyuass a lens mass dfl = 8 x 10''M,
and vary the Dehnen index, the model's “diskynessb/(h + b) as well as the inclination on
a range from-1 to 1, Q1 to 09 and 10 to 9, respectively. For a selection of such lenses,
the corresponding critical curves and caustics are shovign[3.9. Then, among all resulting
lens models, we select those which exhibit the strongestsfitterical) shear, corresponding to

a large astroid caustic size. Since the lens mass shouldbbe to the stellar mas$i(M,. ~ 1)

52



3.2. Analytic model for nonspherical lenses in TeVeS

in MOND/TeVeS, the idea is now to stepwise decrease the mass of thaiam In all cases,
we find that, due to the caustics’ contraction, the sourcese® the astroid caustic way before
M/M. reaches unity, thus not corresponding to a quadruple-iragsfem anymore. Typically, the
crossing seems to take place when the lens model’s massgislycaround 4- 6 x 101*M,. For

a = 1,b/(h+b) = 0.38 and an inclination of 48°, this situation is illustrated in the left and
middle panel of Fig[Z3.10. Note that we have kept the sours#ipo fixed at £0.011, 0.091)”

for our analysis, with the lens being centered on the origin.

Again, this provides a possible explanation why the Dehkeanmin model (including the HK
model) mostly fails to fit quadruple-image systems, suppgrour earlier conclusion from Sec.
B.2.3C. Given thaM/M, =~ 1 in TeVeS, our model is obviously not able to generat@cantly
strong shear (hence large caustics) and a large Einstgjratithe same time. For comparison,
we also present the resulting caustics and critical curf’asest-fit SIS+ yeyx model in the right

panel of Fig[3.10. As is known, its deflection potential carelRpressed as
W(E, 6) = cf + %g%os(zw ~6,)). (3.42)

Choosing the lens’ positiorx( yi) = (0.0028 0.0048)”, ¢ = 1.14”, y = 0.07 andg, = 88.7°, the
above model is able to fit the observations of PGHED satisfyingly.

3.2.4 Discussion

We have found that the HK model is able to describe the obddémage positions of all analyzed
double-image systems, with 10 of these systems yieldingsfide parameters within the context
of TeVeS. Additionally, our model is mostly able to explaietflux ratios of these binaries. Note
that the implied masses for most of these lenses are quitestmthose derived from the spheri-
cally symmetric models applied in Ref. [92], but that the dityantage of our nonspherical model

is its ability to fit the precise image-positions rather thast the size of the Einstein ring.

On the other hand, 5 double-image systems do not providesanahble fit: While for two of
these systems, the found problems are likely to be solveahbgidering observational uncertain-
ties, a more accurate model or additionfieets such as extinction and microlensing, the other

three lenses appear to be lacking an obvious explan@.tidnis however quite striking that all

8Note, however, that the stellar mass estimates depend @utimed initial mass function and star formation rate, and
can vary by a factor of 4 in the R-band, which could partly sdlve problem of the mass-ratio discrepancy, but not
the flux ratio anomalies.
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Figure 3.9: Experimenting with hypothetical lenses: Shown are thécaliiturves (black lines) and caustics (red lines) dfestent Dehnen-Kuzmin models char-
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3.2. Analytic model for nonspherical lenses in TeVeS

these remaining outliers are actually residing in (or ckndgroups or cluster®f galaxies. Since
TeVeS lensing is much more sensitive to the underlying tdieensional distribution of the lens
than in GR[[50], this means thaffects due to environment or nonlinearity could have an impor-
tant incidence. Moreover, it is known for a while that adutitl dark matter is needed for galaxy
clusters in MOND and it has recently been shown that thiséscdse for groups, too [80]. Possi-
ble explanations for this “cluster dark matter” range frdma presence of numerous clouds of cold
gas [165] through the existence of neutrinos with a masswareaveral eV [166] to the nontrivial
effects of the vector field (or of an additional scalar field) iiva8 or other covariant formulations
of MOND [34,184,16/7]. Several studies (including the recamalysis of the velocity dispersions
of globular clusters in the halo of NGC 1399 [168]) have alsovjuled first evidence for such
dark matter orgalaxy scalesn MOND, which is typical for galaxies residing at the certéclus-
ters only. This may be interpreted as a small-scale varififtecaforementioned cluster problem
(although the two are not necessarily related to each o#imet)could thus provide an additional

reason for the poor fits obtained for the two-image lensedingsin groups or clusters.

For the four quadruple-image systems, it isfiedent story: the only acceptable fit is obtained
for the Einstein cross Q223030, but even in this case, the observed flux ratios cannog-be r
produced. However, the anomalous flux ratios here are mady Idue to microlensing féects
which have not been considered in our analysis. We can tmduae that MOND does not pro-
vide a solution to the flux anomaly issue, mainly because $mMd®@ND models naturally predict
smooth magnification patterns. Among the 3 very poorly fitexgses, only PG111$980 and
B1422+231 appear in a crowded environment, which could cause the gerturbing ffects as
for non-isolated double-image systems; the remaining, IBRXSS09240219, appears relatively
isolated. We argue that, especially in this particular céise poor fits are due to the intrinsic
limitation of the HK model: Indeed, we have shown that the sldgl unable to produce a large
Einstein ring and a large nonspherical shear at the same Aftteough we have not presented a
rigorous proof, we have tried to make this limitation pldlsiby analyzing the maximum non-
spherical shear of a TeVeS Kuzmin lens as well as the caustictgre of diferent HK models.
We have also tried models based on the more general Dehniile [it63], but this has not led to
a satisfactory solution either. Again, note that our arialg&d not consider any contribution due

to external shearfiects.

In summary, we conclude that our analytic models generatiyide good fits to the image

positions of isolated two-image lenses, but that some problare encountered for non-isolated
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3.3. Gravitational lensing by intercluster filaments

lens systems. On the other hand, we have shown that our mar@ebsrely able to fit quadruple-
image systems, which is essentially traced back to thensitrilimitations of our model. The
present study has thus pinpointed some lenses for which detadled approaches such as a full
three-dimensional numerical model should be devised. &\hir analytic models do obviously
not yet represent a definitive test of MONI2VeS with gravitational lensing, they have neverthe-
less provided a new step toward understanding this quitgplmed research area and isolating

the possibly challenging lens systems for the future.

3.3 Gravitational lensing by intercluster filaments

3.3.1 Weak lensing anomalies and filamentary structures

Recently, strange and hard-to-explain features have bisenvéred in galaxy clusters, such as
the “dark matter core” devoid of galaxies at the center of‘dmsmic train wreck” cluster Abell
520 [169] or the “dark clusters” discussed in Ref. [170]. Ihawfollows, we shall consider the
possibility that this kind of features could be due to thevijational lensing &ects generated by
intercluster filaments in a TeVeS universe. However, we ateparforming a detailed lensing
analysis of any particular cluster in the presence of filasdaut rather provide a proof of concept
that the influence of filaments could be much less negligite within the framework of GR

CDM.

Filaments are among the most prominent large-scale steuofithe universe. From simula-
tions in ACDM cosmologies, we know that almost every two neighborilugters are connected
by a straight filament with a length of approximately 2B0Mpc [171]. For instance, the dy-
namics of field galaxies, which are generally embedded ih $ilmments, as well as their weak
lensing properties are persistently influenced by this kihstructure, generally encountering ac-
celerations of about.01—- 0.1 x 101%m s2. Filaments also cover a fair fraction of the sky, much
larger than the covering factor of galaxy clusters. Thuerelis a good chance that filaments
might be superimposed with other objects on a given linegiftshence fiecting the analysis of

observational data like, for example, weak lensing sheasorements.

Short straight filaments are structures which, at the bestpartially virialized in two direc-
tions perpendicular to their axis. According to Ref. 174 filament generally corresponds to an
overdensity of about 18 30, having a cigar-like shape. Furthermore, filamentaycsires tend

to have a low density gradient along their axis and, in th@emdicular directions, they have a
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3.3. Gravitational lensing by intercluster filaments

photon ray

-infinity

lens filament
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Figure 3.11: Light deflection by an infinitely elongated cylinder of caarst mass density: The unperturbed
photon traveling along the-direction passes the filament at the distagpd@npact parameter) from the
filament's axis and is deflected by the angleThe line density of the filament is assumed to be constant,
A= M/L = pnRZ, wherep is the volume density anfd; is the cylinder’s radius.

nearly uniform core which tapers to zero at larger radii @listabout 2-5 times their core radius).
Since filaments are typically much longer than their diamete shall approximately treat them
as infinite uniform cylinders of radiuBs = 2.5h~Mpc. Lacking a structure formatioN-body
simulation in the framework of TeVeS, we shall adopt the @aigsumption that filamentary struc-
tures have roughly the same properties as XCDM model and we will justify this approach in

Sec[3.3B.

3.3.2 Modeling a filamentary lens

We investigate thefBect of gravitational lensing caused by a straight filamemneating two
galaxy clusters in both GR and TeVeS gravity. As a first simggeroach, we shall take the

filament's matter density profile to equal an infinitely elated and uniform cylinder which is
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3.3. Gravitational lensing by intercluster filaments

illustrated in Fig[:3.111. The cylinder’s line density,
1= M/L = pnR2, (3.43)

is taken to be constant, wheké is the total masd, denotes the length along the symmetry axis,
Rt is the cylinder’s radius, and is the volume density. A photon traveling perpendicularh® t
filament's axis will change its propagation direction whexsging by the cylinder due to the local
gravitational field which is assumed to be a weak perturhatioflat spacetime, i.e. all further

calculations may be carried out within the nonrelativigipproximation discussed in Séc.]3.1.

In our example (see Fid._3111), the filament's axis is alignéth the x-axis, and light rays
propagating along the-direction are dragged into they-directions due to the symmetry of the
resulting gravitational field. Keeping this configuratiomdaintroducing cylindrical coordinates,

we may rewrite Eq.[{3.13) as

. [y
aly) =4y | ———dr, (3.44)
2 —y2
y
where the prime denotes the derivative with respect to thiedrical radial coordinate, i.e.

cl);ot = ddy/dr. Considering the symmetry properties of our cylindricaisdenodel and the

configuration in Figl-3.11, Eql(3.118) further simplifies to

_ 1DiDis da(y)
2 Ds oy

(Y) , (3.45)

with the convergence being related to the quantities(y? = yf, v2, = 0) andA = detA as

follows:

1-A1
K=y=—F—. (3.46)

Furthermore, let us introduce the complex reduced shegaren by

[
g= 21112 (3.47)
1-«
To lowest order, this quantity is the expectation value efeHipticity y of galaxies weakly dis-
torted by the lensingfeect, thus corresponding to the signal which can actuallydseiwed. The
absolute value of the reduced shealgjs= y/(1 — «), and since we have = y < 1 in our case,

we obtain|g| ~ « = v. Note that the above result is independent of the partidalaiof gravity.
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3.3. Gravitational lensing by intercluster filaments

3.3.2 A The uniform filament in Newtonian gravity

The Newtonian gravitational field of our filament model isagivby

Gar
ZR_?’ r <R
on(r) = IVON(N)l = , (3.48)
Gal
— = >R
2nr’ =

with A being the previously defined line density given by Hqg. (8.43)rR; <y, evaluating the

integral [3.44) yields
an(y) = Ga = const (3.49)

Inserting the above into Eq.[(3]45), we may obtain the cpoeding convergence field. As
expected,xy equals to zero outside the cylinder’s projected matteritensory < Rg, the

deflection angle has to be calculated from

Ry [

. 2GAy rdr dr

an(y) = f + f— . (3.50)
T v R%‘/rz_yz S r,/r2_y2
f
Carrying out the integrations ib_(3J50), we finally end uphattie following expression:
yJRE — 2

an(y) = 2GA > + arcsin(l) . (3.51)

b Rf R¢

Using Eqg. [(3.4b), the convergence in this case turns out to be

_ DD Bl o

() = 2= = RE —y2. (3.52)

3.3.2B The uniform filament in TeVeS

Now we shall consider light deflection within the frameworkT@VeS gravity, again using the
simplistic form of the free interpolating functiqms introduced at the end of Sdc. 2.2.P B. Assum-
ing a cylindrically symmetric configuration, the total gitational acceleration may be written in

the following way:

am(r) = IVOm()l = gn(r) + von(r)ao, (3.53)
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wherer denotes the cylindrical radial coordinate abg(r) is the total nonrelativistic gravita-
tional potential in TeVeS. The constam = 1.2 x 10~1°m s72 characterizes the acceleration scale
at which MONDian &ects start to become important compared to Newtonian @onimns. Since
filaments are the most low-density structures within theensie, their internal (Newtonian) grav-
ity is very small. Therefore, the MONDian influence yieldseathancement of the gravitational
field which is on the order ofp/gn, being extremely large in such objects. For this reason, we
may expect a substantialffirence concerning the lensing signal caused by filamentargtgres

in TeVeS. Equipped with Eqd._(3144)), (3148) ahd (B.53) wereaely to proceed with the analysis

of our cylindrical filament model: FdR; <y, the deflection angle is given by

o [6Glao ( dr T'(1/4)
am(y) = an(y) + . yglf \/Fm =GA+ M\/ZG/laoy. (3.54)

In this case, the convergence reads as follows:

_ DiDisI'(1/4) /G/lao
km(y) = D. T34\ 8 ° (3.55)

Fory < R, the integral[(3.44) has to be split in several parts, siigileo Eq. (3.50). Using

elementary calculus, we finally arrive at

2 2
P [2Gaa y*/2 Ry -y
am(y) =an(y) + — R 4 Ry —B(y2 R2.) (3/4,1/2)

2GAagy
+ 4/ TB(O’VZ/R%) (1/4,1/2),

wherean(y) is given by [3.511) an®(,, g (a, b) is the generalized incomplete Beta function defined
by

(3.56)

q
Bpg(@b) = f t21(1-1)"1dt, Rea), Rgb) > 0. (3.57)
p

As the expression for the convergenggturns out to be quite lengthy, we will drop it at this point.

From Egs.[(3.54) and (3.65), we find tha} outside the cylinder’s projection increases with
the square root of the impact parametéty = const) whilexy, decreases with the inverse square
root ofy (ky = 0). This reveals a fundamentalfidirence between MONDeVeS and GR: Since

kn = 0, we also havery = 0 andAy = 1 according to Eq.[(3.46), meaning that there will be no
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3.3. Gravitational lensing by intercluster filaments

distortion éfects as well as no change in the total flux between source aagkine. wherever
the projected matter density is zero, the lens mapping wrill tnto identity. However, this is no
longer true in the context of TeVeS as the convergence anshikar field do not vanish (cf. Fig.
[3.12). Obviously, the MONDian influence does not only enleagitects that are already present
in GR, but rather creates something new, which, in prin¢gipdelld be used to distinguish between
laws of gravity (see SeE. 3.3.6). Sineg continues to increase with the square root of the impact
parameter far away from the filament, one might wonder hosvdfigcts very distant systems and
whether such a model leads to inconsistencies. As will becdear in a moment, there is, in fact,
no real problem. The found growth @dy is a direct consequence of modeling the filament as
an infinite cylinder. Clearly, this approximation will bledown once the impact parameter gets
suficiently large, at which point we expect the deflection anglstart decreasing. However, even
if the approximation held at arbitrarily large valuesypbne would not necessarily be in trouble.
The reason is that one can only measure relative deflectiglesinAsay grows sublinearly,
the relative deflection (caused by the filament) betweert ligis passing through some distant
system will become very small, eventually turning towartbzéthe system is located fiiciently

far away from the filament. Finally, note that if one consgeairying the inclination anglkeof the
filament's axis to the line of sight, the lensing propertiesivkd in this section have to be rescaled

by a factor of sin ¢ in both GR and TeVeS.

3.3.3 Model application

From ACDM large-scale structure simulations, it has been shoatktere are close cluster pairs
with a separation of 5 Mpc or less which are always connected by a filament/ [171].efasa-
tions between 15 and B0'Mpc, still about a third of cluster pairs is connected by ariigat. On
average, more massive clusters are connected to a largdrenwhfilaments than less massive
ones. Additionally, these simulations indicate that thesrmoassive clusters form at the intersec-
tions of the filamentary backbone of large-scale structioe straight filaments, the radial profiles
show a fairly well-defined radiuBs beyond which the profiles closely follow an? power law,
with R being around Dh~tMpc for the majority of filaments. The enclosed overdensithin

Rt varies from a few times up to 25 times the mean density, inudg of the filament’s length.
Along the filaments’ axes, material is not distributed uniity. Towards the clusters, the density

rises, indicating the presence of cluster infall regions.

As previously stated, we will assume that filamentary stmgd in TeVeS have similar prop-

62



3.3. Gravitational lensing by intercluster filaments

erties as in a CDM dominated universe based on GR. To judtifyassumption, one may, for
example, resort to theHDM cosmology (see SeL. 3.1.3) and on the fact that filamestgeneric

and have similar characteristics in hot dark matter (HDMJ &DM scenarios [172-174]. For
instance, neutrino dark matter is known to collapse int@ethand filaments in HDM simulations.
Concerning the uniform model introduced in Séc. 3.3.2, wes ttake the filament's radius as
R¢ = 2.5hMpc, and set its overdensity tb= 20, wheres denotes the density contrast defined
by

5=P"F0 (3.58)
£0

andpg is the intergalactic mean density.

On the other hand, analyzing the Perseus-Pisces segmeé&},cdncluded that a MONDian
description of filaments would not need any additional noydi@ic mass component. Due to
rather large systematic uncertainties, however, thidtresmains highly speculative and does not
rule out our approach where filamentary structures haveehidansities. Nevertheless, we will
also include this case, where filaments consist of baryomittanonly, into our analysis. Since
the absolute density of a filament in this situation is appnately by a factor 18- 100 smaller
than inuHDM, we do expect the MONDian influence to become even moreitapt (compared
to a GR scenario with the same background cosmology). Eagedrby the MOND simulations
discussed in Ref|_[176], we shall stick to the assumptiohlibth shapes and relative densities of
filaments are similar to th&a CDM case when considering a universe made out of baryonitemat

only, thus keeping the choige= 20.

In order to calculate the intergalactic mean density andhtfeessary angular diameter dis-
tances for lensing, we shall use the fi&tDM cosmology in Eq.[(3.26) introduced in Séc. 3]1.3.
To investigate whether the such derived results are sem$itithe background assumption, we will
also consider the less realistic flat minimal-matter cosgwlgiven by Eq.[(3.25). Furthermore,

the model-dependent intergalactic mean densjtig calculated according to

po = Qupe(1+2)%, (3.59)

wherep; = 3H§/87rG is the critical density and is the lens redshift, i.e. the filament's redshift.

Concerning the framework of GR, we shall use a i&8DM cosmology withQ,, = 0.3 and

®Note that the occurrence of filamentary structures is a gefeature of gravitational collapse from a Gaussian random
field which does not depend on the specific form of the law ofitya
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Figure 3.12: Density profileo(r) (top lef)), radial evolutiorg(r) of the total gravitational acceleratiotop
right), deflection anglex(y) (bottom lefy and convergence(y) (bottom right « = y = (1 - A™1)/2) in GR
(dashed) and TeVeS (solid) gravity for the uniform filameyltraler model whose axis is inclined by an
angled = 90 to the line of sight, assuming = 1, z; = 3 and the flayHDM cosmology [3.26) in TeVeS.
The radius of the filament iR = 2.5h~'Mpc and the overdensity within the filament is taken as 20sime
the mean densityo. Note that, for consistency, the Newtonian results aredasea flatACDM cosmology
with Q, = 0.3 andQ, = 0.7.

Qa = 0.7, which allows one to consistently compare the correspandisults to those obtained

in TeVeS.

3.3.3 A TheuHDM scenario

Using the TeVeS cosmology specified in_(3.26) and consideifilament which is inclined by
an angled = 9C° to the line of sight, both the Newtonian and the MONDian deitecangle as
well as the corresponding convergence are plotted in thiornoteft and bottom right panel of
Fig.[3.12, with the filament placed at redshift= 1 and background sourceszt= 3. Whereas

the Newtonian signal is rather smatly, < 1073, the filament can create a convergence on the
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Figure 3.13: Same as Fid.3.12, but now assuming the flat minimal-matenotgy Eq.[(3.25) in TeVeS.

order ofk ~ 0.01 in TeVeS. This even remains true in the outer regions, auer= 0, if we take
into account that it can have other orientations, i.e.fiedint inclination angl®. For example,
a nearly end-on filament with = 10° has a lensing power 6 times larger than that of a face-on

filament, i.e.0 = 9C°.

