FT97AARA © C-127 7 297U

Astron. & Astrophys. 12, 297 —309 (1971)

On the Computation of Shock Heated Models
for the Solar Chromosphere and Corona

P. ULMSCHNEIDER
Astronomisches Institut und Sternwarte der Universitit Wiirzburg

Received January 4, 1971

Theoretical models are computed for the chromosphere and corona starting at a height of 800 km. The
observational chromospheric models can be reproduced very well up to 1400 km assuming weak shock waves
with periods of around 27 s. At greater heights the Ho and Lyman continuum radiation loss regions can pres-
ently not be treated adequately. The observed Ly« and XUV line fluxes are used to extend the theoretical
model computation into the transition region and lower corona. Acoustic waves of periods between 100 and
200 s are shown to develop into strong shocks in the lower corona. The heating of these waves determines the
theoretical models up to the coronal temperature maximum.

The notion that short period waves of around 27 s heat the chromosphere while long period waves of around
100 to 200 s heat the corona was found to be consistent with the acoustic wave fluxes and frequencies of spectra

given by Stein (1968).
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1. Infroduection

In recent years increasingly reliable chromo-
spheric models derived from eclipse as well as UV and
sub mm observations were published (Thomas and
Athay,1961; Gingerich and de Jager, 1968; Athay,
1969; Noyes and Kalkofen, 1970; Gingerich et al.,
1971). On the other hand theoretical computations of
Uchida (1963), Kuperus (1965), Ulmschneider (1967),
Kopp (1968) and de Loore (1970) show that models
of the outer atmosphere of stars may be constructed
on a purely theoretical basis. Similarly to the com-
putation of model atmospheres for the photospheric
layers one hopes to compute models of the chromo-
sphere and corona for an arbitrarily given star.
However this problem is still far from a satisfactory
solution. The reason for this is the fact that the
physics of the outer layers of a star is much more
complicated than in a typical stellar atmosphere
problem and more-over escaped observation until
recent advances in UV and sub mm techniques.

First the question of the heating mechanism is
still not settled satisfactorily. There is strong evidence
for the current opinion that dissipation of waves
emanating from the convection zone is the dominant
heating mechanism for the chromosphere and corona.
This does not mean however that other mechanisms
can be completely excluded. But even granted the
shock heating mechanism the uncertainty is very

large of how much mechanical flux ultimately is
available to heat the chromosphere and how to
compute it from a given convective stellar atmo-
sphere. Ulmschneider (1970) has shown that possibly
more than 90 percent of the sound energy generated
in the convection zone might be lost by radiation
before this energy is available for chromospheric
heating.

Second there is the question of space and time
dependence. Observations in white light or He show
a multitude of transient and space dependent pheno-
mena on the solar surface. Further outward towards
the corona, radio and XUV observations show
the sun only in certain hot spots. Therefore the
question arises up to what height the sun is still
representable by a one dimensional depth variable
and from what height upwards we do need three or
more variables to characterize the atmosphere.

Third the question of radiation loss is vastly more
complicated than in a typical stellar atmosphere
problem. Aside from chromospheric H™ loss the
Lyman continuum, the Lyman and Balmer lines
must be treated with a full non-LTE method. This
means that the radiation loss which sensitively bal-
ances shock heating and thermal conduction at every
point is not dependent on the local values of temper-
ature and pressure but depends in a complicated way
on the atmosphere as a whole. This is complicated
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even more by the inhomogeneous structure of the
atmosphere.

Nevertheless significant progress can be made by
tackling one problem at the time. In the lower
chromosphere, extending over the region from the
temperature minimum to the onset of the transition
layer where the temperature in a few scale heights
jumps to essentially coronal temperatures, the
radiative loss can be fairly well (Athay, 1966) re-
presented by the predominant contributor, the H™
continuum loss. This loss might be treated in LTE
and therefore easily computed as a function of
temperature and pressure at every height. With the
assumption of only a variation with height and using
the shock heating mechanism a chromospheric model
may be computed by balancing in the energy equa-
tion heating against radiative losses. This model is
valid as long as H- is the main source of radiative
loss. It can be brought into close agreement with
recent observational chromospheric models with
very reasonable assumptions about mechanical
energy fluxes and frequencies of the shock waves.

Extending the model of the lower chromosphere
further upwards we enter the non-LTE hydrogen
emission region. Although a program to compute the
non-LTE radiation loss on basis of a given temper-
ature and pressure versus height relation was kindly
given to me by W. Kalkofen of the S.A.O. the
question of how to correct temperature and pressure
to balance heating and cooling was too difficult to
answer. It was thus necessary to approximate the
hydrogen radiation loss values derived from observa-
tion of the Ly and Ly continuum fluxes of the sun.
With this it was possible to extend the model into
the lower corona. The extension to the maximum of
the coronal temperature was made by considering the
balance of the heating mechanism which consists here
of strong shock waves and the main cooling mecha-
nism which is thermal conduction.

