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The coefficient of thermal conductivity for pure hydrogen, pure helium and a gas mixture appropriate
for a stellar atmosphere has been computed in the temperature range 3000 to 100000 °K and the range of gas
pressure from 10—2 to 10° dyn/cm?. The translational as well as reactive contributions to the coefficient are
given. The error is less than 109, (except for pure He) in the neutral region but may be more than 359, in
the ionizing region. In the fully ionized region there is complete agreement with Spitzer and Harm (1953).
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1. Introduetion

Advances in the theory of acoustic wave propaga-
tion and in the understanding of the chromosphere-
corona transition region of stellar atmospheres make
a new computation of the coefficient of thermal con-
ductivity highly desirable. Earlier work has been
done by Edmonds (1957) and Oster (1957). However
recent theoretical developments especially by Devoto
(1966, 1967 b) and much better knowledge of the inter-
particle potentials make it now possible to compute
the coefficient with much greater precision. Recent
work on pure hydrogen, see Brezing (1965) and on
pure helium see Devoto and Li (1968).

For the fully ionized region Landshoff (1949,
1951), Spitzer and Harm (1953), Spitzer (1962) have
shown that because of the long range Coulomb
interaction the coefficient of thermal conductivity
may be computed via the solution of the Fokker-
Planck equation, that is, by dropping in the Boltz-
mann equation all terms representing close encoun-
ters. This procedure is very accurate in a fully ionized
gas but looses its validity at low ionization where
close encounters, because of the short range charged
— neutral and interatomic potentials become more
important.

For the electrically neutral region the procedure
to compute the coefficient of thermal conductivity
usually is to take the Chapman-Enskog-Burnett
theory (Chapman and Cowling, 1952; Hirschfelder,
Curtiss and Bird, 1964; Muckenfuss and Curtiss,
1958). There are two approximations made in this
theory which uses the full Boltzmann equation.
Firstly the departures from the equilibrium distribu-

tion are considered small such that the Enskog series
expansion may be cut off after the first perturbation
term. The resulting system of equations is secondly
solved in terms of a Sonine polynomial expansion,
which is usually carried to the first or second order.
This theory has been applied to a great variety of
gas mixtures and was found to be very accurate
especially at low temperatures. However applied to
an ionizing gas the theory did not agree with the
results of the fully ionized limit. The reason for this
disagreement was found quite recently by Ahtye
(1965) to be due to the fact that the Sonine poly-
nomial expansion was apparently not carried far
enough. Subsequently Devoto (1967a) has shown
that a fourth order approximation did ensure agree-
ment with the Spitzer and Hirm (1953) results in
the case of argon to better than 19%. This fact could
be verified for hydrogen also (see Fig. 3).

Thus a fourth order Chapman-Enskog-Burnett
theory should be quite accurate over the whole range
from the neutral to the ionized region.

2. Equations

According to the Chapman-Enskog-Burnett for-
malism the coefficient of thermal conductivity is
given by

ﬂ. = }'R + }'TR ] (1)

where Ay is the reactive conductivity arising from
the transport of internal energy and energy of ioniza-
tion and Ay the translational conductivity due to
transport of purely kinetic energy.
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a) For the reactive thermal conductivity Devoto
(1967 a) has given the approximate expression for a
pure ionizing gas.

= ANy s Dauss (@)
where Ah = hg + h; — b, is the enthalpy difference
per particle, D ,p the ambipolar diffusion coef-
ficient, o the density, n the number density, T’ the
temperature, k£ the Boltzmann constant, E labels the
electron, 4 the atom and I the ion, m, being the
atomic mass. D 4, is given to close approximation by

Dyuyp=2Dyy, (3)

where D;, is the multicomponent diffusion coef-
ficient. As was found in the case of argon (Devoto,
1967a) and helium (Devoto and Li, 1968) it was
found for hydrogen that setting

Dry=D1y, (4)
the binary diffusion coefficient

2 kT\12 1
o (o) ®)
n\ ) g

where m; 4 is the reduced mass and @{4? the averaged
cross-section (see Section 3) of the IA system,
resulted in an error of less than 19%,.