Using Eq. [(3.46), we therefore infer that a single TeVeS fdatrmay generate a shear signal
which is on the same order as the convergemce,0.01, as well as a magnification bias at a 2%
level, A1 ~ 1.02. Additionally, we present the densjtyr) and the radial evolution of the total
gravitational acceleratiog(r) in the top left and top right panel of Fi§. 3112, respectivéllote
again that the GR results are based on aXl@DM cosmology withQ,, = 0.3 andQ, = 0.7 for

consistency.
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3.3.3B The baryons-only scenario

Now let us switch to the minimal-matter background given By28). Keeping all remaining
parameters exactly the same as in the last section, thesporrding results are presented in Fig.
[3.13. Although the convergence is slightly smaller tharhimiHDM case (roughly by a factor
of 1.5 - 2), we find that also in this case, single filamentary strest@are capable of producing a
lensing signal which is of the same order y ~ 0.01. Again, this is even true outside the “edges”
of the filament's projected matter density, accounting li@r fiact that the inclination anglemay

vary, ¢ < 6 < 9Cr.

3.3.4 Oscillating density model

Matter density fluctuations are steadily present througkimeiuniverse. Thus, as a more realistic
approach, we shall use a fluctuating density profile to desaifilament and its surrounding area
including voids, i.e. regions in the universe where thellotatter density is below the intergalactic
mean density. To keep our analysis on a simple level, let iis tre density fluctuation as till

denotes radial coordinate in cylindrical coordinates)

ar\ 7t ar
—| sin[— r <2R
60(Rf) (Rf)’ =

8(r) = : (3.60)

0, r > 2R

wheres(r) denotes the density contrast definedin (B.58)s 4 is the density fluctuation ampli-
tude (this value ensures a positive overall matter denaitgR; = 2.5h~*Mpc again the filament’s
characteristic radius. Multiplying with the mean dengigyand integrating along the radial direc-
tion, we find that the mass per unit length enclosed by an tafitylinder of radiug reads as

(Note that we neglect the contribution due to the mean debsitkground)

5oR2
A000 ! (1—cos(g—r)), r < 2R¢

M) _ " f , (3.61)

0, r > 2Ry
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Figure 3.14: Density profileo(r) (top left), radial evolutiorg(r) of the total gravitational acceleration (top
right), deflection angle(y) (bottom left) and convergenagy) (bottom right;x = ¥ = (1 - A™1)/2) in GR
(dashed) and TeVeS (solid) gravity for the oscillating digmaodel given by Eq.[(3.80p(= 90°), assuming
50 = 4,Rt = 25hMpc, z = 1, zs = 3 and the flagyHDM cosmology [[3.26) in TeVeS. Note that, for
consistency, the Newtonian results are based on A@&M cosmology withQ,, = 0.3 andQ, = 0.7.

whereog is the mean intergalactic matter density given by Eq. (3.68)m Eq. [(3.61), we directly

see that the Newtonian gravitational acceleration in tageds

GM(r) 1
27k r’

on(r) = (3.62)

Using Egs. [(3.44)[(3.53) and (3162), we are now able to nioalér calculate the lensing prop-
erties of this configuration. Choosing lens and source i#dstpain asz = 1 andzs = 3, re-
spectively, and assuming the previously used cosmologiackground models (see Séc. 3.3.3),
the resulting deflection angle as well as the convergencshenen in bottom panel of Fig._3.114
(flat uHDM cosmology) and 3.15 (flat minimal-matter cosmologysuaringd = 90°. Here the

occurrence of negative-values simply reflects the fact that our model (8.60) geesra local
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Figure 3.15: Same as Fid._3.14, but now assuming the flat minimal-mat@mnotogy Eq.[(3.25) in TeVeS.

underdensity,  6(r) < 1, with the overall matter densify being strictly non-negative at any
radius. Compared to the Newtonian case whgres 107#, we again find that a face-on TeVeS
filament may cause a significantly larger lensing signalcivié now on the order af ~ y ~ 1073
within both TeVeS cosmologies. As the results of DM and the minimal-matter cosmology
approximately dier by a factor -2 just as in Se¢._3.3.3, the order-of-magnitude lensiferts

caused by TeVeS filaments are also in this case more or les®tmgcally model-independent.

Close to the filament's axis, wheke ~ 4 x 1073, one can actually have a lensing signal
k = y = 0.01 assuming that the inclination angle is smallg 20°. Although such angles
correspond to rather special configurations, we may coerdlidt also for our simple oscillation
model, single TeVeS filaments potentially generate a lgnsignal~ 0.01, which is similar to our
result in Sec[[3.313. However, note that the above discussibased upon the choice 6f (3.60)
andép = 4. Considering a higher overdensity along its axis, everce-ém filament described by

a similar fluctuating profile could easily create a shear field0.01 fory < R;.
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Table 3.3: Parameters of the superimposed filaments in[Sec.]3.3.5

Plane PAf] incl. [°]? Shift from origin [kpc]¢ Redshiftz

2 90 12 (0-150) 025
3 45 45 (6000) 0.30

b Inclination of the filament's axis to the line of sight.
¢ Shift of the filament’s projection in the corresponding tetiplane.

3.3.5 Superimposing filaments with other objects

To demonstrate the contribution of filamentary structucethé lensing map of other objects, e.qg.
galaxy clusters, we superimpose twdéfdiently orientated filaments with a toy cluster along the
line of sight, assuming the previously introducgd DM cosmology and dferent redshifts for
each component. If all objects arefisciently far away from each otheg(100Mpc), we may
approximately treat them as isolated lenses at a certaghifedlice, i.e. the corresponding de-
flection angles can be calculated separatey hus, we may resort to the well-known multiplane
lens equation [129, 177]:

n= 0 - Y Dsd(6), (3.63)
i=1

wheren is the number of lens planeB; corresponds to the angular diameter distance between

thei-th and thej-th plane and; is recursively given by

. =—51—ZDJIQJ(EJ 2<is<n (3.64)

Comparing Eq.[(3.83) to the lens equation for a single leasglwe identify the total deflection
angle as

ot(§1) = aa(€1) + —au(E) = O¢ + Gt (3.65)
i—2 —1s

Herea. anda; are the deflection angle of an isolated cluster atnd an additional contribution
due to the superimposed filaments, respectively. Analoddochse of a single plane, further
lensing quantities such as the total convergence and thediotar can be calculated from Eq.

(3.69), using the general relations introduced in §egd. Bot simplicity, we shall assume that the

1ONote that in general, one would have to solve the full nomlirieVeS scalar field equation, which is beyond the scope
of the present analysis.
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Figure 3.16: Superposition of two filaments with a toy cluster along theelbf sight: Shown are the
cluster’s convergence map in absence of any filamentary structures along the line dfttop lef) and
the filaments’ contributionx = xiot—«. to the total convergenceop right) and as well as to the components
of the reduced sheakgs = yiot1/(1—ktor) = ¥e.1/(1—kc) aNdAG2 = Yior2/(1-kiot) —¥c2/ (1-kc), respectively
(bottom panél

cluster's TeVeS potential follows the “quasi-isothermpibdfile given in Ref. 83]:

o(r) = Vlog w/1+ I _p£0|2’

with v being the asymptotic circular velocitg,a scale length ani the center’s position.

(3.66)

Concerning the numerical setup, we sét= 2 x 10°km? s2 and p = 200kpc, fixing the
cluster’s redshift taz; = 0.2. Furthermore, we choose the uniform filament model diszlias
Sec.[3.3P and assume that filaments have a constant ovigydeing = 20 as well as the same
characteristic radiuBs = 2.5h~tMpc. While the cluster is centered at the origift € &, = 0),
the two filaments are set up according to the parameters giveable[3.8. Finally, we place the
source plane at a redshift of = 1. Note that this specific setting corresponds to a moresteali
lensing configuration compared to our order-of-magnitutkyssis in the previous sections, where

our choice is again motivated by results based siC®M universe.
From the top right panel of Figl_3.116, we see that the filamemustribution to the total
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3.3. Gravitational lensing by intercluster filaments

convergence maphk = kot — k¢ (kc iS the cluster’s convergence map in absence of any filamentar
structures along the line of sight) is comparable to our ipte/findings, with the signal again
being on the order of.01. Also, note the distortionfects caused by the cluster and the peak close
to the region where the two filaments overlap. Obviouslycbetribution pattern depends on the
actual configuration as well as on the type and amount of theidered objects along the line
of sight and can generally be quite complex. Additionallg present the changes in the reduced
shear componentag; = yiot1/(1 — ktot) — ¥c1/(1 — k) andAgz = yrot2/(1 — ktot) — Y2/ (1 — k),

due to the filaments’ presence in the bottom panel of[Fig.3.16

At this point, we should emphasize that we have consideredntipact of filamentary struc-
tures alone. Depending on their particular position aldvagline of sight, additional (foreground)
objects such as galaxies, galaxy clusters or voids mightiipcontribute on a comparable level or
even exceed the signal caused by filaments. Of course, titieficomplicates the interpretation
of the corresponding lens mapping and we conclude thataitggthe filaments’ contribution can

generally pose quite a challenge.

3.3.6 Discussion

Regardless of the actual used cosmological background,awe shown that TeVeS filaments
can account for quite a substantial contribution to the weaking convergence and shear field,
k ~ v ~ 0.01, as well as to the amplification bia&;1 ~ 1.02. This is even true outside, but
close § ~ 2R¢) to the projected “edges” of the filament's matter densaljrig into account that
the filamentary structures may be inclined to the line of sighrather small angle9 (s 20°).
Additionally, we have demonstrated the impact of filamemt®dhe convergence map of other
objects by considering superposition with a toy clustenglthe line of sight. Again, our results

have shown an additional contribution comparable to thatsifﬁle isolated filament and that the
1

contribution pattern of filaments can be generally quite [olex

Although our analysis is mainly of theoretical interest #bove result points to an interesting
possibility concerning recent measurements of weak lgnstirear maps. For instance, the weak
shear signal in the “dark matter peak” of Abell 520 [169] isighly at a level of M2, which is

comparable to what filaments could produce in TeVeS, butm@&R (also cf. [[179]). Therefore,

'Here we have considered the lensing signal generated bie ditments alone. Simulating the cosmic web in a
standardACDM cosmology, [178] have found a shear sigmat 0.01 — 0.02 along filamentary structures, which
seems quite similar to what TeVeS can do. Note, however thiigsignal is entirely dominated by the simulation’s
galaxy clusters, with the filament’s signal being much seralipproximately on the order of 10- 1%
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3.4. Constraining neutrino dark matter with cluster lenses

we conclude that filamentary structures might actually de &bcause such anomalous lensing

signals within the modified framework.

In principle, the predicted flierence in the weak lensing signal could also be used to test th
viability of modified gravity. As several attempts to detéitiments by means of weak lensing
methods have failed so far, e.g. the analysis of Abell 22@&3d 180], this might already be a first
hint to possible problems for such modifications. On themtlaad, shear signals aroupd- 0.01
are still rather small to be certainly detected by today'skviensing observations, and lacking
N-body structure formation simulations in TeVeS, we cann@nebe sure about how filaments
form and how they look like in a MONDian universe comparedn® €DM case. Another point
of concern is whether the treatment within the nonrelatwimit of TeVeS provides a good
description at the scales we have considered here. Prewiotkshas shown that TeVeS vector
perturbations have a significant impact on the evolutionagfd-scale structure [86,!87], which
could also be important for a discussion of filaments. Cleanbre investigation is needed to gain

a better understanding about the impact of filamentary tsiress.

3.4 Constraining neutrino dark matter with cluster lenses

3.4.1 Massive sterile neutrinos: A possible remedy for Te\&

As we have discussed in Séc. 3]1.3, massive ordinary nesitviith a mass around 2eV provide
an interesting candidate for the missing energy-densitieMeS and the question of the viability
of the assumed neutrino mass is soon expected to be answettesllpcoming results of the KA-
TRIN experiment. Nevertheless, the rather unsatisfaatesylts of this solution on large scales,
especially for the CMB anisotropy power spectrumA@DM model provides a better fit to the
data), and problems within galaxy groups/[80] have led tovdd®e hypothesis of very massive
ordinary neutrinos unattractive. Alternatively, the rizggd additional matter could be provided in
the form of (right-handed) sterile neutrinos (SNs) which arotivated by theoretical considera-
tions in particle physics (e.g., see Refs. [181+183] andresices therein) andfer an elegant
way to explain the small masses of active neutrinos visstesaw mechanis@ [184-+-186]. The

main motivation for considering the existence of one or fihgsnore generations of SNs comes

12The seesaw mechanism is a possibility to generate neutrasses. In its simplest form, the standard model La-
grangian is extended by a combination of Dirac and Majoranasnterms, with the left-handed Majorana mass set
to zero and the right-handed Majorana mass to a large valighwéhtypically associated with some grand unifica-
tion scale. As a consequence of this construction, the mas®amwhose eigenvalues describe the physical neutrino
masses, gives rise to a very light left-handed neutrino arehyaheavy right-handed one.

72



3.4. Constraining neutrino dark matter with cluster lenses

from the combined data of flierent neutrino oscillation experiments: Since the flavgeestates
of neutrinos are diierent from their corresponding mass eigenstates, theipléscof quantum
mechanics dictate that there is a probability of finding atmeal with an initially given flavor in
another flavor state at a later time, i.e. neutrinos may lageilnto a diferent flavor state. This
behavior has been observed in several experiments baskd datection of solar and atmospheric
neutrinos, and provides firm evidence for the fact that imograre not massless particles. Fur-
thermore, these experiments allow one to determine theraduaass dferencesAn? between
distinct mass eigenstates. If there were only three gaoesabdf ordinary neutrinos, then there
should only exist two independeni?’s. However, results of more recent laboratory-based ex-
periments such as the Liquid Scintillator Neutrino Detesteem to disagree with this picture as
their interpretation requires at least three independentts. The problem can be alleviated by
adding SNs to the standard model which may oscillate intonargl neutrinos and vice versa. As
experimental fort into this direction has just begun and stringent coirdgaon the properties of

SNs do not yet exist, there is currently great freedom irr tiineioretical description.

Returning to the field of gravitation and cosmology, the eptaal advantage of such an ap-
proach lies in combining the success of modified gravity oalsatales with new physics in a
sector of the standard model which is known to be incompl&8&'][and in need of revisit%.
Motivated by a possible interpretation of the MiniBooNE exment [188], Angus [189] has sug-
gested to use a single light species of SNs with a mass of spmptely 11eV and investigated
its consequences. If such SNs decouple while they arewvistatiand in thermal equilibrium,
one should obtain both a background evolution and a CMB #oigp power spectrum which are
basically indistinguishable from a standakdCDM cosmolog, while at the same time, this
additional hot dark matter (HDM) component may give rise woaect prediction of the linear
matter power spectrum and represents a suitable candatateefmissing mass in galaxy clusters
without spoiling MONDian dynamics on galactic scales [198s for the nonlinear regime of
structure formation, the situation is still unclear. Besmof the more sophisticated mathematical

structure of the nonlinear TeVeS field equations (or thaktHted theories) as opposed to those

Bwithout resorting to a modification of gravity, SNs in the kehAss range still provide a viable candidate for all the
dark matter in the universe [183]. In this case, however,mag expect similar fine-tuning issues on small scales as
in current CDM models.

14Although this has not been explicitly calculated, one cam tire following argument: For common choices of the
TeVeS parameters, the impact of perturbations due to tha B&tds is small at early times, i.e. those relevant for the
CMB. Thus the theory exhibits a GR-like behavior, which atiato directly adopt the results of Angus for TeVeS.
This is further supported by the nearly identical resultstf@ CMB power spectrum in TeVeS [86] and GR [189],
assuming three active neutrinos with a mass around 2eV. Howi is still an open question whether secondary
anisotropies such as the thermal or kinetic Sunyaev-Zébthoeffects leave a dierent signature than inCDM.
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of GR, there seems currently no way to gain reliable inforomaaibout the nonlinear evolution.
This difficulty is somewhat reflected by the fact that the resultingl fgjuations in the quasistatic,
nonrelativistic limit typically remain highly nonlinearAssuming arad hocmodification of the
original MOND formula Eq. [(2.33), however, a first simplifiattempt into this direction is dis-
cussed in Ref. [191].

It is noteworthy that TeVeS or TeVeS-like theories in conaltion with suficiently abundant
massive neutrinos provide the most consistent relativitDND framework presented in the lit-
erature so fﬁ; nevertheless, there are still innumerable aspects whdel to be tested further.
As we have discussed in S&c. 312.1, one possibility to enthidyool of gravitational lensing is to
test the theory with the help of multiple-image galaxy lepsteams. Another way of challenging
the theory is @ered by weak galaxy-galaxy lensing. Using data from the Beguence Cluster
Survey and the Sloan Digital Sky Survey (SDSS), it has beenddhat the most luminous galax-
ies & 10*L,) would require a substantial fraction of nonbaryonic m&fit®2]. Although this
result needs to be confirmed by larger data sets before a finglugion can be drawn, it might
hint towards a problem with the original MOND idea on galaaitales. Again, SNs with a mass
around 11eV could provide a remedy as they should be ableuttecldensely enough in such
massive systems [190]. However, it remains to be seen irl détather such an approach can
explain observations. Summarizing the above, we note ltfeaassumption of 11eV SNs has the
potential to remedy the problems of TeVeS-like theories @amyrdiferent scales and therefore

merits further investigation.

In the following, we suggest to test TeVeS and the massive #idthesis in the context of
complex lens systems which are typically present in therakrggions of galaxy clusters. A pre-
vious analysis [193] already revealed that such an enviemtroan put stringent constraints on the
distribution and plausibility of the needed dark neutrimonponent, thus providing an excellent
testbed for our purposes. Generally, the advantage of galasters lies in the independent esti-
mates of baryonic matter, inferred from observed x-ray &eiths luminosities, and of the system’s
total mass distribution based on a combination of weak andgtgravitational lensing. Being in-
sensitive to the dynamical state of the deflecting massatter techniques are particularly suited
to constrain the properties of the dark component. In cehtaweak lensing estimates, strong

lensing is basically free of statistical uncertainties afidrs a unique and robust probe of the mat-

15Note that there are certain theories which aim at reprogu®i®ND and large-scale observations without any addi-
tional dark matter [40], but it is currently unknown whetlseich models naturally give rise to the observed properties
of galaxy clusters.
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ter distribution on scales 100kpc. Here we shall use strong lensing to further test idgility

of 11eV SNs. Unlike conventional CDM, light SNs are subjecstrong phase-space bounds set
by the Tremaine-Gunn limit [194], which allows one to chetikster lens models inferred within
the modified framework for consistency. Since this limityanets SNs from clustering into dense
clumps, galaxy cluster lenses with a considerable amoudad¥ substructure provide an ideal
target for our intentions. As a first example, we shall studydalaxy cluster Abell 2390 (A2390)
with its notorious straight arc, and investigate whethés ppossible to reproduce this particular
lens feature in TeVeS. Again, we shall restrict ourselvesdak fields and quasistatic syst%s
which allows one to make use of the relations presented in[&8c Based on the assumption of

a single species of 11eV SNs [189, 190], we shall further uta aosmological model with
Om=0Qp,+Q,=029 Q,=07, h=07 (3.67)

to calculate angular diameter distances in the contextadfigtional lensing. Note that this gives
a background which is virtually indistinguishable from arstardACDM model. A particular
choice for the free functiopg(y), suitable for the gravitational lensing analysis of A23@d@l be

given and discussed in Séc. 314.4.

The following sections are structured as follows: Stariwith an observational summary of
the galaxy cluster A2390 and its pronounced straight arem[3.4.8, we highlight why this sys-
tem provides an excellent candidate for our intentions.ti@aimg with the setup for a simplified
density model of A2390 in Se€._3.4.4, we discuss results fiasigquilibrium configurations in
Sec.[3.4.b. Based on the latter, we outline a systemati®apprto cluster lenses in TeVeS, and
describe a lens model for the straight arc in Sec. B.4.6.llizivae conclude in Sed._3.4.7. For

clarity, several technical and numerical details are ginghe appendix.