Models computed this way necessarily are not
able to predict any inhomogeneous structure but
may serve to give an idea of the average behavior of
temperature and pressure along a streamer and finally
give insight into what problems must be tackled next
to improve our knowledge of how to compute models
for an outer stellar atmosphere.

2. Heating Mechanism
A. Acoustical Wave Flux

All recent chromospheric models show after a
minimum of the temperature (at about 550 km above
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Tso00 = 1, Gingerich et al., 1971) a rise of temperature
which is thought to be caused mainly by the dissipa-
tion of compressional waves. This was first suggested
by Biermann (1946). However the dissipation of
these waves which, as is fairly certain by now are
sawtooth type shock waves (Kuperus, 1969), is by no
means the only mechanism to increase the temper-
ature minimum.

Both the Cayrel mechanism and line blanketing
(Athay, 1970) may increase the temperature after
the temperature minimum considerably as a conse-
quence of the conservation of radiative flux. Never-
theless one expects that a few hundred km past the
temperature minimum mechanical heating will
certainly be the sole cause for the temperature rise.

An important fact as it turns out is that the com-
pressional waves which are produced in the convec-
tion zone do not arrive as a monochromatic wave but
rather arrive in form of a frequency spectrum with a
bandwidth of about two orders of magnitude. Stein
(1968) has computed frequency spectra of acoustic
waves produced in the convection zone based on
various theoretical assumptions. For an exponential
space spectrum with an exponential frequency
factor (EE spectrum) of the turbulence he finds a
maximum flux at a period of 38 s. The region where
the flux is 10 percent of the maximum value extends
from 16 s to more than 210 s. The total flux integrated
over frequency is wFy,q = 9.9 X 107 erg/ecm? s. For
the Spiegel spectrum with an exponential frequency
factor (SE spectrum) he found 29 s for the maximum
and 8 s to 157 s for the band width. The total flux is
T yeen = 5.5 X 107 erg/em?s. For an exponential
space spectrum with a gaussian frequency factor
(EG spectrum) a maximum of 81 s and 35s to 393 s
for the band width was found. The flux 7w Fyeq
=17.2 x 108 erg/cm? s for this spectrum is quite low
and most likely not sufficient to balance the radiative
loss of chromosphere and corona of about 3 x 108
erg/cm? s (Ulmschneider, 1970). It seems therefore
reasonable to disregard this spectrum.

Propagating outward towards the temperature
minimum the acoustic waves are focused by the
decreasing index of refraction into predominantly ver-
tical direction. Through the temperature minimum
only those waves whose frequency is above the cut-off
frequency are allowed to pass. The cut-off frequency
is (Hines, 1960, p. 1466)

Vo= . )

Here y is the ratio of specific heats, g the gravitational
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acceleration and ¢ the sound velocity. With ¢ = 6.7
x 10% cm/s for a temperature of Ty = 4200°K we
have P,=1/y, = 184s. This shows that both the
EE and the SE spectra are easily transmitted.

As Eq. (1) was derived under the assumption of
linearized equations we have to check whether
indeed e.g. the density perturbation g’ of the wave
is small against the equilibrium density g, of the
atmosphere. The flux of acoustic waves may be
written (Landau, Lifshitz, 1959, p. 250)

7Py =000 (£) - @)

With gy=3.5 x10—°g/cm3and ¢=6.7 X 105cm/s we find
0o ¢® = 1.1 x 10° erg/cm?s. As we have seen above
the total mechanical fluxes of the EE and SE spectra
are far below this value, which is even more so as
radiative losses will have substantially decreased the
total mechanical flux at this height. It is thus entirely
justified to use the linear theory result.

Summing up we may conclude that a large source
of acoustical energy is available and this energy is
expected to reach the chromosphere. There is how-
ever the question of how much energy remains to heat
the chromosphere and corona and in what form this
heating is actually done.

An acoustic wave travelling outward into the
optically thin region towards the temperature mini-
mum will suffer besides negligible amounts of viscous
losses strong radiative losses. An idea of the import-
ance of these losses in the upper photosphere may be
obtained by computing the radiative relaxation time
T, that is the time after which a temperature dif-
ference of AT would cool to zero if the cooling rate
were constant.