In order to find an expression for the reactive
thermal conductivity valid for a gas mixture we note
that from Egs. (2) and (5) we may write using the
relations p=m (n4 + ny), ny = ngand my, = m,[2

.1 )1/2 LTEN
km, T® Q&n ’

where x; = ns/(ny + n;) and z, = ny/(n, + n;) are
the relative concentrations of the ions and atoms.

Equation (5) may now be easily generalized for a
second stage of ionization (A4 labeling now the ion
and I the higher ion) and by multiplying with the
fraction of the relative abundance (¢,/2'¢; see Table 3)
for a gas mixture. For the enthalpy only the
translational and ionization energies were taken
into account.

b) The translational thermal conductivity com-
puted with the fourth order approximation in the
Sonine polynomial expansion is given by Devoto
(1966). Because this involves a large amount of
different averaged cross-sections, most of which are
not yet computed for the relevant interatomic
potentials, Devoto (1967b) showed that the expres-
sions may be considerably simplified by using the
fact that during a binary electron-neutral and
electron-ion collision only the momentum of the

QIA =

In= (AR g ( ®)
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electron is appreciably altered, while the electron
velocity, the velocity and momentum of the heavy
particles stay close to their original value. Devoto
finds that to a good approximation one may write

[Arels = [Agls + [Agls» (7)
where [A]; is the electron contribution and [Az], the
contribution of the heavy particles which need only
be carried to the second order.

¢) The electron contribution to the translational
conductivity [Az]; may be written (Devoto, 1967b)

_75n3k 2x kT \1/2 1
[)'E]s - 8 ( my ) qu _ (qn)a/qsa ’ (8)

where m, is the mass of the electron and the quan-
tities g™ are given by

_ 5
gt = 8)/2n% Q&2 + 8,217"0”1
j=

25
(o -5 r2ag),

7
g2 =82 n2 (T 2:2) _ 9 Qazés))

5
+ 8 3 ngn; ©)
i=1
176 315
' (T ;D ——5 Q5P + 5795 — 30 Qg’,n)

= 77
g =8)/2n3 (ﬁ Qa2 _7Qed 15 %264))

5
+ 8 2 mymy
j=1

1225 —1 1) 735 o, 399 g

e L R
— 1,4 1,5

210 g5 + 90 g5 .

The averaged cross-sections Qﬁ’j ® are given in
Section 3 and the n; are the number densities of the
six constituents e, H, He, H, He', He'*. Index 0
labels the electron, 1 the H atom, 2 the He atom,
3 the H* ion, 4 the He™ ion and 5 the He™™ ion.

d) The heavy particle contribution [15], may be
computed in standard fashion (Devoto, 1966).

0. R S
15k (27 k T)12 o a0

- :
U=~ e m
%l 98 VERRRY' ns
0...0  nyf)my---ng/fm; 0
(10)
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where |g| is the determinant of Eq. (10) without the
last row and last column. The 7, are number densities,
m,; the masses and the quantities q;;? are given by

n m,

2 (mg + my)1/2 Q'('f ‘

. {n,. (m )”2 (Oss — 8;1) — M(l - 6”)}
4; =8n ( ) " 25' (m:h-:nz:)"’“
. (5 gev — 3 gy 2)) 0 —0n), @i =
%ij =8m ( )3/2 2 (m:&'—l-m;nz)“”

(6 m + 5 m2) @D — 15 m2 gL + 12 m2 Qi
1 Vil 1 Y41

01
my; qij ?

* (055 — 050) +4m;m, Q(2 2) (8;5 + 6:'1)} . (11)

0 is the Kronecker delta and the averaged cross-
sections are given in Section 3.