3.4.2 The Tremaine-Gunn bound

In the following, we shall discuss why light (ordinary or i#i&) neutrinos cannot cluster into
arbitrarily dense clumps. If one assumes that such nestrireye thermally produced in the early
universe and account for the missing mass in galaxy clydtéssfact can then be used to place a
lower bound on the neutrino mass, which is known as the Tmeer@unn bound [194]. At early

times, when temperatures ardfstiently large such that one may neglect the particles’ resan

18Note a caveat here: The present approximation ignoreslpessintributions arising from perturbations of the vector
field A, which could have a significant impact on cluster scales. iBBise is further discussed in SEC. 3.4.7.
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the neutrinos are in thermal equilibrium and their distiitoo is basically given by the Fermi-
Dirac distribution of a massless particle (here we cons@dsingle neutrino species and ignore
perturbations),

O

()P = o5 (€7 + 1) dp. (3.68)

where we have used natural units with= ¢ = 1 = «g (kg is the Boltzmann constant}, denotes
the temperature argl is the degeneracy factor. As the universe cools down, thigines eventu-
ally decouple from the rest of the cosmic inventory (at acblin~ 1MeV) and their Fermi-Dirac
distribution freezes in. Since both their momenta and teatpee scale aa™! thereafter, their
distribution today is still given by Eq[(3.58) - not by theuddprium distribution of nonrelativistic
particles - because the phase space distribution was peesaiter decoupling. Furthermore, their
present temperature reads

1/3
T, = (1_1) T, ~ 195K, (3.69)

whereT,, is the observed temperature of the CMB today and the prefaesults from the fact
that the additional heating due to electron-positron dafatibn occurred after neutrino decoupling.
The argument presented in Ref. [194] is now the followingc@ese the neutrinos are noninteract-
ing, the density of a fluid element in phase space is conselvedo Liouville’s theorem. There-
fore, the maximum fine-grained phase-space density is bmthe As a consequence, the maxi-
mum coarse-grained phase-space density must not exceedf tha fine-grained one. From Eg.
(3.68), we find that the maximum fine-grained phase-spacsitgtén g,/2(27)° which provides

a limit for any bound neutrino system found today. Not thid tfhase-space bound corresponds
to half of the Pauli limit. If these systems resemble isatiedrgas spheres, their velocity distri-
bution is Maxwellian and the maximum coarse-grained plsasee density igom;,4(27)~3/203,
wherepg is the central densityn, denotes the neutrino mass ands the one-dimensional velocity
dispersion. Thus we end up with

2m)™"po. (3.70)

Alternatively, if one assumes a given value foy, Eq. [3.70) can be used to constrain the max-
imally allowed density or the velocity dispersion. Finaliyote that the argument we have pre-
sented here would also work for any hypothetical MaxwelltBuann particles. It does not work

for bosons because their equilibrium phase-space derwty bt have a maximum.
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3.4.3 Observations of the galaxy cluster A2390
3.4.3 A X-ray gas and member galaxies of A2390

The galaxy cluster A2390 at redshift= 0.23 [195, 196] is one of the richest and most luminous
clusters known in the literature. Several interesting proes, e.g. the large abundance of lensing
arcs and arclets [197], an elongated galaxy distributid@d8]land its large velocity dispersion
[199], have made the analysis of this system particulathaetive. In the context of GR, A2390
has been subject to extensive study by meansfédrént techniques including virial (e.g., Ref.
[200]), x-ray [201+204], redshift-space caustic [205] dath weak|[206—210] and strong [211—

214] lensing studies.

Observations with CHANDRA exhibit a very concentrated aighly peaked x-ray emission,
indicating a strong cooling flow which is centered on clusteentral cD galaxy [202]. On large
scales, the x-ray morphology has been found to be stronigiyiehl with an overall position angle
(PA) comparable to the main cluster direction in the opt{€Al = 133) [197]. Here and below,
the PA is defined as the anguldiset of the major axis with respect to the north-south dioggti
being measured counterclockwise. The data provide evidim@n elongated x-ray morphology
in the very central part, and suggest the existence of arsighste in the cluster gas located
roughly 40’ (~ 147kpc) from the cluster center. The CHANDRA image furthereals large-
scale cavities in the x-ray surface brightness extendingaximately 400kpc from the center,
where a sharp break in the surface brightness profile islgisibs observed in several other
clusters|[215], such cavities are likely produced by bublbleradio plasma emitted by the central
active galactic nucleus. Despite these irregularitiestherdappearance of a secondary gas peak,
however, the x-ray observations indicate that the systemabkole is relatively regular and, to
good approximation, dynamically relaxed. Thus, if one edek the cluster’'s central part, the

overall assumption of hydrostatic equilibrium appears esaaonable one.

There are also several studies of individual galaxies withé cluster. For instance, the prop-
erties of the central cD galaxy have been examined usingald®16], infrared and radio ob-
servations|[217]. A large sample of 216 confirmed cluster byens based on photometric and
spectroscopic information is presented in Ref. [218]. Mameent observations include a selec-
tion of 48 early-type member galaxies which has been usew/é&siigate their evolutionary status
[219]. We note that the available observational data wilhingortant for building a realistic cluster

model in TeVesS.
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Figure 3.17: A small section of an HSWFPC2 observation of A2390 shows the impressive straighimr
the left side. Characterized by two breaks along its ligbfif (present in other observed bands as well),
the arc can be decomposed into three segments laBeledndC, respectively[197]. Also visible are the
galaxy 2592, which is located adjacent to the arc, as welhagalaxy 6666 (see Talile B.4).

3.4.3B The straight arc of A2390

Among several arcs and arclets, the cluster A2390 exhibitsrausual, strongly lensed straight
arc (see Fig[-3.17) which is located approximately 88 140kpc) from the central cD galaxy
[197]. This particular arc is unusual in the sense that, sshbth located in the outer core region
and adjacent to a lens galaxy lying in between arc and cD gailawould be expected to appear
curved with respect to the massive cluster center or thesi@mlaxy. Along its light profile, the
arc further exhibits two breaks in surface brightness, sginigally located relative to the closest
galaxy’s center. Spectroscopic analysis of the arc reddhk it is actually the joint image of two
different sources, one at redshift 0.913 (corresponding t8 — C in Fig. [3.17) [197] and the
other atz = 1.033 (corresponding t@) [220]. In addition, ISOCAM observations of the image

segmenB - C indicate the presence of an active star forming region apgat the scenario of

78



3.4. Constraining neutrino dark matter with cluster lenses

two interacting source galaxiesat 0.913 [221]. Nevertheless, the found straightness requires a

rather special lens configuration (also see Sec. 3.4.5 A).

Apart from the system A2390, there also exist other detastaf (relatively) straight images
which are typically well modeled from the visible distribant of bright galaxies helped by the cen-
tral cluster potential [222—2P4]. As already pointed outhia literature|[211], a similar approach
for A2390 within the usual framework of CDM would require exthely high mass-to-light ratios
for individual galaxies, and thus yields a rather unreiglistenario. In recent years, several authors
have considered possible lens models which aim at repnogistich a straight image, and a first
attempt was performed in Rel._[197]. For instance, the faldstic of a single, highly elliptical
cluster lens can be used to create a straight image [212h &uowodel gives a result comparable
with the arc’s morphology, but fails to explain infrared ebstions. Adopting a very large ellip-
ticity of the central cluster profile, it was demonstrate@vtzocusp model may produce the desired
elongated image morphology [214]; however, this solutieanss incompatible with other lensing
constraints of the system. Building on the existence ofyxst#bstructure in the arc’s vicinity, the
authors of Ref.[[213] employed a two-component model usingligptical cluster center with axis
ratio b/a = 0.7 to explain the arc. Despite a slight deviation~aflo- significance, the obtained
x-ray temperature profile and the projected mass withih 38 140kpc) appear consistent with

those derived from the observed x-ray luminosity [202].

It seems obvious that any suitable model needs substamigatifning to form the necessary
lens configuration for straight images. As a consequentef tilese models are extremely sensi-
tive and unstable with respect to perturbations due to est galaxy or additional substructure
in the intracluster medium (ICM). While this does not poser@bfem per se it is nevertheless
interesting to look for models with improved stability. Fraa general analysis on how to form
straight images [211], it has been concluded that the miadylconfiguration involves a dark mir-
ror component of the nearest galaxy located on the oppdditeo$ the arc, counterbalancing the
effect of the visible galaxy. With the help of the central clugteofile, this yields a so-calleleak-
to-beak modelvhich explains the observed straight arc and, if realizeti uch a “dark galaxy,”
is suficiently stable against local perturbations. Alternativétiere is also the possibility oflgs
catastropheg[211], i.e. a lips caustic just emerged or just about to eméngthree-dimensional
caustic space (for a demonstration of a lips catastrophe3ir0fsee Ref.|[225]). Since such a
model requires the lensing convergence - equal to the pegjanatter density in GR only - to

peak at the arc’s position, however, it is not supported tseolations.
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3.4. Constraining neutrino dark matter with cluster lenses

3.4.3C Achallenge for TeVeS and hot dark matter

Concerning the situation in TeVeS, we may already statetttet'dark galaxy” approach, i.e.
a nonluminous matter distribution of galactic size, cartmiachieved with our choice of 11eV
SN HDM. Assuming that these particles are relativistic drefrnalized at the time of decoupling
(just like for active neutrinos around a temperature of sdvieleV which is much larger than
the considered ma@, their Fermi-Dirac distribution freezes in, and their phapace density is
constrained by the Tremaine-Gunn (TG) limit [194]. For amste, a HDM galaxy in TeVeS would

have a typical phase-space occupation number (we negteotdafr and order unity)

BdN. M ( i )3 aZn’
d3xcP 5
xdp m Amotc/  Gnfo (3.71)

_4 -5
~103( M ) ( 7 ) ,
11eV/ \100km s?

which exceeds unity, and thus the TG limit for thermal relizsless the HDM mass, is much

larger than 11eV (e.g~ 1lkeV warm dark matter) ayior the structure’s velocity dispersian >
100km s, hence above the galactic scale. The estimate given in [Eg1)(assumes that the
structure’s dense core is subject to the Newtonian regirge-(1), which gives a core sizg. ~
GM/c?, and the total masM ~ o*/Gay can be well approximated within the “deep-MOND”
limit (ug ~ +/¥). Also note that moving to masses significantly larger thgn= 11eV would
spoil the dynamics of MOND in galaxies and thus eliminateuse of such HDM in the first place
[290].

Therefore, a combination of HDM and modified gravity may, impiple, face a challenge in
order to create observedfects of dark substructure. The TG phase-space bound noapplies
to HDM substructure, but also to its global distribution hiiit the cluster, which presents a well-
posed and constraining general test of TeVeS or similarigeesupplemented by an additional
HDM component. As other realistic lens models for the stradgc [213] also suggest a substantial
amount of dark substructure, a basic question is whethee #re TeVeS lens models which are
compatible with the TG bound for 11eV SNs. Before we can afdtkis point, however, we
need a reliable way of modeling the straight arc in TeVeS. ppraach into this direction will be

discussed below.

"Note that whether or not SNs decouple whilst in thermal éoyitim depends on the assumed model, production
mechanism and parameters, e.g. the mixing to active nestriSince the physical processes in the early universe
are yet unknown, the relic distribution of SNs is quite utaier Here we choose a thermal distribution to obtain the
desired cosmological properties as discussed in Refs, [1HY.
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3.4. Constraining neutrino dark matter with cluster lenses

In preparation for the following sections, we introduce taeminology and procedure used

for two different kinds of lens configurations in our analysis:

Quasiequilibrium configurations Here we consider configurations which are based on the as-
sumption of hydrostatic equilibrium. Both the cluster gad the (SN) HDM component are mod-
eled by symmetric, central density distributions, theslattaving a maximum phase-space density
set by the TG limit which is inferred in a self-consistent wgyconsidering the equation of state
for a partially degenerate neutrino gas! [81,/190] (see Agp.IMaddition, we include substruc-
ture in the form of visible galaxies and further allow for pebations of the central distribution
(gas+ HDM) which are modeled by the same density profile as the akatre (corresponding to
structure of equal scale). We then check whether such caafigns can produce the observed

straight image in TeVeS.

Nonequilibrium configurations In this case, we allow for any HDM distribution which is ca-
pable of explaining the straight arc. This includes complistributions with multipeaked mass
densities and concentrations offdrent scale. Although we outline a general approach to lens
models in TeVeS, we restrict our analysis to a bimodal cordijion based on a model in GR (cf.
Table[35 below) whose components exhibit dispersions 500km s and appear consistent
with the crude estimate of Eq._(3]71), i€.> 400km s1(m,/11eV)y">. Approximately treating
each density peak as a symmetric equilibrium distributibi®Ns, we investigate whether they
satisfy the TG phase-space limit for, = 11eV. For simplicity, we do not account for baryonic

substructure (galaxies) in this context.

3.4.4 Quasiequilibrium model of A2390

Because of the nonlinear relation of the TeVeS scalar figlddanderlying matter distribution, we
cannot work with projected quantities, but need to performaalculations in three dimensions.
This significantly complicates the lensing analysis of A22thd requires knowledge about the
cluster’s three-dimensional matter density. A first appho our problem is to consider cluster

configurations which are based on the assumption of hydiostguilibrium.

3.4.4 A Distribution of baryonic material

Using available data of x-ray gas [202, 204] and individualbgies [219], we have modeled the
distribution of baryons in A2390. Here we shall briefly pretséhe results which are relevant for

the analysis in Se€._3.4.5. A detailed description of oucedore can be found in Appl B.
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Table 3.4: Positions, line-of-sight configurations and masses oviddil galaxy components for the density model of A2390: & tluster’s redshiftZ= 0.23), an
angular scale of’1corresponds to approximately7&pc.

Line-of-sight configuration

Projected stellar m&dé< 1.5”)

Galaxy IDY 6y by Ex & A B My M,
[”] [kpc] [kpc] [101M;]

#2180 -4821 -16.98 -17804 -6271 0 +850 202 160
#2592 -34.29 1332 -12663 4919 0 +850 351 466
#2619 -13.04 2880 -48.16 10636 0 +850 109 049
#2626 -34.62 2986 -12785 11027 0 -850 140 Q79
#6666 -50.25 1403 -18557 5181 0 -850 289 321

Substructuré -37 25 -137 92 - - - -
Center 0 0 0 0 - - - -

d |dentifiers for galaxies are taken from Ref. [219].

€ The given values roughly indicate the position of the x-ralgstructure presented in Ref. [213].
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Figure 3.18: TeVeS equilibrium configuration of 11eV sterile neutrinnsAi2390: The figure shows the
calculated density distribution of neutrinos (dashed)litlee analytic fit to this density using the profile
specified in Eq.[{3.48) (solid line) and the central baryanatter distribution derived from x-ray observa-
tions (dotted line).

Figure[3.18 shows the density distribution inferred fromax-observations with CHANDRA
(dotted line). In addition to this central profile, we corgithe contribution of five massive early-
type galaxies which are located close to the straight are.rmasses of these galaxies are derived
following a twofold approach: The first estimate (denotedvl} is based on a direct conversion
of observed luminosity to stellar mass while the second dhg (ises a dynamical method. In
what follows, we shall consider both prescriptions and gmesesults for the two flierent mass
estimates below. We further assume that all galaxies cardmritied by a spherical density profile
which is closely related to the Hernquist profile [139] fdiptical galaxies (see Apj._B.2). Using
the notation of Ref. |[219], the basic properties of our medel the galactic components are

illustrated in Tablé314.

3.4.4B Adding massive neutrinos

As previously mentioned, TeVeS requires an additional enattmponent to consistently describe
observations of galaxy clusters. Assuming 11eV SNs withindriginal formulation of MOND,
the authors of Ref.| [190] derived their corresponding dlgpiiim density and (radial) velocity
dispersion distributions for a sample of 30 galaxy grougbs@nsters, including the system A2390.
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3.4. Constraining neutrino dark matter with cluster lenses

Starting from the observed density and temperature of tMe[RD4], pox(r) andT«(r), respectively,
the assumption of hydrostatic equilibrium immediatelyai one to determine the gravitational

field as a function of radius:

(3.72)

o) = —kgTx(r) (d logpx(r) dlog KBTX(r))’

wmpr dlogr dlogr

wherexg is the Boltzmann constanty ~ 0.6 is the mean molecular weight ang, the mass of
the proton. The such derived result is typically accurate 1®% if equilibrium is realized [204].

Using the above, one directly obtains the total enclosed d®MNss which is given by

rPgnAc) L _ 9

M) = =g X= (3.73)

Here corresponds to the MOND interpolating function defined is E@.33) and[(2.34). Note
that this is the only stage where the modification of gravitynvolved. Once this function is
specified, Eq. [(3.13) can be used to obtain the cluster'$ dsasity distribution, which then
allows one to determine the contribution due to SNs by satitrg the known density of the ICM.
Considering the equation of state for a partially degeranautrino gas, the resulting SN density
py is then used to infer the associated radial velocity dispers, needed for equilibrium. A
detailed description of the actual calculation can be fann&bp.[Al. To check whether the results
for p, ando, are compatible with each other, one can exploit the TG pbpaee constraint [194].
Assuming a Maxwellian velocity distribution, the maxinyallllowed densityp, max for a given

value ofo, reads

_ Oy m‘vl 3
Pv,max = EWUW (3-74)

where the number of allowed helicity states is assumeg} as2 [190, 226] andn, = 11eV. For

the “simple” MOND interpolating function which is defined as

A0 = (3.75)

it has been found that the calculated SN phase-space derfisity considered systems reaches
the TG limit in the central partr(s 20kpc for A2390)([190], meaning that the SNs acquire their
densest possible configuration in that region. If the dopiilim assumption is valid, this result

further implies that a small portion of the dynamical massnine covered by the brightest cluster

galaxy. As for the cD galaxy of A2390 and its contribution listcontext, we refer the reader to

84



3.4. Constraining neutrino dark matter with cluster lenses

App.[B3.

In principle, we could directly adopt the SN density of A2380culated in Ref.[[190] for our
simple cluster model if we specified a TeVeS free funcignwhich corresponds to the choice
Eq. (3.75) in MOND. For numerical reasons discussed in RBfl] ind to maximize possible

MONDian dfects, however, we assume a TeVeS free function of the faligierm:

us(y) = % (3.76)

wherey is defined according to Eq$. (2148) ahd (2.49). Apart fromsiitsplicity, Eq. [3.76) is close
to Bekenstein’s original choice of the free function![50jdahus allows one to derive the TeVeS
lens properties in a fully analytic way for certain configioas like, for example, spherically
symmetric lens models [92]. In the intermediate and low Ecadon regime, which is typically

realized in galaxy clusters, the MONDian counterpart of (g76) can be expressed as [43]

1+4x-1

_—, (3.77)
Vi+4x+1

A =

which is known to yield a less favorable description for th&ation curves of spiral galaxies than
Eq. (3.75) as it enhances gravity tofligently [227]. Inserting the above into Eq._(3.73), we
have repeated the analysis of Ref. [190] for A2390, and tatled the equilibrium SN density
distribution suitable for our cluster model in TeVeS. Theuldng density profile is shown as a
dashed line in Fig[_3.18. Note that the apparent wavinesstia mumerical artifact, but rather
emerges from using the data of Ref. [204] in Eq. (B.72). Aditbe function Eq.[(3.17) enhances
gravity more diciently than Eq. [(3.45), the SN density is notably decregséd Fig. 2 of
Ref. [190]), with the &ect becoming stronger for larger radii. In the center, hatethere is
basically no change, indicating that the previous consisaiue to the TG limit remain the same.
To simplify the input into a numerical solver, the obtaindd &nsity can be well fit by a profile
of the following form:

_ PO
p(r) = Tx (3.78)

wherepg ~ 5.5 x 10’ Mokpc 3, rg ~ 14kpc andy ~ 8.2. For comparison to the numerical result

(dashed line), the analytic fit (solid line) is also illused in Fig.[3.18.

Note that the actual choice of the free function, which fixes ¢quilibrium distribution of

SNs, will have no significant impact on the results for quagilbrium configurations presented
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3.4. Constraining neutrino dark matter with cluster lenses

in Sec.[3.45. While the main cluster potential will almostthe same - it is exactly the same in
case of spherical symmetry - forfiirentug, only the dfects of substructure, e.g. the contribution
of individual galaxies in A2390, should befected by the particular form of the functiqug.
Therefore, our decision to use E@. (3.76) will result in oystic estimates offéects intrinsic to
the framework of TeVeS. Since we are interested in the regifregrong lensing, however, we

expect these flierences to be rather mild.

3.4.5 Quasiequilibrium lens configurations

As a first approach, we shall investigate the strong lensiogesties of quasiequilibrium con-
figurations based upon several variations of the clustereinqu@sented in Se€._3.4.4. Although
these models do not provide a realistic description of thistet’s core region, their study will
be extremely useful to explore intrinsic TeVeffeets and to see whether TeVeffeos alternative
mechanisms - dlierent from those in GR - which can produce straight images.tiesake of

clarity, we discuss details on the used numerical tools hedasic simulation setup in App] C.

3.4.5A Analysis of the TeVeS lensing maps

Considering the previously introduced equilibrium modethe cluster, we are still left with sub-
stantial freedom regarding the galaxies’ line-of-sighsipons which are not constrained by ob-
servations and may vary over the cluster's extent which wimeldy the model’s cutd radius

R = 1Mpc introduced in App[_B]1. Also, to account for nonsphigyiof the cluster, we shall
allow an additional ellipticity for the central density tlibution (x-ray and SNs) which is solely
modeled within the observed plane. Together with a respe&®, this gives a total of 7 free pa-
rameters for our simple model if we fix the galaxiéd/L ratios. As for the range of ellipticities,
we choose a maximum corresponding to an axis ratio/af~ 0.7. Moving significantly beyond
this threshold would cause a severe mismatch to x-ray ossens [202| 213], thus yielding a

rather unrealistic cluster description.