AT _ 52R 3
R= TnG—jy — 167" ° ®)

Here ¢, = 5/2 R/u is the specific heat, j the emission
coefficient, # the Rosseland mean opacity and ¢ the
Stefan-Boltzmann constant. Table 1 gives values for
Ty for AT = 1°K as given by Noyes and Leighton
(1963). Note that instead of ¢, we took here ¢,
because temperature perturbations are expected to
cool in pressure equilibrium with the surroundings.
How much energy this radiative loss ultimately
takes out of the wave can only be answered by a
detailed time dependent computation. However, by
the amount of radiative flux produced by chromo-
sphere and corona after the temperature minimum
which is roughly 3 x 10°erg/cm?s (Ulmschneider,
1970) only 3 to 5 percent of the original flux finally
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Fig. 1. Profile distortions of sinusoidal waves with different

frequencies but identical initial flux after the same time

interval. It is seen that the high frequency wave developes
into a shock wave much more rapidly

Table 1. Radiative relaxation time Ty as function of height
after Noyes and Leighton (1963) multiplied by 5/3

Ts000 height (km) Tz (s)
1 0 1.6
0.1 140 16
0.01 260 58
0.001 396 167

arrive to balance the energy losses of the higher
layers.

B. Shock Wave Formation and Heating
of the Chromosphere

Decreasing radiative losses force the acoustic
density and velocity perturbations to grow because
of energy conservation and as compression waves
travel faster than expansion waves the profile
distorts and forms a shock wave. In this process the
frequency of the wave is not altered and a sawtooth
profile results.

The height at which the shock wave is fully
developed depends on the initial mechanical flux and
on the radiative losses. Of greatest importance for
the heating of the outer solar atmosphere is however
the fact that the height of shock formation depends
sensitively on the frequency of the acoustic wave.
High frequency waves form shocks at considerably
shorter space distances than low frequency waves.

This can be seen as follows. Consider waves of
different frequency but identical initial flux. Because
e.g. the velocity perturbation v is for a given flux
(Eq. (2)) independent of frequency, the profiles of
the waves distort at every frequency with the same
rate according to the equation (Landau and Lifshitz,
1959, p. 373)

u=c+5p+1)o, @
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where % is the total velocity at a point in the wave.
The effect of this equal rate of profile distortion on a
sinusoidal profile is shown in Fig.1l. In the high
frequency wave the profile distorts to almost a shock
wave because of the short wavelength. For the low
frequency wave the same profile distortion does not
appreciably alter the sinusoidal wave form.

Let us consider the EE or SE flux spectra. We
would expect the high frequency part of the spectrum
to develop into shocks earlier than the low frequency
part by a considerable height interval. If we suppose
the region before the temperature minimum to be
dominated by radiative losses (Table 1) such that no
shock waves are able to develop we may obtain an
estimate of the height of shock formation using the
results of a nonlinear computation of Bird (1964). He
shows for an atmosphere with a constant positive
temperature gradient of 33 K/km and an initial
sound velocity of 6 km/s that an acoustic wave of
300 s period starts to form a shock discontinuity after
1100 km while transforming into a fully developed
wave at a considerably greater distance. This case
is for a flux at the temperature minimum of 2 x 10?
erg/em? s (with gg = 3.5 x 10~° g/em?) which is very
large. In the case with a flux of 2 X 108 erg/cm? s
which is probably too low the shock formation
distance is 4000 km. The shock formation distances
are found to be proportional to the wave period P.
If we assume a wave period of roughly one tenth of
Bird’s value we obtain a distance of 110 to 400 km or
about the height of 700 to 800 km in the model of
Gingerich et al. (1971). The assumption of shock
heating shortly after the temperature minimum is
therefore entirely consistent with what we expect for
the height of shock formation of high frequency waves
and with the frequencies offered by the SE and EE
spectra.

Because in the SE and EE spectra the initial
wave fluxes of the very high frequencies are (periods
of about 8 to 20 s) quite small and thus their height
of shock formation is great, we expect a mean fre-
quency between the maximum and the short end of
the frequency band to first develop into a shock
wave. This would be between 20 and 38 s for the EE
spectrum and between 20 and 29 s for the SE spec-
trum. Ulmschneider (1970) compared radiative
losses computed on basis of empirical solar models
with the dissipation of shock waves of different flux
and frequency. It is encouraging that he was able
to conclude that radiative losses could be balanced
by shock dissipation only by assuming a wave period
of around 10s. In the present work wave periods
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of between 25 and 30 s are found in comparison with
the newest empirical solar models (see Fig. 2).
Summing up we may conclude that the heating
mechanism for the chromosphere up to the transition
layer is probably the dissipation of weak (because of
the flux) sawtooth type shock waves with a period of
around 30 s with an uncertainty of about a factor
of 1.5. Because more and more lower frequencies
develop into shocks we expect a lowering of the
frequency of the shock waves with increasing height.