3. Averaged Cross-Sections

Given an interparticle potential ¢,;(r) then the
cross-sections Q(’) (£) may be computed (Hirsch-
felder, Curtiss, Blrd 1964, p. 525) via

QV(B) =2 f (1 — cost y (b, B)) b db,
0 (12)
1=1,2,3,...

where b is the impact parameter, E the initial kinetic
energy of the colliding particles 4, j in their center
of mass coordinates. The deflection angle x is given by

dr/r?

26, B)=n— 2bf m (13)

where r,, is the distance of closest approach and @ij
the interparticle potential. The averaged cross-
sections may now be obtained by

2(+1)
EFDICI+1— (-1 ;

oo

Qe (1) = mo? Q&% =

et utl QO (wkT) du, (14)

where w = E[kT and o is a characteristic distance
defined by the potential.

For any type of interparticle potential ¢,; the
averaged cross-sections may be computed with a
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computer program described by Smith and Munn
(1964). However as the g;; are not yet known very
accurately and because their knowledge is only
needed in a certain region around the thermal energy
range it is usually attempted to fit a simple potential
to the true curve. The cross-sections may then be
interpolated out of computed tables for these
potentials. This reduces the amount of numerical
work tremendously. Two potentials were found to
be particularly useful in our work, the exponential
repulsive potential (Monchick, 1959)

p(r) = celo, (15)
and the Morse potential (Smith and Munn, 1964)

20 [
pr)=e (e oI _gemT o) (1)

where ¢ is the energy scale, ¢ the distance scale,
C a parameter and 7, = ¢ (1 + In (2)/C). We had to
extrapolate the Smith and Munn (1964) tables for
the Morse potential. Luckily this extrapolation is
comparatively unambiguous because firstly log Q0%
versus logC and logQ@®.2* versus logC have to be
smooth curves but also 4* = Q@Y% QMYV* versus
logC.

In Table 1 we have given the values of Q@.2%
A*, B*, and C* which have been obtained this way
and augment Table 4 with ¢ = 1.0 of Smith and
Munn (1964). The actual interpolation for different
values O may then follow the procedure prescribed
by these authors.

Table 1. Collision integral extrapolations for the Morse poten-
tial with C = 1.0

T 0e2* A* B* C*

1 3.15 1.26 1.30 0.568
2 1.165 1.32 1.34 0.618
4 0.5143 1.39 1.50 0.651

A ) Electron Contribution

There are two types of collisions involved,
electron-atom and Coulomb collisions.

1. Electron-Atom Collisions

For electron-hydrogen and electron-helium col-
lisions the potential is usually given in the form of
phase shifts from which the cross-section of Eq. (12)
may be computed (Hirschfelder, Curtiss, Bird, 1964,

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1970A%26A.....4..144U&amp;db_key=AST

Vol. 4, No. 1, 1970

p. 675) by

O (B) = 22

2
'

=2: @+ 1)sin® B0y — 8) . (17)

Here §; is the phase shift of the radial wave function
for angular momentum ! and x = (2m, E)'/?[f is the
wave number.

a) H-e Cross-Section

Because the phase shifts are only computed up to
1 = 2 we cut off the series in Eq. (17) after the second
term. For S wave scattering (I = 0) we use the work
of Schwartz (1961), for I = 1 that of Armstead (1968)
and for ! = 2 that of Gailitis (1965). Owing two the
different spin positions in the collision we get triplet
8 = 1 and singlet S = 0 phase shifts for each of which
we have to compute the cross-section via Eq. (17).
The mean cross-section may then be obtained by

Q0 (B) = (§ Mgt (B) + 7 Qe (B)) - (18)

The averaged cross-section may then be computed
with Eq. (14) using 1/2 of a Gauss-Laguerre 64 point
method as suggested by Smith and Munn (1964).

b) He-e Cross-Section

Here we use the phase shifts for /=0, 1,2 of
LaBahn and Callaway (1966) and apply the same
procedure as above. The result was found in perfect
agreement with Devoto and Li (1968).