Modifications of the overall density profile along the linesight have already been studied in
Ref. [50]: Varying the lens’ extent between two extreme agunfitions, a disklike and a strongly
“cigar-shaped” lens, can cause changes of up to2ll¥ in the lensing maps as well as the critical
curves. For realistic cluster models lying in a range betwbese extrema, however, thigext is
expected to be less pronounced, typically accounting feiatiens on the order of a few percent.

Therefore, we shall ignore such modifications in this worksoA since the straight arc’s sources
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Figure 3.19: TeVeS lensing maps for a quasiequilibrium configurationovah are the resulting convergencéleft pane), shear modulug (middle panél, and
critical curves (ight pane) for a cluster model witte = 0.7, PA= 115, mass modeM; and line-of-sight configuratioB. The triangles indicate the observed

position of the straight arc.
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Figure 3.21: Left panel The generated image contours (solid lines), resembliagtiserved luminosity
distribution of the straight arc, and the critical curveagided lines) for an equilibrium cluster model with
e = 0.7, PA= 133, mass modeM, and line-of-sight configuratioB. Right panel The resulting source
distribution (solid lines) and lens caustics (dashed Jingkere contours have been determined by averaging
the calculated source points onto a regular grid. The opatooolines are due to a cufof the mapped
image. In both panels, contours are in arbitrary units amdeh at equidistant levels.
are located close in redshift space (the correspondingridissDs andD = DyDqys/Ds only differ
by roughly 3%), we restrict ourselves to a single sourcegfan our analysis. Unless otherwise

stated, we will always work with a lens and source redshiff ef 0.23 andzs = 1, respectively.

For different plausible cluster configurations, we have found ngiggailibrium model that is
capable of producing (nearly) straight images at the oleseavc’s position. As all of our results
are qualitatively very similar, we only present a selectidsimulation runs in the following. For
example, Figl_3.19 shows the calculated TeVeS lensing nsgosrang an axis ratib/a ~ 0.7 cor-
responding to an ellipticity of = 0.7, PA= 115, mass modeM; and line-of-sight configuration
B (see Tabl@3l4). A similar case is illustrated in Hig. B.Z&uening PA= 133 and mass model
M- while keeping all other parameters the same. We note thdetising properties in the arc’s
vicinity are almost entirely dominated by the closest galakhe structure of the critical curves
(right panel) already reveals that such models will prodstcengly bent images with respect to
the galaxy 2592 at the position of interest. To elucidate point and to demonstrate the problems
of such configurations, we have constructed a luminositridigion, which roughly resembles
the observed image morphology. This distribution has theenbmapped back into the source
plane, assuming the “second” cluster model presented inEH). The generated image and its
associated source distribution are shown in the left arid ggnels of Figl_3.21, respectively. Our
particular example exhibits several features indicathag the model is not compatible with the

observed straight image. These features can be summasiZeliosvs:
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Figure 3.22: Occurrence of a new image for quasiequilibrium configuretioShown is the observed
straight arc and an additional, strongly magnified imagestvforms around the radial critical curve (dashed
line), assuming the upper patch of the source distributiaostiated in the right panel of Fig._3P1. The
resulting image has been smoothed using a top-hat funciitbrevdiameter of roughly @”. Contours are
still equidistant, but dferent for each image; the outermost contour of the two imagielentical and the
increase between the contours of the new image is four tiargell than between those of the straight arc.
(a) Around the area where the three source patches visitie inght panel of Fig._3.21 appear
to intersect (marked with a rectangle), the inferred sodisgibution becomes multivalued.
This remains true even after taking into account that theyavsdue to two distinct sources

(see Sed._3.4.3IB), and thus the lens model turns out to begamis and inconsistent.

(b) Apart from the tangential caustic, i.e. the inner dadhexishown in the figure’s right panel,
the found source distribution also crosses the radial (patustic, implying the existence
of further images dferent from the straight arc. Assuming the upper patch of thece
distribution illustrated in the right panel of Fig._3]21etloccurrence of a new image is
demonstrated in Fig._ 3.P2. However, there is no evidencsuch additional images as they

are not observed in the system.

(c) Assuming an average size of roughly ~ 10kpc) for galaxies at = 1, the source’s
constituents appear too big in angular size (up’th #ielding a rather unlikely scenario.
This problem further deteriorates if one tries to avoid thsues related to (a) and (b) by

lowering the total mass of the nearby (lens) galaxy 2592.
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Figure 3.23: Relative diference of the convergence maps calculated for the two frséght configurations
AandB: The here presented result assurmes0.7, PA= 133, and mass modé¥l;.

Observations further indicate the presence of severd édmgated objects whose orientation is
approximately the same as that of the arc, with a scatter lgf afew degree@?]. Together
with the above, these arclets strongly support the req@neiior a special lens composition rather
than the necessity for unusual source properties, suggdkbtit the lens configurations considered

here are inappropriate to explain the straight image.

This is the basic result of all simulated cluster models chiseems to be insensitive to the used
mass modelll; or My) or the actual line-of-sight alignment of galactic compatse To quantify
the dfect of the latter, we compared the lensing maps of individoadiels for two extreme line-
of-sight configurationsA and B. Adopting the parameters of the realization presented gn Fi
[3.19, Fig.[3.ZB displays the obtained relativifetience between the corresponding convergence
maps. As we can see, the deviation can reach values #p3@% in regions of low (fective)
surface density, but remains smaller (5%) in regions wherg > 1. A comparison of the
corresponding critical curves and caustics of galaxiesaisvthat this line-of-sightféect typically
affects their position on the order 8f10%, which has no qualitative impact on our results. As for
the dependence on the actually used mass models (galax&g)ill investigate the influence of

varying M/L ratios in the next section.
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3.4.5B Variation of mass-to-light ratios

So far, we have restricted our analysis to two setdgt ratios for the cluster's galaxies (see
Table[3.4). How robust are our results with respect to vianatof these ratios? Here we take a
simplified approach to obtain reasonable estimates offtieeteon the strong lensing properties,
in particular, the critical curves. In what follows, we usklernquist profilel[139] with fixed core
radiusry = 3kpc for the density distribution of galaxies [correspamgdio the limite = 0 in Eq.
([B.2)]. In the isolated case and for our choice of the freecfiam ug, this allows one to express

the lensing properties fully analytically [50], and the deflon angle is given by

(&) =

rnAE) rEVGMay+4GM§]_4GM§ (3.79)

2 _ 2 2 _ 2’
G A

where

inh /|1 - 2
AE) - arsinh /|1 - (ru/&)?| §<rH. 3.50

arcsiny1—(ry/? &>ry

Furthermore, we will assume that

(a) the superposition principle remains valid; i.e. thesieg maps of isolated galaxies and
the cluster background can just be added, which is rigoyonsk if the components are

infinitely separated from each other and leads to an opicrastimate otherwise, and that

(b) the cluster background at each galaxy’s position canddeted as an external contribution

with locally constant convergenee and shear modulug:.

Choosing polar coordinates, the latter yields finaive cluster deflection potential of the follow-
ing form:

w&@:%#+%¥mq%—%» (3.81)

where the external shear’s principle axes system is defiped.d_ocally, the system’s total shear
modulus, relevant for the determination of critical cureesl caustics, depends nonlinearly on the

contribution due to the Hernquist lens and the cluster,

Yior = (vLh +71.0)° + (V2 + y20)> (3.82)

92



3.4. Constraining neutrino dark matter with cluster lenses

Radius of tangential critical curve [arcsec]

| | | | | | |
0 2 4 6 8 10 12 14 16

M(< 1.5arcsec) [101M)]

Figure 3.24: Predicted mean radius of tangential critical curves of angeist lens embedded into the
external cluster field: The mean radius is plotted as a fanatif the projected enclosed mass within an
aperture of 3 diameter ¢ 11kpc). The vertical lines indicate the values of the ga2&92 for mass model
M; (dashed line) and}i, (dotted line), respectively.

Because of the shear’s tensor property, the above is anpsotwhich directly &ects the resulting

position of critical curves given by Ed. (3]22),
(1-k?-y*=0. (3.83)

To obtain the meanfiect due to the cluster background, we perform an averagegosed all

possible orientations of the external shear field, whicddda

¥2 = v4 + 9. (3.84)

We use the simulation result for an equilibrium cluster moglth e = 0.7, PA= 115 and

no galaxies to estimate the parameters of the backgroun&lmadound the arc’s position, this
roughly fixeskc ~ 0.29 andyc ~ 0.17. For this case, Fid._3.24 shows the resulting mean radius
of the tangential critical curve as a function of the enalbgalactic mass within an aperture ¢f 3
diameter. While this should give a reasonable picture fergalaxy 2592, which resides close to

the arc, the such estimated radii will be too large for theptfalaxies. These are located in regions
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where the background has a weaker impagtahdyc take lesser values), leading to an optimistic
prediction of their mean critical-curve size. Assuming Bwexiations inM/L, the figure suggests
no qualitative changes of our previous results. Even if wesiter thatM/L ratios may change
up to a factor of 4 in the infrared, we find a maximum increasthefmean critical-curve radius
corresponding to a factor of approximately 2. At most, sutkxreme scenario could come close
to a merged-cusp model for the galaxies 2592 and 6666, lmuttnfiguration cannot explain the
arc due to its inappropriate orientation and position dicai curves and caustics in the lens and
source plane, respectively. We therefore infer that theasult of Sed_3.4.5]A does not depend
on the particularly assumdd/L ratios of individual galaxies - unless the background piidéis

substantially modified.

We have also explored the influence of perturbations to tiéradecluster profile. For this
reason, we have assumed a secondary spherical clump madégag and SNs which follows
the same profile as the central distribution and account$@er 15% of the system’s total mass.
The clump’s position has been chosen from a narrow rangehtpugentered on the detected
substructure in the x-ray map [202, 213] (see Tablé 3.4).iAgae have found no qualitative
difference compared to previous simulations. The calculateidtiEns in the lensing maps are on
the order of a few percent, leaving a basically negligiblpait on the critical curves and caustics.

Similar statements apply to an overall increase of the akdémsity profile by 16- 20%.

Together with the results presented in $ec. 3.4.5 A, we tbnslade that TeVeS quasiequilib-
rium configurations with 11eV SNs are not capable of exptajrthe observed arc. In particular,
we find no evidence for the formation of beak-to-beak or liptastrophes [211] due to intrinsic
TeVeS dfects, which could give rise to straight images. Therefonast as in GR - a suitable
TeVeS lens model needs substantially more mass as well ascalsgensity distribution in the
cluster’s core region. A general procedure on how to obtadat snodels will be discussed in the

next section.

3.4.6 Nonequilibrium lens configurations

In the following, we shall outline a general approach for elow) cluster lenses in TeVeS which
allows one to use existing GR lens models to estimate theankEBeMeS lens properties. Adopting
a bimodal lens model for the straight arc, we will present aam#ple of such a lens and discuss

implications for the modified framework.
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3.4.6 A Systematic approach to cluster lenses

Taking a naive point of view, one might expect that strongileg is subject to the strong acceler-
ation regime, and therefore it should be enough to considelimit ug — 1. In this case, all rel-
evant equations would reduce to their GR counterpartsyadtpa conventional lensing analysis.
Previous calculations [50] have shown that such an appitiam is not justified. In particular,
the scalar field can have a significant impact on the secondatiees of the lensing potential.
For instance, this can increase the radii of critical cutwesip to a factor of 2, depending on the
assumed mass distribution of the lens (cf. Figure 7 of R€f)[As we shall see below, however,

there is another way of simplifying the lensing problem ivas.

Let us return to the scalar field given by Edq._(2.55). Integcabnce, we may recast this
equation as

K
usVe = 4—: (Vdy + V x h), (3.85)

whereh is a regular vector field determined up to a gradient by thalitiom that the curl of the
right-hand side of Eq[(3.85) must vanish. We note that thie mhiculty associated with solving
the scalar equation are the generally nonvanishing conmpeméh. If for any reasorh ~ 0, Eq.
(3.85) reduces to a relatively simple algebraic relatiotwken the gradients of the scalar and the
Newtonian potential,

K
sV ~ —Vy, (3.86)
Ar

which can easily be inverted by numerical means to §i# assuming that the Newtonian poten-
tial (or only its gradient) are known. Therefore, we wantdd@ss the question of how the figld

is efecting the corresponding lensing maps in the strong lensigigne. We already expebto be
important around local extrema of the Newtonian potentiat,it is difficult to make any intuitive
guesses about its quantitative impact in stronger graeigjons as well as on the final projected
result. The most straightforward approach to this problema direct comparison of simulations
treating the full scalar equation to those whare- 0. To this end, we have taken our previous
quasiequilibrium models and fed them into a modified versibour solver, now assuming Eq.
(3:88) to determine the scalar gradient. Since our choigesa$ very close to that presented in

Ref. [92] (see, e.g., Ref. [50]), our code assumes

Vol = vao [V Oy (3.87)
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Figure 3.25: Simulation results with proper treatment of the scalar fegjdation compared to those where
the curl fieldh has been set to zero: The figure illustrates the relativeatiewiin the corresponding lensing
maps, the convergengdleft pane) and the shear modulyg(right pane), assuming an equilibrium model
with e = 0.7, PA= 133, mass modeM3, and line-of-sight configuratioB. The visible gridlike structure
is a combined #ect of Fourier fluctuations, interpolation, and the divisizy values close to zero.
to calculateV¢. For instance, adopting an equilibrium model wigh= 0.7, PA= 133, mass
model Mz and line-of-sight configuratiol, the relative deviation of the lensing maps from the
proper solution is presented in Fig._3.25. While the conmecg varies by 5 15%, diferences
in the shear map can be as high~-a$0%. As expected, the largest deviations occur in regions
where the Newtonian gradient approaches the null vectachyfor example, can be seen in the

very core of the central elliptic profile for both the convemnge and shear maps.

Clearly, the impact of the curl field is not negligible in regions of low gravity. Concerning the
domain of strong lensing, however, we find the following: Qumng the corresponding critical
curves and caustics, the curl field turns out to be much lepsiitant. Interestingly, the obtained
deviation with respect to their position in the lens and seuslane, respectively, is only about
< 2 - 3%. Within a stficiently large environment around these curves accountnglf strong
lensing features, the accuracy of the approximaked Q) lensing maps is typically of the same
order, meaning that the curl field negligibly contributeshte strong lensing properties of a given
matter distribution. Our result appears to generally hotdstrong cluster lenses and indicates that
itis enough to consider Ed._(3186) in the context of TeVeS lmodels. Therefore, if one specifies
the line-of-sight extent of the total system as well as iitili@l matter components, thigfers a

direct systematic way of modeling strong lenses in TeVeS.
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3.4.6 B Modeling the straight arc in TeVeS

Based on the result of Se€._3.4.6 A, one could, in princigke tan available GR lens fitting
routine, modify it to include the TeVeS scalar field accogdin Eq. [3.86), and use it to obtain
a lens model for the straight arc. It is obvious that such giragzh will be computationally
more demanding because the scalar’s contribution has teddeated in three dimensions, and
one also needs to invoke numerical integration to derived#®red projected quantities. In the
following, however, let us consider an alternative way ttneate the necessary deflection mass
and its distribution in TeVeS. For this reason, we start frith@ bimodal GR model derived in
Ref. [213] which, in addition to the central matter clumpswases a smaller subcomponent at
approximately 45 (~ 166kpc) from the cluster center. The second clump is matildty the
existence of substructure in the cluster's x-ray map whichsied to infer its position in the lens
plane. Both clumps are chosen to follow a pseudoisotherftipfi@ mass distribution (PIEMD)
[228], but the subcomponent’s profile is assumed to be spirisymmetric. Correcting for
the here used cosmological background, the model gives @nsenl projected mass ofl; ~

1.2 x 10'*M,, within a circular aperture of 38(~ 140kpc) radius from the cluster center. As
typical for strong lensing mass models, this estimate shbtelwithin ~ 30% of the true value
[229].

Using the arguments presented in Sec. 3.4.6 A, it is obvibasthere exists an analogous
bimodal lens model in TeVeS. To obtain a spherically avetagdensity estimate in TeVeS, we
ignore the secondary clump, which negligibly contributeshte enclosed mass within the given
aperture, and also assume that the main component can biéddduy a spherically symmetric

density profile. Thus, its three-dimensional matter disttion can be written as

2

r
p(r) = po——. (3.88)
fc+r

wherepg is the central density ang: the core radius. Alternatively, Eq_(3188) may be written
in terms of its asymptotic velocity dispersion, associated with the density profile of a singular

isothermal sphere:

1 o2
= . 3.89
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Table 3.5: Fiducial parameters of the bimodal lens configuration preegkin Ref. [213]: Here the sub-
clump is dfset by approximately 45(~ 166kpc) from the main component.

b/a PA[] rc[’] 0 [kmsl]

Central mainclump @1 492 12+5 950+ 100
Subclump 1 - 7-12  420-500

The corresponding enclosed mass of this density distabudt radiug reads

M(r) = 4rr2po (r —rc arctar(rL)) . (3.90)
c

Since our choice of the free function allows us to make useqof{BE.87), it is possible to express

the enclosed mass in TeVeS, whidfegtively generates the same dynamical mass adEql (3.88),

as
agr? 4G M(r) 4s
Meg(r) = M(r) + =—|1- 4]/1 =MlIr)—m, 3.91
=M ZG[ ' aorz] ()(1+ VT4 oo

wheres = GM(r)/agr?. As previously noted, however, the choice of Eg. (B.76) dustsyield a
good description of galaxy rotation curves. Adopting a Te¥fee function corresponding to Eq.
(3.78), a similar calculation leads to

MO s

Mer®) = Uy s aorze - MO

(3.92)

Settingrc ~ 13” (48kpc) [213] and requiring that the enclosed projectedadyical mass within
38" is still given by M,, the above expressions can be used to derive the underlgimsity distri-
butions which, together with the resulting surface dengitfiles, are illustrated in Fig,_3.26. The
visible density drop-fi within r < 20kpc is a consequence of the assumed PIEMD and probably
unphysical, but can easily be avoided by changing the denmtréile in favor of a peaked and finite
core, fixing the enclosed mass around 140kpc (and thus keeping the lens properties needed for
the arc). Of course, our results depend on the assumedflisight extent specified by Ed. (3188),
but the derived surface densities should vary by only a fenwearet for diferent models (see Sec.
[B.4.5 A). We also note that the “modified” density profiled¢ia finite mass; for both Eqd. (3191)
and [3.9R), the total mass is given by (taking the limib 0)
167°Grép3

- (3.93)

liMm Meg(r) =
r—oo
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Figure 3.26: Spherically averaged densitheft pane) and corresponding projected surface densityht
pane) profiles for the bimodal lens model in TeVeS: Shown are tiseilte for the Newtonian dynamical
mass (solid line) and the two TeVeS free interpolating fiomst corresponding to EqL_(3191) (dotted line)
and Eq.[[3.9R) (dashed line), respectively. Note that theetidimensional mass density profiles are entirely
dominated by the contribution of SNs within a radius of a femdired kpc. For < 25— 30kpc, the derived
densities are well below the TG-limit-saturating equiliton distribution of 11eV SNs in Fig._3.18, and they
are also much broader. This already indicates that the n@amponent’s phase-space limit is not violated
here.
Although the profiles are not diverging, the relevant mapgcglly extends to large radii. There-
fore, the use of such profiles within the full TeVeS solver ésyindficient because very large
box sizes would be necessary to perform the calculationghaimderlines the advantage of ne-
glecting the curl field for strong lensing models (see Sed.63A). The resulting total lensing
mass is entirely dominated by SNs within a radius of a few heahd¢kpc, which allows one to ig-
nore the contribution of gas and stellar material to exoelgoproximation. We have checked that
the three-dimensional density distributions in Hig._B.Bésically representing the lens model’s
main component, are consistent with the TG limit estimatdhifydrostatic equilibrium and a
Maxwellian velocity distribution, following the approacti Ref. [190]. This is already indicated
by the fact that the derived densities are much broader atidoglew the TG-limit-saturating
11eV SN equilibrium distribution (shown in Fig._3]118) fors 25— 30kpc. At the arc’s position
(6 = 38”), the actual enclosed projected mass of the TeVeS lens misdgiven by 6L x 103M,,
or 80 x 10'3M,, assuming Eq.[(3.91) of (3192), respectively. Here the odabcomponent
deserves special attention: Naively treating the probldn®,smaller clump’s presence acts as a
perturbation to the total system’s phase-space densitiyttars it is trivially in accordance with
the estimated TG limit since the main clump is. However, #fiproach typically leads to overes-
timating the TG limit, considering that the secondary clushpuld be regarded as a bound object

by itself. Taking the view that A2390 has undergone recentareactivity, it seems reasonable to
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Figure 3.27: Estimated 11eV SN density distribution (solid line) andresponding TG limit (dashed
line) for a subclump model witihc ~ 7” (26kpc) ando., ~ 500km s*: The origin is centered on the
subcomponent, and the TG limit has been calculated acaptdig. [3.74), following the prescription of
Ref. [190]. Note that the slight “wiggly” feature of the dashline is due to a nonuniform dispersiofr)
which is computed in a self-consistent way [190].

assume that the subcomponent has formed affizisitly earlier time, and therefore it should be
subject to its own phase-space distribution. This sugdkatone should examine the secondary
clump separately. Considering the subclump as an isoldiggttoentirely dominated by 11eV
SNs, we have repeated the above TG analysis for the rangeashpters listed in Ref._[213] (see
Table[3.5). It is important to note that the bimodal lens nhedquires the secondary deflector
to be an extended object witik ~ 7 — 12”. Moving to smaller core radii, the lensing potential
would start to resemble that of a point lens and the model avéail to reproduce the observed
arc. Moreover, it is likely that one would also violate caasits due to other observed images in
this system. A very massive and compact deflector such aseasapsive black hole is therefore
not a viable possibility, which is further supported by tael of evidence for a very strong and
point-like x-ray or radio source at the subclump’s positidio achieve a rather realistic TeVeS
mass estimate, we have adopted a free interpolating functaesponding to EqL(3.I75) for our
calculations. The obtained SN density profile and the TGtlancording to Eq.[(3.74) are illus-
trated for two cases in Figs, 3127 dnd 3.28. Assuming 7" (26kpc) andr., ~ 500km st the

subcomponent’s density slightly exceeds the TG limit (upG&o) within a range of approximately
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Figure 3.28: Same as Fid. 3.27, but assummg~ 10” (37kpc) andr,, ~ 440km s™.

10- 25kpc. Moving toward larger radir (= 50kpc), the SN density consistently stays below this
limit. For a less compact model witlz ~ 10” (37kpc) ando., ~ 440km s?, the TG bound

is never exceeded. Generally, our results seem to rule affigooations where the subclump is
modeled with small values ot (< 8 — 9”) whereas the bimodal TeVeS lens appears consistent
with 11eV SN HDM for larger choices of the core radius. Befdrawing such a conclusion,

however, we need to consider how strong the implication ®fitesent analysis really is.

First of all, we note that the lens model is based on the PIEMIdehgiven by Eq. [(3.88).
This clearly introduces a bias on our estimates; other gssons about the components’ density
distributions might yield a diierent result. In particular, the PIEMD model leads to an ysjual
drop of the central density which couldfect our estimate of the TG bound. To check this, we
have modified the central SN density profile of the subclummehpresented in Figl_3.27 in
favor of a uniform core, but without changing its propertieyondr ~ 15kpc (the arc appears at
r ~ 26kpc from the subcomponent’s center). The resulting thepsofile and the corresponding
TG limit are shown in Fig.[[3.29. While the TG bound is still ted within~ 10 — 25kpc,
we see that the density limit is notably decreased in theecealmost matching the assumed SN
distribution. Therefore, it is unlikely that shifting mettto the central region can help to avoid

an excess of the TG bound. Next, our estimates assume thatiltiotump can be treated as an
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Figure 3.29: Same as Fig[_3.27, but now assuming a uniform core of the SNhdison. Note that the
radius at which the density becomes constant {5kpc) is fixed by requiring a continuous distribution of
SNs.
isolated object. Since the clump resides within the baakguidield of the main component, this
is not rigorously true. Using Eq[(3.92), we find that the madmponent provides an external
Newtonian gravitational field of aroure at the subclump’s position. As for the subcomponent,
this modifies the relation between gravitational field andartying density distribution, and gives
rise to an increase of the central SN density on the orderitf. tBuch a density boost could push
seemingly consistent subclump models with> 10” toward or even beyond the TG limit, but

detailed statements about this issue are very sensitiveetadtual model parameters.

Another point is related to the fact that our calculatiodg om completely SN dominated lens
components within- 100kpc. If placed at or close to the subclump’s center, direarelatively
small, concentrated baryonic mass, e.g. a galaxy, on ther & — 10°M,, could help to relax
the density constraint due to the TG li Whether such an approach can be reconciled with
observations of this region, however, remains to be seerst tus not least, we also need to
check the viability of the current estimate of the TG limitiaiinhas been derived under simplified
conditions. In what follows, we shall discuss in more detailv these simplificationsfi#ect our

analysis.

18Erom private communication with G. W. Angus.
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As previously mentioned, the strong lensing domain in threezeof A2390 is not in equilib-
rium and has a rather complicated nonsymmetric densityilalision. This will obviously have an
influence on the estimates for the TG limit. Considering mpiildrium configurations in general,
the velocity dispersionr is expected to increase for a given matter distribution whexing away
from equilibrium. Since the value ef increases in this case, one would also obtain a higher den-
sity limit for SNs according to Eq[(3.¥4). Taking the adulital asymmetry into account, however,
the situation becomes less clear. Depending on the systamial properties, the TG limit could
increase or decrease, and there seems to be no universalloulieg one to make solid statements
for anisotropic systems. Finally, one should also adhedetations from a Maxwellian velocity
distribution. This issue has been addressed in Ref! [230rdit has been shown that the actual
physical density limit becomes larger than the previousredes of the TG limit which can be
exceeded by up to a factor of 2. Again, this would imply thas®Nuld account for more mass in
the cluster. Combining the three aspects from above, it seeasonable to assume that the true
density limit will be on average higher than our previousmeates, meaning that density models
with SNs become more flexible. Note, however, that such amaegt generally does not replace

the need for a rigorous treatment of particular systems.

Given the accuracy of our present analysis and accountinglifof the above, we conclude
that the bimodal TeVeS lens model for the arc is in accordanttethe assumption of 11eV SNs.
Nevertheless, it seems intriguing that the needed amouwhdastribution of 11eV SNs lies so
close to what they can maximally contribute to the systenshttuld be obvious that all of our
statements depend on the assumed lens configuration analidrenly for the bimodal model we
have considered here. In particular, the bimodal lens migdelres the contribution of galaxies.
These can have a significant impact on the lensing maps (se€3E5 A), which is especially
true for the galaxy 2592 adjacent to the straight arc. A meadistic approach including all
visible components would be useful to further constraingraperties of additional substructure
and check whether such configurations remain consistehtrespect to the TG limit. While our
analysis is concerned only with the straight arc, the ctu&83890 actually exhibits a number of
lensing features which should all be taken into account fooraplete cluster model. Extending
the investigation also to other massive galaxy clustetsydéuwork should address such complex
lens models and their implications for TeVeS or related tiescand 11eV SNs; a systematic way

for approaching this problem has been outlined above.
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3.4.7 Concluding remarks

Here we have suggested the use of strong gravitationahlgisi galaxy clusters as a test of the
combined framework of TeVeS and massive SNs. Originallyivatiad by theoretical and recently
also experimental particle physics [188, 1231,/232], tha ioieSNs with a mass around 11eV has
gained further interest as it provides a possible remedyhemproblems of TeVeS and related
theories ranging from large cosmological scales down texgatlusters. Unlike conventional
CDM, such a fermionic HDM component is subject to strong pksgace constraints imposed by
the TG limit. This allows one to check cluster lens modelgiiréd within the above framework

(or related ones) for consistency.

As an example, we have studied the cluster lens A2390 wittottsrious straight arc. Because
of its elongation and orientation, the straight image app&abe quite unusual and indicates the
need for a rather special lens configuration. Adopting ther@pmation for weak fields and
quasistatic systems, one of the main problems associatedheilensing analysis is the nonlinear
relation between the TeVeS metric potential and the unihgrlgnatter density distribution. This
nonlinearity prevents one from working with projected ditées and requires one to perform all
calculations in three dimensions. In addition, one is lathva nontrivial, Poisson-type partial

differential equation for the TeVeS scalar field.

To make some progress, we have considered a class of clugtiisnbased on the assump-
tion of hydrostatic equilibrium, and investigated theindeng properties. This has been achieved
by employing a MPI parallel solver for the TeVeS scalar figydaion and simulating the corre-
sponding lensing maps on the HUYGENS supercomputer whittcated in Amsterdam. Our
results imply that such quasiequilibrium configuratiors ot capable of explaining the observed
straight arc. In particular, we have found no evidence ferftirmation of beak-to-beak or lips
catastrophes [211] due to intrinsic TeVeReets, which could give rise to straight images. Line-of-
sight dfects and the impact of perturbations are typically smalnging the quantities of interest
only on the order of a few percent. Similar to the situatiorGiR, a suitable TeVeS lens model
therefore needs substantially more mass as well as a splecisity distribution in the cluster's

core region.

Based on the above results, we have further outlined a gearetaystematic approach to clus-
ter lenses which significantly reduces the problem’s corifyldy avoiding the need of solving

the TeVeS scalar field equation. Combined with conventi@eraing tools, this opens a new win-
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dow to strong gravitational lensing in TeVeS-like modifigd\gty theories. As a first application,
we have explored the TeVeS analog of the bimodal lens corafiigur discussed in Ret. [213]. For
this model, we have derived the SN distribution necessaprdduce the desired image, using a
simplified approach. The obtained SN density profile has tien compared to the maximally
allowed contribution set by the TG phase-space constrdiatthis end, we have estimated the
maximal density due to the TG limit following the prescristiof Ref. [190] and found a slight
excess of this limit for the model's secondary componerisi€ore radius is smalt¢ < 8’ —9”).
For less compact models, however, the TG bound is not viblaB#ven the accuracy of our cur-
rent analysis, we therefore conclude that the bimodal Td¥aS model appears consistent with

the hypothesis of 11eV SNs.

Note that the bimodal lens model ignores the contributiogaléxies. As has been shown,
these can have a significant impact on the lensing maps. A reatistic approach, including
all visible components and other lensing constraints, lshiog taken into account to obtain better
bounds on the required SN distribution and to check whetlngr sonfigurations remain consistent
with respect to the TG limit. Future work should address nam@urate ways of estimating the TG
limit in this context, and we suggest extending the invesition to other massive galaxy clusters
which indicate the need for dark substructure. Unless omsiders diferent solutions to the
missing mass problem inherent to this particular kind of ifications (see, e.g., Ref._[40]), the
basic approach presented here should apply to any clasasafrteector or tensor-vector-scalar
theory which recovers the dynamics of MOND in the nonreistiiw limit. Lensing by galaxy
clusters could therefore provide an interesting discraton between CDM and such modified
gravity scenarios supplemented by SNs. In addition to tlwveabwe note that next-generation
neutrino experiments [283-235] will further constrain pglausibility of 11eV SNs. Even if they
remain viable candidates, it still needs to be seen whetlgh SNs do actually cluster in the

desired way![190].

Finally, we advert to the fact that our analysis neglectsids contributions due to perturba-
tions of the TeVeS vector field,. Such contributions are known to be crucial for the formatd
large-scale structure [86,/87], where they provide the kegnhanced growth while perturbations
of the scalaw only play a subordinate role. As already pointed out in ttezditure [[103], this typ-
ically affects scaleg 0.1 — 1Mpc and could be important for galaxy clusters. Owing torttae
sophisticated structure of the field equations, howevernevrough magnitude of the vector's

impact on these scales has not been estimated yet. Thus duemphasizes the need for a quan-
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titative description of these vector instabilities on sn@lntermediate scales, i.e.0.01- 1Mpc.
We also note that the result of such an analysis could styategpend on the particularly assumed

theory.

Despite the previously mentioned limitations of the préseork, our numerical simulations
are probably by far the most detailed in the context of TeVe& @ertainly provide the first ex-
tensive study of strong lensing features within this modifigavity framework. Applications
of our grid-based lensing code (e.g. with respectftsais between visible matter and weak or
strong lensing features [193, 236]) hold the promise of v@gstraining limits on TeVeS-like
theories combined with HDM and other unified recipes for tigaasnics of MOND and DM
[40,/115, 237, 238].
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Chapter 4

Structure formation in modified gravity

theories

In the following sections, we shall investigate how modifggevity models influence the process
of structure formation. Assuming a particular realizataa chameleon field (see Séc. 213.2), we
discuss the nonlinear clustering of matter density peatimhs in this context and point toward
potentially observable signatures which may hold the keglistinguish such framewaorks from
the ACDM model. We will then proceed to TeVeS and focus on the dquesvhether similar

approaches are also possible in this specific class of teeori

4.1 General remarks

It is now commonly believed that the cosmological strucaseseen today evolved from tiny per-
turbations around an isotropic and homogeneous spacstithe very early universe. According
to the standard picture, these perturbations originateh fandom quantum fluctuations within
the universe’s energy density at that time (typically agged with the Planck scale), but the exact
physical processes occurring in this context are still emkm A popular and remarkably success-
ful approach is the inflationary model [239, 240] which nolygorovides a setting for generating
the spectrum of initial perturbations, but also a suitablplanation for the observed flatness,
isotropy and homogeneity of today’s universe on large scdbnce inflation sets in, the vacuum
fluctuations (in this case those of the inflaton field) arekjyidriven outside of the horizon, where
they freeze in due to the lack causal contact dfectively become classical. While this fixes the

initial conditions for perturbations right after inflatipthe further evolution is governed by grav-
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4.1. General remarks

itational attraction. As matter collapses into denseramsgi it eventually form smaller structures
such as galaxies and then clusters of galaxies, with largjenre of empty space, the so-called

voids, appearing in between.

Typically, these perturbations remain small until deep thie matter dominated era, which al-
lows one to study their evolution with the help of cosmoladjiperturbation theory (applicable to
both GR and modified theories of gravity) by linearizing tmavitational field equations around
the FRW solution. Due to the statistical nature of primdrflizctuations, however, one cannot
make any specific statements about the their actual realiziatthe universe, but only infer infor-
mation about the distribution they were drawn from. In the@est inflationary scenarios, which
are usually implemented with a single scalar field, it fokothat the underlying distribution is
GaussiarH and thus the perturbations are expected to be Gaussianmdinelds. In accordance
with the fundamental cosmological assumptions, the fitatigproperties of these random fields,
e.g. their mean or variance, do not change under rotatiotigranslations . Taking the density
contrast defined a& = (o — p)/p wherep is the mean density, for example, the entire statistical

information is encoded into the correlation functig(y),

£(y) = (0(x)o(x +y)) (4.1)

where the average extends over all positigrand orientations of. As dictated by isotropy, the
correlation function cannot depend on the directioryof.e. £ = £(y). More conveniently, the
above is expressed in terms of the power spectRfk) which is defined by the variance 6fin
Fourier space,

(3(k)o" (k")) = (2m)*P(K)sp(k — k'), (4.2)

wheredp is the Dirac delta distribution which ensures that modesifieent wave vectok
are uncorrelated in Fourier space to guarantee homogengite that the variance on a scale
of 8h~Mpc, usually denoted asg, is often used for characterizing the amplitude of the power

spectrum.

As soon as or other perturbation variables approach values on ther @fdenity, any per-

turbative approach breaks down and nonlindéeats become important. Since this breakdown

1This property follows from the quantized harmonic osadtdh the vacuum state which predicts a Gaussian probability
distribution for each wave vectdr. Since the density fluctuations arise from superpositidrenormous numbers of
statistically independent vacuum fluctuations of the iofidfield, however, Gaussianity appears more generally as a
consequence of the central limit theorem - independentefutiderlying probability distributions of the individual
Fourier codficients [240].
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4.2. Nonlinear structure growth in chameleon models

occurs at times where basically all modes of interest aréwitiin the horizon, i.e.aH/k <« 1,
one usually makes the assumption that time derivativesafetyse neglected compared to spatial
ones and tackles the problem using the corresponding rdnistic equations (while taking into
account the background evolution) since the involved ga#iohal fields remain small enough to
be considered as perturbations to spacemEn GR, for instance, this is supported by the fact
that the linearized Einstein equation for scales much smgidan the horizon becomes structurally
identical with the Poisson equation obtained in the notixédtic limit. Most notably, this has led
to the use of cosmologicd-body simulations as a tool for studying the density evoluiin the
nonlinear regime. In the next section, we shall see how tlgia may be applied to the framework
of coupled scalar field models. Finally, note that even if dhiginal density perturbation field
is Gaussian, it must develop non-Gaussianities during tmdimear evolution. This is evident
becaus&s > —1 by definition, but may grow to arbitrarily large values. Téfere, an originally

Gaussian distribution af becomes increasingly skewed as it develops a tail towanitef.

4.2 Nonlinear structure growth in chameleon models

In this section, we shall investigate the the nonlineartehirsg of density perturbations in the
context of coupled scalar field models. Introducing a sigtatodel which recovers the properties
of a chameleon scalar (see S€c. 2.3.2), we give the relewddtefijuations for weak fields and
guasi-static systems and outline a genétabody scheme applicable to this particular class of
models. Accounting for spatial variations of the scalardfieve then present the first complete
N-body simulations in this framework followed by a discussaf the obtained results and their

implications.

4.2.1 Scalar field model with coupling to CDM

In the following, let us consider the specific coupled scild model introduced in Refl [127]
which is described by an action of the form (In accordancé wwibst of the literature on this

subject, we temporarily switch to a negative metric sigregtu

1

_ 1 4 R v
L= g [ ¢ xV——g[E - 29V, + Ver(9)|. (4.3)

Note that there is still no mathematically rigorous progaftifying such an approach.
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4.2. Nonlinear structure growth in chameleon models

whereG = Gy, Rdenotes the Ricci scala#,is a dimensionless scalar field with canonical kinetic

term andVeg(¢) is an dfective potential assumed as

Veii(¢) = V(¢) — 87GC(¢) Lcowm- (4.4)

While Lcpw denotes the Lagrangian of CDM particB,sthe potentialV(¢) and the coupling
functionC(¢) are given by
V(g) = Ao(1-€7*) " (4.5)

and

C(g) = @7, (4.6)

respectively, wherg andy are two dimensionless parameters apds a constant on the order of

the cosmological constant. Considering the nonrelaitivisteak field limit of Eq. [4.4) ¢ < 1),

Ver(¢) = Aop™ + 87G(1 + y$)pocom, (4.7)

the meaning of this particular parameterization can be nstoled as follows: As the scalar fiegd
tends to minimize theffective potential, the potential terfy¢™ and the coupling (& v¢) to the
CDM density lead to competindfects, favoring smaller and larger valuespofespectively. The
balance of these twdfects is controlled by the parameteraindy. The parametes is assumed
to be very small and controls the time when tlieet of the scalar field (mainly exerting a finite-
ranged scalar force on CDM particles on galaxy cluster sgélecomes important for cosmology

while the parametey determines how large it will ultimately be [127].

From variation of the action defined in Ed._(4.3), one finds tha scalar field’s equation of
motion (EOM) is
VAV, ¢ + V' (¢) + 81Gye’pcom = 0, (4.8)

where the prime denotes the derivative with respegt iee. V' = dV/d¢. Furthermore, Einstein’s

equations can be expressed as

Gy = 817G (€ pcomby + T.) | (4.9)

3The CDM Lagrangianfcpm specifies the geodesic flow for many point-like particlesafrivelocityu, and density
Pcom
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4.2. Nonlinear structure growth in chameleon models

Figure 4.1: Overdensity fields at = 0 for thepCDM model withy = 1, u = 107° (left) and theACDM
model fight). As can be seen, the former has developed more small-soadtuse within the void.
whereG,, is the Einstein tensor and the right-hand side correspdmdsrtergy-momentum tensors

of CDM particles with four-velocityu,and the scalar field, with the latter given by
1
81GTY = V,0V,6 - g (EVKgbV"qﬁ - V(¢)) : (4.10)

Note that because of their coupling, the energy-momentusots for the scalar fielgand CDM

particles are not individually conserved whereas their gim

The above equations summarize all the physics that will bd irsour analysis. An immediate
application is the prediction of a uniform Hubble expansip27]. For values ofy ~ O(1) and
u < 1, the model's background expansion is completely indistishable fromACDM, with an
actual diference on the order @¥(u). Basically, this is due to the large enougdteetive mass of
the scalar which forces the field near the potential minimueh ia almost time-independent for

u < 1 (for a more quantitative explanation, see Ref, [127])

4.2.2 Nonrelativistic approximations

The first step towards a numerical simulation is to obtainréhevant equations of motion in the
nonrelativistic and quasistatic limit (in the sense thattilme derivatives can be safely neglected
compared with the spatial derivatives). This task has dyréeen performed in Ref. [127] where
it was shown that the scalar field’s EOM in Ef._{4.8) and the ififexti Poisson equation can be
simplified to

82¢ = 81G& [pcomC'(¢) — peomC’ (8)] + a2 [V'(¢) - V' (¢)] (4.11)
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4.2. Nonlinear structure growth in chameleon models

and

820 = 47Ga® [pcomC(¢) — pcomC (9)] — a8 [V(9) - V (#)], (4.12)

respectively, where the bar denotes background quantitfes —V2 and Vy is the covariant
spatial derivative with respect to the conformal coordinatNote that the auxiliary dimensionless

potential® is related to the usual nonrelativistic metric potentéathrough
1.,
®=aW+ Eax , (4.13)

where the dot denotes the derivative with respect to cordbtime. Finally, introducing the
canonical momentum conjugatexpp = ax, the EOM for CDM particles reads

X =

’

P
a (4.14)
p = —qu) - )/aVX(])

Note that the two terms on the right hand side appearing irséte®nd relation of Eq[(4.114)
correspond to gravity and scalar force, respectively/[128kuming that botky and® are known
from solving Eqsl(4.11) an@ (4.112), the above may be useddioate the forces on CDM particles

and to evolve their positions and momenta in time.