2. Coulomb Cross-Sections

Here as in the work of Spitzer and Hirm (1953)
a screened Coulomb potential is used, the averaged
cross-sections of which have been computed approxi-
mately analytically by Liboff (1959) and Devoto
(1967a)

4 1 _
Qe =8(s—j:1)bg (lnA -3 27+ w(S))’
S = 1,2,3,-.0,
12 5
geo =ﬁb§@n—’1 —1-25+ (),
s=1,2,3,... 19)

where b, = Z;Z; ¢*/2 kT is the average closest impact
parameter, e the electronic charge in cgs units, Z,
the charge number, ¥ = 0.5772 Euler’s constant,
A = 2d[by, d =) kT|87 n, e? the Debye length valid

8—1

for shielding of both ions and electrons, y(s) = 3, 1/n,
n=1

10*
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(1) = 0. Following Devoto (1967a) we take only
the leading logarithmic term in the bracket at the
right hand side of Eq. (19).

B) Heavy Particle Contribution

Table 2 lists the collisions of heavy particles which
we have to consider.

1. The collisions labeled C are Coulomb collisions
which may be treated using Eq. (19).

2. The collisions labeled X occur exceedingly
rare because the relevant zones of ionization are
well separated. They will be disregarded in our
computations (see Section 4).

3. The collisions labeled N are neutral-neutral
collisions.

Table 2. T'ypes of heavy particle collisions considered. N are
neutral-neutral, I ion-neutral, C Coulomb collisions. X are
collisions which occur exceedingly rare

H He Ht Het He'™*
H N N I X X
He N N I I X
H* I I C C C
Het X I C C C
Hett X X C C C

a) H-H Collision

Averaged cross-sections of these collisions are
given by Vanderslice et al. (1962). We use however
the new computations of Kolos and Wolnjewicz
(1965). For the attractive 1.2 potential we fitted a Morse
potential Eq. (16) with

e=9573eV, C=14124, o= 0.5098 A.

For the repulsive 3% potential we fitted an expo-
nential repulsive potential Eq. (15) with ¢=57.511eV
and ¢ = 0.3671 A.

b) He—He Collisions

There is still a considerable uncertainty about the
1)’ potential (Gilbert and Wahl, 1967). We have chosen
an exponential repulsive Eq (15), fit to the values of
Philipson (1962) with ¢ = 191.47 eV and ¢=0.2578 A
reported by Devoto and Li (1968). This potential fit
agrees well with new computations of Gilbert and
Wahl (1967) while the thermal conductivity com-
puted with it agrees well with measurements of
Collins, Greif and Bryson (1965).
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¢) He—H Collisions

The 2% ground state is repulsive. An exponential
repulsive fit Eq. (15) has therefore been done to the
values of Michels and Harries (1963) with ¢=89.523
eV and o = 0.3082 A.

4. The collisions labeled I are ion-neutral collisions.

If the colliding particles are of the same element
charge transfer has to be taken into account as an
additional interaction process. Cross-sections Qrp
for this are usually much larger than elastic cross-
sections. Mason, Vanderslice and Yos (1959) have
shown that charge transfer does not enter @® of
Eq. (12) for ! even. For ! odd they find

Q" =2Qrz- (20)

Dalgarno (1958) has suggested on basis of theory that
@Qrr may be given over a fairly large range by
approximately

Qra =5 (4 — Blng)? (21)

where A and B are constants and g is the relative
speed of the colliding particles.

This may be integrated analytically (Devoto,
1967a) to give the averaged collision cross-sections.

Q@9 — 4> — ABaz + (%?-) + 25 (Bx—24)
B2 2 S+1 1
+ 2 (%“,51 Ly cZ) (22)

+ 2B+ b - 24) g + (305 )

where = In (4 R), R the universal gas constant, M the
8 +1

molecular weight of the gas, { =} % — % and

n=1

y = 0.5772 is the Euler-Mascheroni constant. For
A and B given in A we have Q9 in A42.

a) H-H* Collisions

The 2X groundstate of H H' is attractive. We
have fitted a Morse potential [Eq. (16)] with &
= 3.52 eV, C = 0.843 and ¢ = 0.5806 A to the values
of Bates and Reid (1968). For the charge transfer
cross-section [Eq. (21)] there are recent theoretical
calculations by Parcell and May (1967) and Smith
(1967). These computations are however in some
disagreement with the experimental results of Fite
et al. (1960) and Fite et al. (1962). Therefore it was
decided to do a numerical fit to these experimental
points with Eq. (21) from which 4 = 29.03 A and
B = 1.27 A was found (see Fig. 1).