The validity and limitation of the approximation presentlie above equations, in particular
neglecting the time derivatives, have been extensivelgudsed in Ref. [ [127]. We emphasize
that these approximations do not hold in linear regime whieeescalar field’s time dependence
is essential for structure growth. However such terms hasteed been shown to be negligible
on scales much smaller than the horizon scale|[241]. In thewimg, we will analyze the first
completeN-body simulations in the above framework. Compared to preivork [242, 243], our
analysis does not involve any additional assumptions fieirepthe field equations and thus takes
the spatial variation of into full account, leading to more quantitative and rigarquedictions.
Considering the linear regime, it has already been possibt®nstrain the parametegisandy
to a fairly narrow range. Here we sgton the order of unity to force a significant ratio of the
scalar force to gravity~ 2y) and explore the range 10 < u < 107°, covering three orders of
magnitude. Restricting ourselves to the above shoufficeuas the model is either essentially
indistinguishable fromACDM or deviates too much from it (already at the linear levsdyond

this parameter space, thus being of no further interesf][127
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4.2. Nonlinear structure growth in chameleon models

4.2.3 A modified N-body code for coupled scalar field models

For the purposes of this work, we have adapted the Multi-L&daptive Particle Mesh (MLAPM)
code [244] to include the scalar field and its coupling to ti¥MCN-body particles. One benefit
of the adaptive scheme is that the majority of computinguesss is dedicated to few high density
regions to ensure higher resolution, which is desirableesime expect the behavior of the scalar
field to be more complex there. The main modifications to theAMM code for our model can

be summarized as:

(&) We have added a parallel solver for the scalar field basdgigo [4.11). The solver uses a
similar nonlinear Gauss-Seidel method [245] and the saitexion for convergence as the

Poisson solver.

(b) The resulting value fog after the first simulation step is used to calculate the lotass
density of the scalar field and thus the source term for theifredd?oisson equation which

is solved using a fast Fourier transform to obtain the locaVigational potentiadd given by

Eq. (412).

(c) The scalar force is obtained byfidirentiatingg, and the gravitational force is calculated by

differentiating®, as required from Eq[[(4.114).

(d) The momenta and positions of the CDM patrticles are thelatgol, taking into account both

gravity and the scalar force, just as in noriabody codes.

More technical details on the code as well as on how the fielchtgans are implemented into

MLAPM using its own internal units have been given in Ref. {lland will not be presented here.

4.2.4 Matter power spectra from N-body simulations

Using the modified\-body code introduced in the last section, we have perfornsidnulation
runs with parameterg = 0.5,1 andu = 107°,10°,107, respectively. For all these runs, we
consider 128 CDM particles, 128 domain grid cells in each direction, amldimulation box size

is chosen a8 = 64h~1 Mpc. We further assume/&CDM background cosmology which provides
a very good approximation fqi < 1 [127], adopting present values for the fractional energy
densities of CDM and dark energ®cpm = 0.28 andQ, = 0.72. In addition, the normalization

of the power spectrum is chosen@g = 0.88. Note that the current simulations only take CDM
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PpCDM(k)/PCDM(k) PpCDM(k)/PCDM(k)

k [h/Mpc]

Figure 4.2: Ratios of calculated nonlinear matter power spectrayfer 1 andu = 107° (red line), 10°
(blue line) and 10’ (green line) as well as fokCDM (black dotted line): Shown are the results for two
redshiftsz = 1 andz = 0. At large scales (smak) the curves converge toward tA€€DM result (identical

to 1). Note that the dierence decreases at higher redshift and is expected to leosnimth large and
very small scales. Error bars of future lensing observatane likely small enough to detect any deviation
from ACDM on intermediate scalek € 0.1 — 10hMpc1) at a 30% level.

into account and that baryons will be added in a forthcomingysto investigate the biadtect
caused by the coupling to dark matter. Given the above paeasy¢he mass and spatial resolution
of the simulation are 91 x 10°M,, and 2344h~kpc (for the most refined regions), respectively.
This spatial resolution in high density regions is necessad stficient to precisely probe the

scalar field in regions where the scalar force is considgrsiiobrt-ranged.

All simulations started at redshift= 49. In principle, one would need to generate modified
initial conditions for the coupled scalar field model, ilee initial displacements and velocities of
particles which are obtained from a given linear matter pospectrum, because the scalar field
coupling also has an impact on the Zel'dovich approximal@#6]. In practice, however, we find
that the &ect on the linear matter power spectrum at this high redshiiegligible, with a relative
deviation< 10~ for our choice of the parameteysandu. Concerning the CDM particles in our
simulations, we thus simply use the initial conditions foA@DM model which are generated
with the help of the GRAFIC tool [247], where we again assugn = 0.28,Q, = 0.72 and
og = 0.88. An example of the final density field obtained at redshift0 is illustrated in Figl[_4J]1.
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PpCDM(k)/PCDM(k) PpCDM(k)/PCDM(k)

k [h/Mpc]
Figure 4.3: Same as Fid. 412, but now assuming 0.5.

For comparison, the figure also shows the correspondindt iefsa standardACDM simulation.
The matter power spectra have been computed with the helgfaty Fourier transform of the
matter density field, computed on a regular g¥igl x Ng x Ng from the particle distribution via a
Cloud-in-Cell algorithm (see, e.g. Ref. [248]). For theuattcalculation, we séllg = 256 which
gives a maximum mode df ~ 20hMpc! well above the simulation resolution. The nonlinear
matter power spectra of the models with= 1 andy = 0.5 are displayed in Figé. 4.2 ahd ¥.3,

respectively.

As can be seen from the figures, the nonlinear power speatrdeasubstantially modified
compared to &ACDM model. Qualitatively, the basic features of the resaisy be understood
from our previous discussion of the chameledfee in Sec.[2.3]2: For smaller values of
and largepcpwm (higher redshift), the scalar force is significantly suggesl and thus one obtains
smaller deviations frorACDM. On the other hand, increasing the value sfrengthens the scalar
force and causes larger deviations from A@DM model. Since large scales are beyond the probe
of the scalar force [127], the power spectrum for srkdll not significantly &ected. Similarly,
when moving to very largk, the chameleonfiect suppresses the scalar force because the density
on small scales is high, therefore softening the deviatiomfA CDM. Interestingly, the dference

between the models becomes largest on intermediate schiels are relevant for galaxy clusters
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(~ 107 — 10°%kpc). Observationally, this would most likely appear as ange ofog on the order
of 15-20% for models withy ~ 0.5 - 1 andu = 107 (see Figs[4]2 arld 4.3). For current lensing
measurements such as the CFHT Legacy Survey (see, e.g[2R8f.or Fig. 11 of Ref. [[250])
over a rather limited range, one cannot constrain these Is)\sidiee any variation afg appears
to be lower than 30%. Future surveys such as the Kilo-Degoeee$ (KIDS), however, will be
able to measure the scale dependence within the farg8.1 — 10hMpc~! where the deviation
of the models fromACDM is maximal, and therefore open a new window to test thesdats
and to constrain the interesting part of their parametecespBinally, note that although we have
restricted our analysis to the models introduced in RefZ]1the general framework introduced

here is also applicable to other possible construction®opled scalar fields.

4.3 Metric perturbations in TeVeS

As we have seen in the last section, it is generally possibudy modified frameworks with

the help of conventional methods and tools. Now we shallstigate whether similar approaches
may, in principal, be achieved in the context of TeVeS. Is ttdase, one may not simply start with
the nonrelativistic field equations because these do naidaccontributions of the vector field

which are known to be crucial for the formation of structurelarge scales [87]. Introducing a
more general class of potential functions, we revisit tremoalogical background evolution before
turning our attention to metric perturbations in the confar Newtonian gauge. Making an ansatz
for scalar field perturbations in the modified Einstein-dteBicosmology, we demonstrate how
the field equations can be cast into convenient form and sisthe resulting TeVeS analog of the

growth equation. Finally, we outline several possible &gagions of our results.

4.3.1 Choice of the scalar field potential

For the purposes of our analysis, it is convenient to work wie notation introduced in Eq._(2145)
(see Sed_2.2.2]A). This allows one to rewrite Eq. (2.50) as

3,11(2)

V() = —=
) 128113

| (4+ 20— 40® + i®) + 2log (1- )] (4.15)

where we have defined £ u/uo andug is a dimensionless constant relateckgothroughg =
8r/kg. Again, note that the choice & = u2F/16rl3 fixes the theory’s behavior in the nonrela-

tivistic limit as well as the dynamics on cosmological ssalm order to avoid ambiguities in the
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Viu(u) [3u3/32m13]

1/ Ho

Figure 4.4: lllustration of the generalized potenti}(u) given by Eq. [4.16) fon = 2 (solid line), 3
(dotted line), and 6 (dashed line).

theory, one needs to specify the physically relevant bresmdiV. Translating the results from
Sec[2.2.2 B, one finds that quasistatic systems are chazact®y the conditiotv’ = dV/du < 0.

If we want TeVeS to reproduce the dynamics of MOND in the niatirgstic approximation, we
have to choose the branch covering the rangeu0< ug since it is the singularity at = ug which
ensures the existence of a Newtonian limit. Similarly, comgical models satisfy the condition
V’ > 0. To guarantee that the cosmological scalar field yielddalgtpositive contribution to the
energy density, one has to assume the monotonically iriogeasanch as the physical one (see
Sec.[2.2.2 B). Since cosmological models reqd¥fe> 0, one obtaing: > o and thus cannot
use the same potential branch as for quasistatic systemsyp). BecauseV turns singular at

u = uo, potentials like the one specified in E._(4.15) thereforgildka disconnection between
the regimes relevant for cosmology and quasistatic systersgectively. Lacking a smooth transi-
tion between these two regimes, however, it is unclear hamtdaystems such as galaxies would
decouple from the Hubble flow or if such a decoupling resuitthe quasistatic limit discussed
abovrﬁ. To resolve this issue, an interesting alternative has pesposed in Ref.[[227], with its

cosmology studied in Ref. [98]. In the following, howevee will not take this approach.

4There isa priori no guarantee for reaching the domain of quasistatic systeame considers the growth of initial
perturbations around a FRW background.
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Instead - for reasons that will become clear below - we shssllme the following general

class of potentials [96]:

~ 3ud [n+4+(n+1),. n+l
Vn(/J) = 32”'28 (n + 1)([’] + 2) (# - 2) (4 16)
+(_21) log <1—m2+mZ:1(_1r31_ (=27

wheren > ZH. Adopting diferent values o, Fig.[4.4 illustrates the resulting potential shape as
a function ofu. Note that the such generalized potential reduces to Bekeaisstoy model in Eq.

@.15) ifn = 2. The derivative o¥/,(u) takes a simpler form and can be expressed as

’ 3#0 ~ (ﬁ - z)n
Vi(u) = 322 e i1 (4.17)

As already mentioned, cosmological models in TeVeS mustfgdhe conditionV’ > 0. As we
have already seen in Séc. 2.2]2 B, one is, in principal, avii@e to choose between two possible
potential branches if one requires thétis single-valued. In accordance with previous investiga-
tions and to ensure a positive contribution of the scaladl fiekhe energy density for every choice
of n, we will use the branch ranging from the extremum at 2ug to infinity. Under these prelim-
inaries, it was found that the potential in EQ. (4.16) gives to tracker solutions of the scalar field
[9€], with a background evolution similar to other genem@dmological theories involving tracker
fields [120, 251, 252]. We shall further elaborate on thisavér and an approximate analytic
treatment in Sect._4.3.2 B.

4.3.2 Revisiting the cosmological background in TeVeS

4.3.2 A Evolution equations

Imposing the usual assumptions of an isotropic and homagsngpacetime, bot,, andg,, are
given by FRW metrics with scale factoasandb = aég, respectively, where is the background
value of the scalar field (see our previous discussion in[E2c2 T). For a spatially flat universe,

the modified Friedmann equation in the matter frame reads

3H? = 87Ger (pg + P) - (4.18)

5As previously pointed out in Ref._[96], this class of potatgiwill modify the dynamics of quasistatic systems i 2.
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where we have expressed Eg. (2.65) in a more convenient Wwaylftysical Hubble parameter is
still defined asH = a/a? and the overdot denotes the derivative with respect to corebtime).
Herep corresponds to the FRW background density of the fluid andd¢h&r field density takes

the form

e

The dfective gravitational coupling strength is given by

e[y, G0\
Get = GE (1+ dloga) (4.20)

which is generally time-varying through its dependencehenscalar fields. Just as in GR, the

energy density evolves according to
. a —
o= —35(1 + W)p, (4.21)

wherew is again the EoS parameter of the matter fluid. In case of pheliackground fluids, i.e.

o = Y pi, the relative densitieQ; are defined as

pi pi
Q; = 8Geg=—— = ——. 4.22

The evolution of the scalar fielflis governed by

N N -
Y B et —44
&= ¢>(a 5) ! [3,1b¢ + 4xGae 5+ 3P)|, (4.23)
whereP is the fluid’s background pressure and the functibis related to the potentidl,
—_ Vv
UQ) =pu+ ZW' (4.24)
In addition, the scalar field obeys the constraint equation
w1, —20\ /1
¢ = Ea eV (4.25)
which can be inverted to obtajr(a, ¢, 5) For later use, we also introduce the relation
ab b _- 45 (=
256 - B —/.ld) = 47TGaze (p + Is) (426)
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which follows from combining Eq.[{4.18) with Eql_(4]25) arftbtcorresponding Raychaudhuri
equation (see Ref. [101]).

As already mentioned in Selc. 2.2.2 C, previous investigat|d3, 85| 96] have shown that a
broad range of expressions for the poterdincluding the choice in Eq[(4.16)) leadsdb~ 1
andp, < 1 throughout cosmological history. Therefore, the backgdevolution is very similar

to the standard case of GR, with only small corrections ieduzy the scalar field.

4.3.2 B Tracker solutions of the scalar field

For the class of potentials specified in Hg. (4.16), it hasmlfeend that the scalar field exhibits a
(stable) tracking behavior and synchronizes its energgitlewith the dominant component of the
universe|[86l 26]. Tracking occurs ®$ tends to its zero point whege = 2ug, and the evolution

of the field¢ during tracking is approximately given by

F= ot LW
2Buoll — wi—[1 + 3w

loga, (4.27)

wheregyg is an integration constant apd= +1, with the actual sign depending on the background
fluid's EoS parametew and Eq. [(4.28). Its densify; then exactly scales like that of the fluid, and

the relative density paramet€y, turns approximately into a constant,

_(1+3w)?
Q== (4.28)

Note that the right-hand side of Edq. (4.27) slightlyfeis from the expression presented in Ref.
[96]. In App.[D.1, we discuss why this is the case and showHuwpat(4.27) is indeed the correct

result.

Following the lines of Ref. [96]x may then be expressed @s= 2up(1 + €) with 0 < € < 1.
UsingV’(2uo) = 0 and expandiny’ to lowest order ire, Eq. [4.25) leads to

2 s 1/n
B 1(1671IBe2¢ 7) (4.29)

€T3 3uo a2

It turns out that this is the only stage at which the conskgmnters the evolution equations. In
preparation for Seck._4.3.3, we further take the time déveaf the above, which yields the useful

relation
— 2/ ¢
e = ﬁ(az—agﬂZ)e (4.30)
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Figure 4.5: Relative deviation of the Hubble expansion in the modifietsEgdin-de Sitter cosmology from
the ordinary GR case: Shown are the resultgfpe 200 (dotted line), 500 (dashed line), and 1000 (solid
line).

Note that stable tracking requireso asymptotically decrease to zero, iee—~ 0. Therefore one
has the conditior < 0 which may be used to infer the proper sign of the parangeieEqg. (4.27)

(see App[D.1).

4.3.2 C Modified Einstein-de Sitter cosmology

In what follows, we shall assume a universe entirely madere$gureless matter with perfect
tracking of the scalar field, corresponding to the EinstigrSitter model in GR. Setting = w = 0

fixesp = —1, and thus the scalar field can be written as

loga. (4.31)

- - 1
¢ = ¢o 20+ 1

To find the proper value ¢, one may either insert Ed. (4]27) into Elg. (4.23), or use theraent
presented in Apd._Dl1. Since the fluid evolves according to(E@1), the density takes the form
p = poa 3, with pg being the background density’s value today. Thus explpifin. [4.28) allows

one to rewrite the modified Friedmann equation in the mattené as

H? = Ha 3+4/@uo+D), (4.32)

121



4.3. Metric perturbations in TeVeS

where we have used the definition

45 87Gpo 1 1\
H2 — 4o 1 1- . 433
0=¢ 3 ( +6,u0—1)( 2M0+1) (4.33)

From Eq. [4.3R), it is evident that the deviation of the Hebkkpansion from the ordinary
Einstein-de Sitter case is entirely characterized by thramaterug. For several reasons [43],
uo should take a rather large value on the order of 201000, and thus this deviation will be
small. Assuming dferent choices qfig, Fig.[4.4 shows the relative filerence between the mod-
els as a function of the scale factarindicating that the change of the expansion is only at the

percent level.
4.3.3 Perturbations in conformal Newtonian gauge

4.3.3 A Preliminaries

Now we will turn to metric perturbations around a spatialgt ffRW spacetime in TeVeS. Starting
point is the set of linear perturbation equations for TeVéfiktvhave been derived in fully covari-

ant form in Ref.[[101]. For simplicity, we shall restrict thaalysis to scalar modes only and work
within the conformal Newtonian gauge. In this case, meteiturbations are characterized by two

scalar potential¥ and®, and the line element in the matter frame is given by
ds’ = a®[-(1+ 2¥)dr? + (1 - 20)5;;dXdx!|. (4.34)

Similarly, one needs to consider perturbations of the ofiedals: While the fluid perturbation
variables are defined in the usual way, i.e. the density gmation, for instance, is expressed in
terms of the density contrast

p=p+op=p(L+9), (4.35)

the scalar field is perturbed as

p=0+0¢, (4.36)

whereg is the scalar field perturbation. Finally, the perturbedaefield is written as

A =ae? (A, +a,). (4.37)
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4.3. Metric perturbations in TeVeS

whereA, = (1,0,0,0) and
a, =W -9, Va). (4.38)

Note that the time component of the vector field perturbaisoconstrained to be a combination
of metric and scalar field perturbations, which is a consegai®f the unit-norm condition given
by Eqg. [2.40). Therefore, one needs to consider only theitiadigal perturbation component
The full set of perturbation equations is given in App.1D.2.

4.3.3B A closer look at scalar field perturbations

To begin with, we consider perturbations of the scalar fiéldom previous numerical analysis,
these have been found to play only a negligible role for sinecformation |[86} 89]. Since the
perturbed scalar field equation is of second order, it isfaklp introduce an auxiliary perturbation
field y which allows one to split the scalar field equation into aexysof two first-order equations.

Performing this split, the two resulting equations (expegkin Fourier space) are given by

§ =Le W2 (i + o) - 2205 (36 + K2)
a : 2 (4.39)
~3py+ 8rGae¥p|(1+3C3) 6+ (1+3w) (¥ - 20)]

and

. -
Q= —mae_‘ﬁy + V. (4.40)

Here¥ = ¥ — p and® = @ — ¢ are the metric potentials expressed in the Einstein frémek| is
the modulus of the comoving wave vectgrandCs denotes the matter fluid’s sound speed which
is defined as the ratio between the fluid’s pressure periarbélP and the corresponding density

perturbatiorsp, i.e. C2 = 6P/dp. The perturbatior is related tar through
[=(e%-1)o. (4.41)

Assuming a general matter fluid whose background evolus@ivien by Eq.[(4.21) together with
a cosmological constant, we take the time derivative of B2) and eliminat® with the help of
Eq. (D.I5) from the resulting expression. The next step etorid of the time derivatives ab.

This can be achieved by exploiting an algebraic relationctvlis obtained from combining Egs.
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4.3. Metric perturbations in TeVeS

(D.22) and[(D.2ZB). Finally, using Eq$. (D]11) ahd (4.39) @anrives at

ab b _- _ ~
ZaB—B—ﬂ(b 47TGaze p(l+W) ¥

— [5(4(;2 + 25._2 + 5) + [ + dnGEe Y p(1 + 3W)] .

(4.42)

From Eq. [4.26), one immediately sees that theffotient in front of¥ vanishes. Thus the above
gives a trivial identity and we cannot infer any informatiomthe relation between the scalar field
perturbationy and the metric potential. This somewhat reflects the fact thatorresponds to
a full degree of freedom in the theory and the occurrenceiaéitrelations like in Eq. [(4.42) is
indeed a generic feature of modified gravity theories of IthisIH. For purposes that will become

clear below, however, let us introduce a funct®psuch that

¥ = B,g. (4.43)

In general B, will be a function of time and perhaps even depend on scaleedler, it is likely
that its particular form will also depend on the used cosmgickl model and the choice of the

scalar potentiaV/.

As for the auxiliary perturbatiow, it is possible to arrive at a similar relation as given in Eq.
@.42). To see this, we multiply EqL_(D.J20) with the scaletéad and take the time derivative.
Combining the result with Eqs.[{D.L8) ard (Dl.23), we elintén and the time derivative of
Z, respectively. Substituting andy with the help of Egs. [[4.39) an@(4J40), respectively, one

eventually ends up with

¢+$2+¢+—4ﬂGa2e 4501 + 3w) |y

—6% [ + i + 2(5 E) 16 + 4nGEep(1 + 3w) | ¢ (4.44)

ZE (5— E) + E + 2 + dnGale p(1 + w) (3& + K7 + 3%@) - 0.

Using the background relations presented in $ec. 4.8.2 Ajndlethat Eq. [(4.44) again yields

a trivial identity, with a general structure very similartttat found before. A direct comparison

8From private communication with C. Skordis.
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4.3. Metric perturbations in TeVeS

between Eqs[(4.42) and (4]44) suggests the definition ahanéunctionB, which is given by
(30 + k%) + ae B,y = 0. (4.45)

Now assuming that the functior, and B, (corresponding to the new degrees of freedom of
scalar and vector field, respectively) are known, one caw $twn a suitable combination of the
perturbation equations in App._D.2 that the metric potémti@e solely expressible in terms of the
matter fluid variables, putting the equations into a form ensuitable for further investigations.
Sincey corresponds to an auxiliary perturbation field related,thowever, one might expect that

these functions will not be fully independent from each athe

Taking the view thaB, and B, emerge from a mathematically well-defined limiting process
of the above equations, the algebraic structure of Eqs2)(4dd [(4.44) suggests that they may
be related according to the correspondingfioents of the scalar field perturbatiopsandy. In
situations wherg is close to its minimum (such as during tracking), ue= 2ug(1+¢€), we further
have the two first-order expressions
=1- % € (4.46)

Cl=|

and
2u0 n+2
a1
U

€, (4.47)
which can be exploited in Ed._(4.44), leading to the the ansat

n+2

4410 (30 + k) + ae‘(l - e) B,y =0 (4.48)

to first order ine. If indeed such a relation exists or at least provides a lslgitapproximation,

it should be possible to verify this with the help of the fielguations or directly by numerical
analysis. Current work is investigating this issue in moe¢gad. One obvious concern is that
such an approach could introduce inconsistencies whicHdagpoil any results obtained under
the assumption of Eql_(4.48). As we shall see in the nextagdiiowever, this does not appear to
be the case. The above relations may then be used to elintiraszalar field variableg andy
from the perturbation equations. As will become clear, fihiss the key to deriving approximate
expressions for the metric potentials in analogy to the &aork of GR. In accordance with the
findings of Ref. [87],B, should take values on the orderaf and, for simplicity, we will further

assume thaB, may be treated as a constant.
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4.3. Metric perturbations in TeVeS

4.3.4 Applications on subhorizon scales
4.3.4 A Modified Poisson equations

In the following, we shall assume the previously discussedified Einstein-de Sitter cosmology
with perfect tracking of the scalar fieldl This allows one to use the corresponding background
expressions presented in Séc, 4.312 C and considerablyif@sphe analysis of the modified
equations. Adopting the relations ferandy presented in Seci._4.3.3 B and assuming Bjat
const, one may now express metric perturbations solelyingef the matter fluid variables and a
detailed derivation of this result can be found in App. D. Asst application, we shall investigate
the behavior of this model for scales much smaller than thigtw. In this case, one ha$i/k < 1

and the metric potentials approximately take the form agae Appl_D for details)

¥, kﬁ. (4.49)
Just as in GR, the potentials depend on the density contndstaad they also exhibit the same
scale dependence (which is not too surprising as we are mgwkithin the linearized approxi-
mation). Unlike the ordinary Einstein-de Sitter case, hmvethe time dependence of the metric
potentials is more complex and involves the figltthich is therefore expected to have a significant

impact on the growth of density perturbations.

4.3.4 B Growth of density perturbations

Equipped with an analytic expression for the the poteNti&br equivalently¥), we now proceed
with the analysis of structure growth in the context of TeV&S is well known, the ordinary

Einstein-de Sitter model in GR gives rise to a growth equatibthe form

d>s 3ds 3
—— __=5=0, 4.50
42 " 2ada  2& (4.50)
with the two solutionsy « a=%2 andé « a. Following the same derivation as in GR, the TeVeS

analog of Eq.[(4.50) for our present assumptions reads

d2s 1(+ 4 )d6 A(

el o _~ AP
R € il da @ +B,Mo=0, (4.51)
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Figure 4.6: Evolution of subhorizon density perturbations in the medifEinstein-de Sitter cosmology:
Assuming a potential with = 4 and a scalar perturbation ra®y = 3uo/2, the figure illustrates results for
Kg = 1 (dashed line), @ (dotted line), and @9 (dashed-dotted line). For comparison, the correspgndin
evolution in the ordinary Einstein-de Sitter model is alsown (solid line).

whereA depends o and is given by Eq.[{D.30). Assumir}, = 3uo/2 and settingio = 1000,

lg = 100Mpc,¢o = —0.003[1 andn = 4 for the scalar potential, Fi§._4.6 shows the numerically
calculated evolution of for different values oKg and an arbitrary, but fixed choice of initial
conditions ata = 0.01. As can be seen from the figure, our simple model recoversrthanced
growth reported in Ref. | [87] for small values &fz (~ 0.1). For larger values oKg (> 1),
however, this enhancement does not occur and the densityasbifollows a power law with

6 oc @27, thus still growing faster than in the ordinary EinsteinSitter case. This behavior can
be better understood by expanding the functfoin terms of the scalar fielg which is much
smaller than unity, i.el¢| < 1. This immediately yields

B 4 B
_"D + — (1_ _90)
Ho Kg Ho

6+0(¢), (4.52)

where we have additionally neglected terms proportionad émd used thatip > 1. If Kg is

suficiently large compared tg, the zeroth-order term in the above will dominate and tAus

"Note that the choice of a small negative value fodoes not automatically violate causality [43,1253] and is in
accordance with the results of Ref. [[87].
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Figure 4.7: Metric perturbation® and® for a top-hat overdensity at redshift= 1 (a = 0.5): Assuming
Kg = 0.1, the figure shows the resulting potenti#g$dashed line)p (solid line) and the corresponding GR
result (dotted line; the potentials are the same) as a fumctithe physical radial coordinate

3B,/2u0. In this case, one can solve EQ. (4.51) analytically and wkdfir aP with

B
p:}[,/1+24—"”—1] (4.53)
4 Mo

for the growing solution. On the other handKig is chosen small enough, the term proportional
to ¢ in Eq. [4.52) will become important, leading to the enhangemivth observed in Fig_4.6.
Although likely related to our present approximations, Eg52) suggests that f@&, = ug, which
would correspond to Eq[(4.50) in the limit of lar¢fes, additional growth should be suppressed
since the term proportional %/ Kg vanishes; indeed, we have numerically verified that entdance
growth does not occur in this case. Whether such a featurainerfor more realistic time-varying
choices ofB, (possibly motivated from numerical analysis) remains teseen. Also note that
all models which exhibit enhanced growth eventually rum iatsingularity which appears to be
connected to the used logarithmic approximationdfdn Eq. (4.31), but could also arise as a
consequence of our assumption tBat= const. Clearly, this warrants further investigation and

should ideally include cosmologies which also accounttierdfects of DE.

To conclude this section, we demonstrate how the mechamisponsible for enhanced growth

generates dierences between the matter frame potentfalnd® (Remember that in GR, such
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Figure 4.8: Same as Fid, 417, but now assumiig = 1.

a difference can only be caused by anisotropic stress). For thimge, we switch to physical
coordinates and use the twdTdrent Poisson equations specified by Es. (D.28) land {(Da28) t
calculate the potentials for a spherical top-hat distiutat redshiftz = 1 with a radiusR =
50Mpc and overdensit§y = 0.1, keeping the same parameters as before. The resultingtiatde
are illustrated in Figs_417 aind 4.8 f&ig = 0.1 andKg = 1, respectively. A small value dfg
drives the potentials apart, corresponding to relativeatien of around 10% in Fid._ 4.7, whereas

the two potentials are basically identical #6g > 1.

4.3.5 Summary and further applications

Here we have considered the growth of perturbations in theezbof TeVeS. The structure of the
linearized perturbation equations suggests the intragtuof two new functionsB, andB,, which
fully characterize the new degrees of freedom arising frleerstalar and vector field, respectively.
Assuming these functions to be approximately constant hondsing a cosmological background
corresponding to the Einstein-de Sitter model in GR, we dereved the TeVeS analog of the
growth equation and discussed its dependence on the thgmyameters. In accordance with
the findings of Ref.[[87], enhanced growth only occurs forlsnaues of the constarg, which
also results in a dierence between the matter frame potentiaend®, the so-called gravitational

slip. For larger values dfg, the solution of the growth equation essentially followsosvpr law
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4.3. Metric perturbations in TeVeS

whose exponent is determined by the assumed valuBg afidB, and may difer from that of the

ordinary Einstein-de Sitter model in GR.

If supplemented with numerical estimates for the functiBpsand B, the framework intro-
duced in the last section appears as a particularly suitsblemetrization for detailed studies of
the growth factor in TeVeS. Such parameterizations haweniticgained interest as a general way
of investigating potentially observable signatures of ified gravity [254| 255] and open the pos-
sibility to adopt conventional methods and tests which exguently applied in the context of GR.
Taking weak gravitational lensing, for example, it wouldib&eresting to see how the enhanced
growth quantitatively fiects estimates onfiierent signals such as galaxy number counts and es-
pecially the associated noise which is expected to drop ireary where structure grows faster
than in GR. A first application into this direction regarditige detectability of large-scale voids
in a TeVeS-like universe is currently in progress. Furthamen one might consider our results as
a first approach toward investigations of the nonlineartehirsg of density perturbations in these
theories. Although one expects the linearity in the graéiateal sector to break down at some
point, mainly because of nonlinearities arising from théeptial terms which are responsible for
the theory’s MONDian limit, this approximation should hdtthg enough to investigate the influ-
ence of vector perturbations on cluster scales. For ingtamparticular criterion for the validity
of such an approach would be the requirement that the peduelpression for the functign
derived in Ref.|[101] is satisfied,

— e

V'~
ou=2—Y
M \VZ& + 4¢a2vu

®. (4.54)

The above prospects on new and potentially powerful wayso$ttaining the theory underline
the importance of further research in this field which, rdgay a systematic analysis of TeVeS-
like models, is still at a very early stage. Future work sbaalko extend investigations to more
general tensor-vector theories and explore whether gimgilproaches are also applicable in these
frameworks. Finally, note that even if the presently madaiamptions turn out to be a bad de-
scription of the growth in TeVeS, our model provides an iesting tool for generically studying

effects in modified gravity with enhanced growth.
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Chapter 5

Summary

In this thesis, we have tried to address several possdsiliin how to constrain hypothetical mod-
ifications to the gravitational sector, focusing on the stilug tensor-vector-scalar theory as an
alternative to CDM on galactic scales and a particular atdsshameleon models which aim at

explaining the coincidences in the DE sector.

Beginning with the framework of TeVeS theory, we have depetbanalytic models for non-
spherical lenses which allowed us to test the theory agalmstrvations of multiple-image sys-
tems. While isolated double-image lenses are generallyewxglained, the situation for quadruple-
image systems and lenses in dense environments such as gnoclpsters appears challenging.
Nevertheless, we have argued that the found problems amdynmalated to our simplistic lens
model which does not account for anffexts due to environment and may strictly be applied to
isolated systems only. Despite being inconclusive, outyaigahas pinpointed certain systems
which call for a more detailed analysis in the future and ddwld the key to make solid state-

ments about theory’s performance in the domain of galaetisds.

As the next step, we have investigated the role of interefdgaments in TeVeS. The typically
very low density of these large-scale objects suggestsithartures from GR are expected to be
quite significant. Modeling filaments as infinitely long adiers, we have analyzed their lensing
properties and confirmed this expectation. Furthermorehave shown that a single filament can
contribute a shear signal on the order ddDand considering multiple filaments along the line
of sight, this can add up, leading to a significant and comjslgact on the shear measurements
of other objects. In principle, our findings also allow onddtsify TeVeS by excluding a large

lensing signal through measurements around the positiarkabwn filament. Given the current
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observational uncertainties, however, this seems pedigticnpossible.

We then moved to the missing mass problem in TeVeS and caoadidiee possibility of mas-
sive sterile neutrinos with a mass of 11eV. To test this Hygsis, we have outlined how to use
cluster lenses with a significant level of substructure tastr@in the allowed neutrino density set
by the Tremaine-Gunn bound. The key input here is that if ateals a sficiently dense dark
matter concentration within such a lens system, then magtrvithin a given mass range would be
immediately ruled out. A preliminary analysis of the lergatuster Abell 2390, however, appears
to be consistent with a mass of 11eV. Nevertheless, we haygested the search for other cluster
lens candidates combined with a more detailed analysishaikilikely to give tighter constraints

than the analysis presented in this thesis.

Leaving the field of TeVeS for a little bit, we further conside coupled scalar field models
and presented a general framework for exploring the naarlinkistering of density perturbations
by means oN-body simulations. Choosing a particular realization fahameleon model where
the scalar field only couples to CDM patrticles, we have petéat the first complete simulations
in the sense that the spatial variation of the scalar fieldnoallsscales has been fully taken into
account. For a reasonable range of model parameters, altsrpeedict that the best chance of
discriminating such theories from the standa@DM model might come from observations on
intermediate scales which are relevant for galaxy clugters(? — 10°kpc) and there is a good

chance that future surveys such as the Kilo-Degree Survghtrbie able to detect such a signal.

Finally, we have discussed the prospects of applying simikathods or techniques to study
the linear and nonlinear evolution of density perturbaionTeVeS. The main obstacle arising for
this class of theories is that one cannot start from the tatiristic field equations because these
do not include contributions of the vector field which arenao be crucial for the formation
of structure on large scales. To find a possible way arourgdptttiblem, we have tried to moti-
vate an ansatz for the perturbations of the scalar field, wallows one to cast the perturbation
equations into a more convenient form. Although there ahesstveral open questions regard-
ing our approach, it allowed us obtain the TeVeS analog ofgtoevth equation in the modified
Einstein-de Sitter cosmology and appears as a useful frarkdar general studies of gravity the-
ories with enhanced growth. On a more speculative level,ave further outlined the possibility

of investigating the nonlinear regime of structure formatat least to some extent.
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Appendix A

Partially degenerate neutrino gas in

galaxy clusters

A.1 Nonrelativistic Fermi gas

For a system of identical fermionic particles in thermalikiguium, the average number of states
with energys; is given by

(M) = g (/T 4 1)‘1, (A.1)

wherexg is the Boltzmann constant is the chemical potential angl denotes the degeneracy
factor. Using thatyj = gandg = pi2/2m for nonrelativistic particles, taking the continuum limit
gives rise to the distribution functiom(is the particle mass)

VB2

f(e)de = g on 2

Ve (/8T 4+ 1) de (A.2)

which allows one to determine the corresponding thermaaymg@roperties of the gas. Consid-
ering spherically symmetric configurations and introdgcihe radial velocity dispersioar, the

corresponding equation of state is given parametrically as

m’
P =095 53 *Fu/2(x) (A.3)
and
vamt
P=0333 o Fa2(x), (A.4)
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A.2. Massive neutrinos in hydrostatic equilibrium

where

(9]

Folt) = f XP (€% + 1) dx (A5)

0
andy = u/xgT (for a derivation see, e.g., Ref._[256]). In the limit of fukgeneracy (corre-
sponding to very large positive values yf, this yieldsP o« p°2 while the non-degenerate limit

(corresponding to very large negative valuegpleads to the classical resiitec po-2.

A.2 Massive neutrinos in hydrostatic equilibrium

In an expanding and cooling universe, neutrinos (ordinarsterile) with a mass on the order of
several eV or larger may be considered as nonrelativistticfes at the late stages of cosmological
evolution (matter era and further stages). This appliesitiqular to galaxy clusters where such
neutrinos should move with velocities much smaller thangpeed of light![81, 190]. As these
particles are fermions, we may treat them using the relatfmesented in the last section. The
equation of state given by Eqs._(A.3) and (A.4) formally degeon the chemical potential, but
there is no independent way of estimatipgapart from numerical simulations of a collapsing
baryon-neutrino fluid. Lacking such simulations in the nfiedi framework, however, we will
start from the estimated densjby to obtain the chemical potential necessary for an equilibri
configuration. In the following, we will outline the proceduapplied in Sed._3l4 to calculate the
TG bound.

Assuming that the neutrino gas is in hydrostatic equililorithe pressure obeys

P, = -pu)00). (A6)

whereg(r) is the total gravitational force at radius Combining the above with Eqs,_(A.3) and
(A.4), we determing as a function of radius (one possibility of achieving thigéscribed in e.qg.
Ref. [190]). This result is used to calculate the correspundelocity dispersiorr-, which will
generally dffer from that of the ICM. Inserting-, into Eq. [3.74), we then find the maximally
allowed neutrino density, max. Sinceo, generally varies with the radius, this obviously yields the
TG bound as a function of position. Finally, note that futsimulations of galaxy clusters in this
context will not only probe the estimated valuesyofout also tell us whether the such obtained

differences between the velocity dispersions of neutrinos @htldre actually realistic.
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Appendix B

Modeling the baryonic content of A2390

B.1 X-ray gas and central mass distribution

To derive a reasonable model for the gas distribution in 23 use the results given in Ref.
[202]. The intrinsic electron density derived from CHANDRAservations (shown in Fig. 10 of

Ref. [202]) can be well described by a spherical profile offtilewing form:

Mo (B.1)

ne(r) = (l . (r/ro)z)l/z’
whereng = 0.1cnm3 andry = 10kpc. Assuming a mean molecular weightwf= 0.6 and
an additional factor of 2 to account for the globalfiect of the cluster’s stellar components,
we thus obtain an expression for thffegtive central density profile with a central density of
po = 1.8 x 10°M,, kpc3. Since the volume integral of Eq._(B.1) diverges, we smagothit the
profile at radiusR within a range of 200kpc. The cufscale is set t&® = 1Mpc which corresponds
to 0.7r500H as given in Ref.|[204]. This yields a total integrated mas#of 1.3 x 10'*M,, and

a surface density profile which is in good agreement with a 20% gas fraction of the enclosed
projected lensing mass estimated in the framework of GR,[208]. The density distribution

specified by Eq.[{Bl1) is illustrated in Fig._3]18 (dottedeln

Although our choice for the density profile is less accuragrasults in a slightly smaller mass
than typicals models [202], 213] or more flexible ones [204], it will beflstient for our analysis.

As is shown in Sed._3.4.4] B, the relevant lensing mass is gndsthinated by the contribution of

1Assuming the framework of GR with CDM, the overdensity radigh, is the radius within which the mean matter
density is 500 times the critical density of the universehatdluster’s redshift.
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B.1. X-ray gas and central mass distribution
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Figure B.1: Enclosed projected (Newtonian) dynamical mass profile®@orTeVeS equilibrium model
(gas+ SNs; solid line) and an NFW model (dashed line). The lowersmdghe TeVeS model is mostly
caused by the approximate description of the gas densigngivEq. [B.1); triangles indicate the estimates
from weak lensing observations. At the arc’s positiér:(38”), the relative diference between the models
is about 10%.
SNs. Thus the strong lensing results, which we are primarirested in here, will be relatively
insensitive to the actual assumption of the central bacydistribution. Adopting the more realis-
tic density models above in a few selected simulation ruthegravise identical to those presented
in Sec.[3.4.5, we find only smallfiiérences on the order of a few percent in the corresponding
results and confirm our argument. This is also indicated lyparing the enclosed projected dy-
namical mass profiles of our cluster model (g&SNs) to the Navarro-Frenk-White (NFW) profile
[257] estimated in Ref. [204] (see Fig. B.1). Although th&@8 model underestimates the mass,
the discrepancy from the NFW model is only about 10% at this aasition @ ~ 38”). In addi-
tion, the figure shows the weak lensing results obtained frenCanada-France-Hawaii Telescope
(CFHT) for a photometric redshift distribution based on@HT Legacy Survey data [208, 258].
The relative good agreement between dynamical and wealkdenmsass estimates further implies
that structure along the line of sight plays no significatd snd does notfeect our analysis. All
presented quantities have been corrected for the cosnalagodel specified in Eq._3.67. Note,

however, that a rather accurate description of the gas tgeassiwell as its temperature profile is

important to estimate the neutrino content necessary fordsgatic equilibrium in TeVe$ [190].
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B.2. Galaxy morphology and masses

B.2 Galaxy morphology and masses

Since a rather detailed model of the cluster might be impbitaTeVeS, we also need to take the
contribution of individual galaxies into account. For siiojy, we only consider the most massive
member galaxies in the immediate vicinity of the straigl{saobserved position; galaxies which
are located farther away are unlikely tffext the TeVeS lensing maps in this region, which is
confirmed by our results presented in Sec. 3.4.5. AlthougB9@Zxhibits a rich class of galaxy
morphologies, with many galaxies showing elliptical ortiemlar shapes, the impact of individual
morphologies on the arc’s environment can safely be negledtie to the galaxies’ ficiently
large distances. While this is not necessarily true for thkeny 2592 (see Fig[3.0l7) which
resides directly adjacent to the arc, a spherical densitgainarovides a good description, which
is indicated by the rather mild ellipticity seen in the optitiST image. As can be seen in Sec.
[3.4.5, this approximation does ndtect the basic results of our analysis - at least in the case of

quasiequilibrium configurations.