Astron, & Astrophys.

log E (eV)

Fig. 1. Charge transfer cross-section @ » for Ht —H collisions

Points are experimental values of Fite et al. (1960) and

Fite et al. (1962). PM and S label theoretical values of Parcell

and May (1967) and Smith (1967) respectively. Drawn curve
is the fit used in our work

b) He—He" Collisions

The elastic cross-sections arise from two equally
probable portions of the 2X state of He He*t. For the
gerade portion a Morse potential fit [Eq. (16)] with
e=27 eV, C =152 and ¢ = 0.728 A and for the
ungerade portion an exponential repulsive fit
[Eq. (15)] with ¢ = 179.7 eV and o = 0.344 A was
given by Devoto and Li (1968) on basis of yet
unpublished work of Gilbert and Wahl (1967). The
total averaged cross-sections may be computed from

Qo9 =5 (@40 + @%). (23)

For the charge transfer cross-section Devoto and Li
(1968) have fitted Eq. (21) with 4 = 20.46 A and
B = 0.947 A to the values given by Dalgarno (1958)
at 0.1 eV and Cramer and Simons (1957) at 5eV.

¢) He—H" Collisions

The ground state 12 of He H™ is attractive. There
are two recent calculations of this potential by
Wolniewicz (1965) and Peyerimhoff (1965) the first
one being probably the better according to Michels
(1966). After subtraction of E, Wolniewicz (1965)
is between 5 to 69 higher. However his computations
go only to r = 1 A. Thus we use Peyerimhoffs values
in our work. A Morse potential fit [Eq. (16)] with
e=1944¢eV, C=1460 and o=0.5222A was
obtained. Charge transfer needs not to be considered
in this collision because of the high binding energy
of the electron to the He atom.
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4. Tonization

For the stellar atmosphere we take the Goldberg-
Miiller-Aller (1960) abundances by number of
12 elements. For the He abundance we use the two
values 109% and 159, of the H abundance. The values
taken for the 13 elements are shown in Table 3.

The ionization was computed in local-thermal
equilibrium using the Saha equation (Unsold, 1955,
p- 79) and taking the lowering of the ionization poten-
tial into account (Griem, 1964, p. 139).

Table 3. Relative abundances by number of 13 Elements con-
sidered
Powers of ten are in brackets. The elements heavier then He
are important only so far as they furnish free electrons at the
low temperature range

Element Abundance & Element  Abundance &;
H 1 Mg 2.5 (—5)
He 0.1, 0.15 Al 1.6 (—6)
c 5.25 (—4) Si 3.2 (—5)
N 9.55 (—5) S 2.0 (—5)
0 9.12 (—4) Ca 1.4 (—6)
Ne 5.02 (—4) Fe 3.7 (—6)
Na 2.0 (—6)
at7y
PN
_e9
emsK
o*BF
wtSh
/
44 |‘.).|.|.|.|.|.] AU S R AP P R T T
a B a K=
=t TIK) ot>

Fig. 2. Thermal conductivity versus temperature of

pure He with the logarithm of the gas pressure as

parameter (drawn). The translational contribution is

shown dashed. The crosses are values given by Devoto
and Li (1968)
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A mixture of electrons and 13 elements with their
respective stages of ionization gives a tremendous
amount of different types of binary collisions to
consider. Fortunately because of the low abundance
we may neglect all collisions except those of electron,
H, He and their ions. In addition we have disregarded
any species which has a number density of 10-3 of the
total number density of the gas. This reduces the
order of the determinant in Eq. (10) in almost all
cases. The sole purpose of retaining the other
elements is that they provide electrons for thermal
conduction.

b. Results

Figure 2 shows the thermal conductivity in
erg/cm s °K for pure He as function of temperature 7'
with the logarithm of the gas pressure p as parameter.
For every value of the gas pressure we have shown
the total thermal conductivity (drawn) and the
translational contribution (dashed). For comparison
the values of Devoto and Li (1968) computed at
p=108dyn/cm?® are given. This illustrates the
uncertainty in the basic data. At low temperatures
Devoto and Li have taken for the He—He interaction
an exponential repulsive [Eq. (15)] fit with e=196 eV

°+7_,.,.|.,.,.|...‘ T T T[T

hN

erg
cmsK |

s

ALY

=

H

LJLJ.I.l.lLI . I A NI TN
4

= T %) <+
Fig. 3. Thermal conductivity versus temperature of pure
hydrogen with the logarithm of the gas pressure as parameter
(drawn). The translational contribution is shown dashed.
The crosses are values computed with the expressions of
Spitzer and Harm (1953)

ﬁ+3 | -
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H+10% He L H+15%He 4
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Fig. 4. Thermal conductivity versus temperature of a mixture

having the Goldberg-Miiller-Aller (1960) abundance and 109,

He with the logarithm of the gas pressure as parameter
(drawn). The translational contribution is shown dashed

and ¢ = 0.2368 A. This results in an uncertainty
of the coefficient of thermal conductivity of ~ 18%,
due to the incomplete knowledge of the He—He
interaction.

In the ionizing region the difference is much larger
mostly because Devoto and Li used the full expres-
sions [Eq. (19)] for the Coulomb average cross-
sections. Another difference stems from the different
extrapolation of the Morse potential for the He—He*
cross-section. In addition there is the theoretical
uncertainty in the computation of the reactive
conductivity. This will certainly increase the 359%,
originating from uncertainty in the averaged cross-
sections alone.

Figure 3 shows the thermal conductivity in
erg/em s °K for pure hydrogen. A comparison with
Brezing (1965) shows his values in error by about a
factor of 3 at low temperatures. A comparison with
Vanderslice et al. (1962) however shows a good
agreement (109%), the difference being due to the
different potential fit in our computation. Brezing
(1965) has not taken a reactive contribution into
account. For the fully ionized region we have made
a comparison with Spitzer [1962, Eqs. (5—47)]. His
values K = ¢d; K; are shown as crosses. The

T ()

Fig. 5. Thermal conductivity versus temperature of a mix-
ture having the Goldberg-Miiller-Aller (1960) abundance and
15%, He with the logarithm of the gas pressure as parameter
(drawn). The translational contribution is shown dashed

agreement is essentially complete (0.5%) for the
purely electronic contribution [Ag]s, the heavy ion
contribution [1y], adds a small amount, such that
our total values are 2% above Spitzer’s.

Figures 4 and 5 give the thermal conductivity
for a stellar atmosphere with 10% He and 15% He
respectively.

Acknowledgements. I want to thank very much Prof.
L. Oster of JILA who has given the important stimulus for
this work, and Prof. S. Geltman of JILA for providing me
with phase shift data. Some of this work was started at the
University of Tiibingen under the directorship of Prof.
G. Elwert. Most of all I gratefully want to thank for the
encouragement and generous provision of funds for a
4 months visit to Boulder given to me by Prof. H. Haffner
of this Institute.

References

Ahtye,W.F. 1965, NASA Technical Note D-2611.

Armstead, R. L. 1968, Phys. Rev. 171, 91.

Bates,D.R., Reid, R.H.G. 1968, Adv. in Atom Molecular
Phys. 4, 13.

Brezing,D. 1965, AIAA-Journ. 8, 1422.