Furthermore, we assume that all considered galaxies carodeled by a matter distribution

of the form
Mry

2r(r + €)(r +ry)3’ (B2

p(r) =

wherep(0) = M/(erera) is the central matter density, and the profile’s core ragiusiversally

set tory = 3kpc. The length scale corresponds to a smoothing parameter becoming necessary
due to the limited resolution of our simulations and is sfediin App.[C.2. Fok = 0, Eq. [B.2)
reduces to the well-known Hernquist profile [139] which elgsapproximates the de Vaucouleurs

RY4 law for elliptical galaxies.

To infer the masses of individual galaxies, heeded for aongtlensing analysis, we consider
the data of the spectro-photometric catalog compiled in F&f9], which lists magnitudes for
48 galaxies inside the cluster A2390. All magnitudes aremivm the Gunm band [259], and a
simple formulal[260] to convert the Johnson magnitude and tBe- V color index to the Gunn
r band can be found in the IiteratLHeAccordineg, we have computed, the Gunr magnitude
of the sun, adoptingR, = 4.42 [261] and B — V), = 0.64 [262]. We have found,, = 4.95 which
is rather close to the value inferred from SDSS, the corresponding band beinge cgithilar to

the Gunnr band. Our result for, has then been used to evaluate the absolute luminositibg of t

2For further reference, an excellent description of the Gumnagnitude system is given on the website
http://ulisse.pd.astro.it/Astro/ADPS/.
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galaxies given in Ref. [219].

Next, we need a realistic mass-to-light ratM /L) in order to determine the galaxy masses.

To this end, we have followed a twofold approach: First, weehedopted a constaM/L derived

by combining the relation betwedwl/L and theg — r color index presented in Ref._[263] with
theg — r colors for massive ellipticals in the red sequence of the SDi8en in Ref. [[264]. The
corresponding masses are labeledvas Second, we have also considefddL as a function of

M in agreement with the results for the galaxies of A2390 dised in Ref. [[219]. For this, a
dynamical mass estimate based on measured velocity dmpemsas used. As elliptical galaxies
are mostly subject to the strong gravity regime within tigilf-light radius, however, estimates in
both MOND'TeVeS and Newtonian dynamics should be roughly the sams.sBeiond mass esti-
mate, denoted dd,, is probably more reliable since it involves fewer assuonsi The properties

of the such obtained galaxy models are listed in Table 3.4.

B.3 Role of the central cD galaxy

Assuming an equilibrium model for A2390, it has been fourat ttileV SNs reach their densest
possible configuration for < 20kpc (see Sed._3.4.4 B). Since Ef._(8.78) takes the TG bound
into account, our cluster model misses some mass in theatguart and does not correspond
to a genuine equilibrium situation. A way of compensatingtfos is to consider an additional
contribution due to the central cD galaxy. Following thesBrof Ref. [190], one can estimate a
total galaxy mass of approximatelyt = 1.8 x 10°M,,. As the central region of A2390 is neither
spherically symmetric nor in equilibrium_[202, 204], it mportant to note that such an approach

has no real physical meaning, but rathffets a convenient way to tweak our cluster model.

What does the above mean for our lensing analysis? Moddhiegcb galaxy as a point
mass, a straightforward calculation shows that its impac¢he TeVeS lensing maps can be safely
neglected. At the position of the straight arc’(38 140kpc from the cluster center), the additional
matter gives rise to changes of12%. Moving to smaller radii, the deviation grows, but we are
not interested in this region anyway. Thus we consider thstet model presented in Séc. 314.4

as stificient for our investigation.
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Appendix C

Numerical tools and setup for A2390

C.1 Solving the scalar field equation

Having set the framework of gravitational lensing and cdsgy in Sec.[3.11, we may proceed
with calculating the desired TeVeS lensing maps. The maiblpm associated with this task is to

solve the scalar field equation specified in Eq. (2.55) whatlge rewritten as

Ad = p, (C.1)
where the &ective density(p, di¢, 9i0;¢) is
_ kgG ksl3 dug
=—p-2—=——((0i¢)(0;0)(0i0i0)) , Cz2
p= Pt ((Gi9)@;9)(@i0;¢)) (C.2)

and indices run from 1 to 3. Equation (C.1) corresponds to rdimear second order elliptic
boundary value problem and can be tackled numerically. AiEobased solver operating on an
equidistant grid has been presented in Refl [50] where thie dgorithm and involved approx-
imations are extensively discussed. The main idea is to@ngi iterative relaxation scheme of

the form p@ is calculated from an appropriate initial gues®)

AFO =50, ™D = wd + (1 - g, 3)
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where we have introduced the relaxation parameterR, an additional iteration field™ and

™ Kkgl2
7= e-2( 5] S (007 o) (00107,
B

»I g (C.4)
Q) o (%e\” _ ks o N = a2 [T
WD = s (). (a—y) = %2 (y0). Y~ Il

As the scalar field’s gradient decreases much more slowlypeoed to the Newtonian gradient far
away from the lens, one would actually be obliged to move tg large volumes to neglect contri-
butions from outside the box and obtain correct resultsHerdeflection angle. Assuming a fixed
grid size, this would excessively degrade the resolutiothefcorresponding two-dimensional
lensing maps. Fortunately, there is a way of avoiding thidblam: Considering a finite grid with

N + 1 points per dimensionN is chosen as an even number), we may rewrite the scalar part of

the deflection angle as the sum of contributions coming frah lnside and outside the grid’s

volume:
Nax -Nax o
) f V.¢(Wdz+2 f V. ¢CWdz+ 2 f V. ¢"Wdz, (C.5)
-Nax —00 Nax

where the quantitAx denotes the distance between neighboring grid points. misguthat the

scalar field at the boundaries is approximately given byahatpoint lens, i.e.

O ~ \[GMaylog(r), (C.6)

we obtain the following expressiot denotes the total mass inside the volume):

Nax
Gs=2 f V. ¢Mdz+ 4A, (C.7)

N
_7AX

T NAX\|| X
- — Cc.8
5 arctar‘( 2 )] [yJ (C.8)

andg? = x2 +y2. Thus, if the point lens approximation is applicable, wech&e perform the

where

integration only over our finite grid since all contribut®from outside the box can be expressed

analytically.

One of the numerical challenges of our analysis of A2390 as te need to resolve galac-
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tic scales in a cluster-wide box, which requires a relagivatge number of grid points. Since
all calculations have to be performed in three dimensidms, dearly exceeds the capacity of a
single-processor machine, in terms of both needed time adary, and therefore calls for a
more powerful computer architecture. For this reason, we iraplemented a parallel version of
the original solver using the Message Passing Interfacd)(d&ndard. The parallelization as well
as all calculations presented in SEC.] 3.4 have been camieshahe HUYGENS supercomputer
at SARA in Amsterdam within the HPC-EUROPA Transnationaté@gss Programme. The HUY-
GENS system consists of 104 nodes, with 16 dual core proce@8& Power6, 4.7 GHz) as well
as either 128 GBytes or 256 GBytes of memory per node, thwsdamg an excellent environment

for our needs.

The parallel solver has been tested with analytic TeVeS t@leh as the Hernquist lens
(see, e.g., Ref.[ [50, 92]), and has also been compared tiopsevalculations for the “bullet
cluster” [50], yielding exactly the same results - up to maelaccuracy - as the serial version for
identical input parameters. Considering the numericalsfir A2390, we choose a physical box
size ofV = d® = (4Mpc)® in order to meet the requirements of the point lens appraiimat the
grid’s boundaries. Performing a variety of test runs, weshfawund that the solver's convergence
property quickly deteriorates if we increase the numberriof goints per dimensiolN, meaning
that the code takes many iteration steps or even fails toetrgeﬁ. Typically, this problem already
occurs atN = 512 and manifests itself through extreme fine-tuning of thestant relaxation
parameterw. Depending on the particularly used density model of thetely acceptable values
for w vary within a range of @ — 0.9, but allow them to be easily identified just after a few
iterations. Compared to the analysis of Ref. | [50], we thugiobno universal value for the
relaxation parameter. Similarly, we also note that theestdwbehavior becomes more sensitive
with respect to the scalar’s initial guess. This is expedtedause thefiective deviation from

the desired solution increases withand can usually be accounted for by slightly modifying the

original point mass ansatz of Ref, [50] to achieve a finiteecor
¢O(r) o log(r +re), (C.9)

wherer. is on the order of a fewd/N. While more elaborated guesses are also possible, they

typically do not yield a much better performance.

Lt is quite likely that the problem is partly related to thestibilizing influence of high frequency modes. These modes
are able to “see” and amplify numerical artifacts which arespnt both in regions around local extrema, where the
derivative of scalar potential exhibits values close tmzand at the grid’s boundaries.

141



C.2. Numerical setup for A2390

6, [arcsec]

0, [arcsec]

Figure C.1: Predicted critical curves for an isolated galaxy given by @32): Assuming an aperture mass
of 3.5x 10M,, within a 3’ (~ 11kpc) diameter as well as a lens and source redshifte0.23 andzs = 1,
respectively, we present results for both a high resolytiof.05”, solid line) and a low resolution setting
(~ 1.2”, dashed line) with subsequent interpolation.

C.2 Numerical setup for A2390

In all simulation runs, we set the number of grid points peneatision toN = 896. This yields
a resolution of approximately.2’ (~ 4.5kpc) for our choice ofd = 4Mpc. To improve the
numerical stability of our Fourier solver, we further reguall density components to be centered
within their respective subcube, which can lead to a maxaesiation of 06" from the positions
listed in Tablé 34. In addition, we assume a smoothing petara = 1kpc for the galaxy profile
given by Eq. [(B.2). Once the desired fields and derivativecalculated, we use a cubic spline to
interpolate our results and determine the relevant lengiramtities. For the given specifications,

individual simulation runs typically require 3050 iteration steps to converge, and can last up to
24 hours using 32 processors.

The interpolation approach is justified because the exatiitrés expected to be relatively
smooth. To support this argument, we performed a small nigalegxperiment: Assuming an
aperture mass of.8 x 10**M,, within a 3’ (~ 11kpc) diameter and the parameters from above,

we compared the predicted critical curves of an isolatedxyayiven by Eq. [(B.R2) for low res-
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olution (~ 1.2”) with subsequent interpolation to those calculated forghédii resolution setting
(~ 0.05”). Choosing a lens and source redshifizoE 0.23 andzs = 1, respectively, the results
are shown in Figl_Cl1. While the radial critical curve is netywwell recovered, the radius of the
tangential critical curve, which is relevant for our corsitions on the straight ﬁcis only un-
derestimated by roughly 10% on average. Considering thelfidter model of A2390, however,
galaxies are not isolated, but reside within the clusteaiskground field, which leads to a boost
of their corresponding Einstein radii. Therefore, we exple accuracy of the calculated lensing
properties, including critical curves and caustics, to igaiicantly improved and diicient for

our analysis in this case.

2Although radial caustics can produce straight images, ¢selting orientation (pointing towards the center of the
corresponding lens) is not compatible with the observed arc
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Appendix D

Perturbation equations in TeVeS

D.1 Scalar field evolution during tracking

In the following, we will assume the potential defined in E@.16) and use the notation and

definitions of Ref.|[96]. There it has been found that theascfild evolves during tracking as

¢ = ¢o + ¢1l0ga, (D.1)
where _
_ do

¢l=dloga (D.2)

is approximately constant. Indeed, following the dermatpresented in Ref._[96], one can show

that
¢1 ﬂ 1+ 3w 2
= -— D.
1+ ¢1 2/10 ( 1-w/’ ( 3)
whereg = +1 denotes the sign of the scalar field’s time derivative, i.e.
B = sgng. (D.4)

To see that the sign in E4._(D.3) is chosen appropriately,uses Eq.[(DI1) and finds that

B= sgn(dug) = sgn¢gy = sgng, (D.5)

where we have assumed that] < 1 for the last equality. Note that this is justified becausthef

requiremenig > 1 for viable cosmological models.
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D.2. Perturbation equations in conformal Newtonian gauge

Here the right-hand side of Ed._(ID.3) deserves specialtaterNaively evaluating the square
root, one obtains the result of Ref. [96]. As the argumerigia sloes depend on the actual choice

of w, however, one has

(D.6)

1+3w)\®  |1+3w
1-w/| |1-w’

which eventually gives the result in Eq._(41.27). During kiag, the fieldu (see Sec["4.3.2]B)

evolves ag: = 2ug(1 + €), where

241+ 3;1(1 + W) log

loge a, (D.7)

and thus 2; + 3(1+ w) > 0 emerges as a condition for stable tracking. For a universarthted
by a cosmological constam, one hasv = —1 and thereforgg = 1. Since the time derivative of
¢ changes its sign when passing from the matter toXtteea (resulting iy momentarily going
to zero) [86], it follows thap = —1 during matter domination. This result is in accordancédwit

previous work [43, 87] where it has been shown thdecreases with time during the matter era.

D.2 Perturbation equations in conformal Newtonian gauge

The fully covariant form of the linear perturbation equadn TeVeS has been derived in Ref.
[101]. Here we will summarize the resulting perturbatioma&ipns for scalar modes in conformal
Newtonian gauge. Furthermore, we shall assume a spatiigpiicetime geometry and introduce
the fluid’s sound spee@s which is defined as the ratio between the fluid’s pressureigEtion
SP and the corresponding density perturbatiipn i.e. C2 = 6P/sp. As usual, we express the
eqguations in Fourier space using the comoving wave vdctoraccordance with the coordinate

system specified in Selc. 4.3.

Einstein frame perturbations Instead of using Eq[(4.B4), one may also express pertorisaiin
the Einstein frame [86, 101]. In this case, the perturbedtgin frame metrig,, may be written

as

oo = —b2e‘45(l +29), (D.8)
8oi = —b?0i, (D.9)
Gij = 0% (1 - 20) ;. (D.10)
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D.2. Perturbation equations in conformal Newtonian gauge

In terms of matter frame variables, the Einstein frame phditions are given by the following

relations:

Y=y, (D.11)
O=0D-g, (D.12)
Z=(e*-1)a. (D.13)

To avoid lengthy expressions in the perturbed field equafidnis convenient to make use of

variables from both frames.

Matter fluid equations The density contrast for scalar modes in conformal Newtogiauge
evolves as

: . a
5 =-(1+w) (k% +30) -3 (CZ-w)s, (D.14)
where the velocity potenti#l obeys

c2 W 2
- 0-KEx + 9 D.15
1+W6 1+w 3 M ( )

b= —Z(l—Bw)9+

the quantityX denotes the shear of the matter fluid dnd- |k|. Note that the equations for

perturbations of the matter fluid remain unaltered comp#rede standard case of GR.

Scalar field equation The perturbed scalar field equation yields

§ =Le e (i + ) - 2205 (36 + K2)
a : 2 (D.16)
~3py+ 8rGae¥p|(1+3C3) 6+ (1+3w) (¥ - 20)]

and

. -
Q= —mae_‘ﬁy + V. (D.17)

Herey denotes the perturbation of an auxiliary field introducedytit the scalar field equation

into two first-order equations [101].

Vector field equation The two first-order equations coming from the perturbedoreetjuation
are

Kg (E + EE) = 81Gap(L+W) (1- &%) (0 - a) - 1 (¢ - bar) (D.18)
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and

d:E+lif+($— g)a, (D.19)

where the auxiliary scalar modeis gauge-invariant and related kg, the field strength tensor

of A, which appears in EqL(2.43) [101].

Generalized Einstein equations From the scalar modes of the perturbed generalized Einstein

eguations, one obtains the Hamiltonian constraint
2 4(;b ~ 2% b ~ b 2 —
- 2k?® — 2¢ D30+ K2Z + 3|+ ae¥ ¢y — Kgk®E = 871Ga2p (6 — 2p) (D.20)
and the momentum constraint equation

§ — fido = anGaeH(1 + W), (D.21)

olo:

O+
Finally, the two propagation equations read

60 + 22 (7 — € P + 26 VKD + o (60 + 3% + 24%Z) + 46 (30 + k)
b

T b b
+37;ae <;>«y—fs(—25+E 4¢p— )‘P 247Gele™ (ca 2wep)

b

o

D.3 Approximation for subhorizon scales

and

¢>) Z] = 87Ga’p(1 + W)X. (D.23)

O-F+

UlO"

In what follows, we will assume the modified Einstein-de &ittosmology introduced in Sec.
(@.3.2.C). The first step is to express the metric potentraterims of matter fluid variables only,
using Egs. [(4.42) and (4.48) together with the perturbagiguations. Starting from Eq_(4]48),

we take its time derivative and after a bit of algebra, we Knairive at B, = const)

a4
— (SKZ‘P 2k?D + k°B ¢¢a + 4—7rGa2p6)
2 Mo
2
+ 9(@5— 9) + (1 - Bug) 9% + —2nGele (D.24)
B, b Ho
2uo~ b
+ 3(B_¢¢ - B) ‘Pd)] (kzg + 127TGaze pé?) O(E)
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As can be seen from above, Ef._(D.24) relates the three {gtiavial) fields¥, ® anda, where
a is related toZ through Eq. [D.18), to the matter perturbation variatlemdé. For the next
equation, we eliminate the time derivative/obetween Eqs[{D.19) and (DJ23), which leads to

+(1—e45)E—e45@—4$a+e45(g+5$)2:o. (D.25)

Differentiating the above and eliminating all remaining timevé¢ives by suitable combination
of the perturbation equations, one finds

- 16
1- e4¢¢

N . -2 . . )
_4¢+(1—e4¢)(§—2a—2—4¢_g+5¢+5(;2)]a/
[4e4¢l+ ( SJ) 7

C1-eM) 20 45( 1+e4¢-_ ,a ] (D.26)
+[(1 Ko )B¢¢ e 41 e“‘;q) + 5¢

1+e% ~
lI‘+4¢( T 1](1)

- e4‘;k22 + — 8¢?

877G ap

(o = Buo= b
- e4¢ (B‘p(]ﬁ + B—‘p(]ﬁ - 36)

(1-e)

+l1-3e% -2 4nGEe 0 = O(e).

Finally, the last equation is obtained from eliminatidgpetween Eqs[{D.25) and (D]20). Together
with the relations presented in Séc. 4.3]3 B, one eventealiis up with

(o _Ke )~ 2 Kge® §_ 2 %Ke _a
1-e% - “1_om

ilo(P, 20 _Kg (é 2%
—e¥|2(-+ 22 56 )| K¢

© (b+B¢¢) 1- e4¢( +$) (D.27)

-8

+ ae (47rGa2e p— ﬂq?] (b + @qb)

B, b

X 247G alpl — 81Gaps = O(e).

Since Egs.[(D.24)[(D.26) and (DJ27) form a closed systentHerfields¥, ® and«, the corre-
sponding solution of this system will give the fields as espiens of the matter fluid variables
only. Inserting the logarithmic approximation for the awtibn of ¢ specified in Eq. [[4.31) and

using that for subhorizon scalasi/k < 1, we expand the corresponding equations for the matter
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frame potential$F and® in powers ofaH/k and find to lowest order:

G —A%d (D.28)
i —B%d (D.29)
where s n
i _6uo- 12 (40 + ZBw_) (26 -¢¥ -1 + KeB, (} - +0(e) (D.30)
(Cup +1) 6(2—e4¢—e‘4¢)+KB(294¢+3e_4¢_5)
and — = r n
g Guo—1 o2& 1)+ KeB(H o) (D.31)

(2u0 +1)°6(2 - e# — &%) + Kg (264 + 3e-% - 5)
Note that although we have not presented the resulting ssiores to first order i for clarity,

their contribution is fully taken into account for all calations conducted in Sec. 4.8.4.
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