Chapman, 8., Cowling, T.G. 1952, The mathematical theory
of non-uniform gases, Cambridge University Press,
Cambridge.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1970A%26A.....4..144U&amp;db_key=AST

FTI70ARA © C .47 TT44U0

Vol. 4, No. 1, 1970

Collins,D.F., Greif,R., Bryson,A.E.
Mass. Transfer 8, 1209.

Cramer, W.H., Simons,J.H. 1957, J. Chem. Phys. 26, 1272.

Dalgarno,A. 1958, Phil. Trans. A 250, 426.

Devoto,R.S. 1966, Phys. Fluids 9, 1230.

Devoto,R.S. 1967a, Phys. Fluids 10, 354.

Devoto,R.S. 1967b, Phys. Fluids 10, 2105.

Devoto,R.S., Li,C.P. 1968, J. Plasma Physics 2, 17.

Edmonds,F.N. 1957, 4p. J. 125, 535.

Fite,W.L., Smith,A.C.H., Stebbings,R.F.
Roy. Soc. A 268, 527.

Fite, W.L., Stebbings,R.F., Hummer,D.G., Brackmann,
R.T. 1960, Phys. Rev. 119, 663.

Gailitis, M. 1965, Fourth International Conference on the
Physics of electronic and atomic collisions, Université
Laval, Québec, p. 10.

Gilbert, T.L., Wahl,A.C. 1967, J. Chem. Phys. 47, 3425.

Goldberg, L., Miiller,E.A., Aller, L.H. 1960, Ap. J. Suppl.
5, 1.

Griem,H.R. 1964, Plasma Spectroscopy, McGraw-Hill,
New York, London.

Hirschfelder,J. 0., Curtiss,C.F., Bird,R.B. 1964, Molecular
theory of gases and liquids, John Wiley, New York,
London.

Kolos, W., Wolniewicz,L. 1965, J. Chem. Phys. 43, 2429.

LaBahn, R. W., Callaway,J. 1966, Phys. Rev. 147, 28.

Landshoff,R. 1949, Phys. Rev. 76, 904.

Landshoff,R. 1951, Phys. Rev. 82, 442.

1965, Int. J. Heat.

1962, Proc.

Thermal Conductivity in Stellar Atmospheres I. Without Magnetic Field 151

Liboff,R.L. 1959, Phys. Fluids 2, 40.

Mason,E.A., Vanderslice,J.T., Yos,J.M.
Fluids 2, 688.

Michels,H.H. 1966, J. Chem. Phys. 44, 3834.

Michels, H. H., Harris,F.E. 1963, J. Chem. Phys. 39, 1464.

Monchick,L. 1959, Phys. Fluids 2, 695.

Muckenfuss,C., Curtiss,C.F. 1958, J. Chem. Phys. 29, 1273.

Oster,L. 1957, Z. Astrophys. 42, 228.

Parcell, L. A., May,R.M. 1967, Proc. Phys. Soc. 91, 54.

Peyerimhoff,S. 1965, J. Chem. Phys. 43, 998.

Phillipson,P.E. 1962, Phys. Rev. 125, 1981.

Schwartz,C. 1961, Phys. Rev. 124, 1468.

Smith,F.J. 1967, Proc. Phys. Soc. 92, 866.

Smith,F.J., Munn,R.J. 1964, J. Chem. Phys. 41, 3560.

Spitzer,L. 1962, Physics of fully ionized gases. Interscience
Publishers, New York, London.

Spitzer, L., Harm,R. 1953, Phys. Rev. 89, 977.

Unsold,A. 1955, Physik der Sternatmosphéren, Springer,
Berlin.

Vanderslice,J.T., Weissman,S., Mason,E.A., Fallon,R.J.
1962, Phys. Fluids 5, 155.

Wolniewicz, L. 1965, J. Chem. Phys. 43, 1087.

1959, Phys.

P. Ulmschneider

Astronomisches Institut und Sternwarte
der Universitat Wiirzburg

BRD-8700 Wiirzburg, Biittnerstrafe 72
Germany

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1970A%26A.....4..144U&amp;db_key=AST