C. Heating of the Corona

The question of heating of the corona is less well
understood than the heating of the chromosphere.
The low frequency part of the EE and SE spectra as
we have seen in Bird’s (1964) computation will
develop into shock waves at considerable heights.
Radiative losses will aside from the losses before the
temperature minimum be probably of some — pos-
gibly minor — influence in the Balmer emission
region. The Lyman emission however is balanced by
thermal conduction such that very little of the
observed flux is due to a direct wave loss. We expect
thus that the wave which penetrates the Lyman
region of roughly 10 km in about 1s suffers very
little radiation losses. In Table 2 we have computed
the strength 4 of a shock wave of 3 x 105 erg/em?s
which is a lower estimate of the radiation flux of the
transition layer and corona due to Lyec and all other
emitters. This flux is certainly an underestimate of
the actual mechanical flux needed to eventually
balance the radiation flux because also strong flux
losses occur in order to balance reflection (see Fig. 5).
For the definition of 7 see Eq. (6).

We invariably find (and with inclusion of reflec-
tion even more so) that the shock waves are strong,
justifying previous strong shock computations of
Kuperus (1965), Ulmschneider (1967), Kopp (1968).
This is what we expect from a wave which loses little
energy by radiation. Finally let us consider that only

Table 2. Strength 7 of a shock wave which carries a flux of
3 X 10° erg/cm? 8 in the corona. The sirength 7 indicates strong

shock waves
T (°K) ¢ (cm/s) » (dyn/em?) 7
1.2-105 5.2-108 1.1-101 1.96
4.2-108 9.6 - 108 1.1-10-1 1.45
8.9 - 105 1.4-107 1.1-101 1.21
1.6 - 108 1.9-107 1.1-10 1.05
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about 1 percent of the initial mechanical flux (1/2
total flux) produced in the convection zone is needed
to heat the corona and transition layer.

‘What wave periods do we expect for coronal shock
waves ? First it is clear that waves which develop
into shocks in the chromosphere cannot be considered
as heating agents of the corona, as when a shock is
developed, the wave loses energy very rapidly.
Second because the shock formation distance is
proportional to the period, we expect all of the very
short periods and a considerable part of the periods
greater than 27 s to develop into shock waves in the
chromosphere. Thus there remain for the corona
periods of around 100 s with about an uncertainly
of a factor of 2.

D. The Shock Equation

To determine the amount of mechanical heating
one needs the shock equation which determines the
amount of energy flux carried by the wave and how
this varies as a consequence of dissipation and re-
flection. As we are at the moment unable to do a
computation with an applied frequency spectrum we
assume monochromatic waves representative for the
chromosphere and corona.

For weak sawtooth shocks the mechanical flux
may be written

1 ~
“FMech=ﬁ'ypc772, (5)

where

= 02— 01

T="( < 1 (6)
is the shock strength for weak shocks, g, and g, being
the densities behind and in front of the shock dis-
continuity respectively. p is the gas pressure. The
shock equation may then be written

d_ﬂ_i(_ld_?+ﬂ__§_i‘i_w)
dn 2 c 2¢® dh c ’
()
where v is the frequency of the shock wave. The
dissipation in erg/cm3 s may be given using

dnFy, 7l
T = — (y + 1) - Py » (8)

while the energy loss due to reflection of the wave on
its own temperature gradient is

dnF 1 dc2
T = o ah " Pt - 9)

For the derivation of these equations see Ulmschnei-
der (1970). Equations (5), (8) and (9) may be com-
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bined to give
dnFy 1 de?
b=~ ak Fiteen
12(y + 1) \U/2
— (P @ P2, (10)

In this equation the reflection term (first) and dis-
sipation term (second) taking flux away from the
wave are explicitly separated. As seen in Fig. 3 the
reflection term due to the slow temperature gradient
in the low chromosphere is always small (roughly
20 percent) against the dissipation term.

At this point we have to consider the recent work
of Jordan (1970). He integrated the above equation
in the chromosphere on the basis of recent empirical
solar models using shock wave periods of 200 to 300 s.
From the fact that at greater heights he always
finds %> 1 he concludes that shocks are always
strong in the solar chromosphere. Assuming a fully
developed shock wave of 200 to 300s period at
heights shortly behind the temperature minimum
we could confirm Jordans finding of 4> 1 in our
work. This is due to the fact as seen in Eq. (10) that
because v is small very little flux is taken out of the
shock wave. The near flux conservation situation
leads to a rapid growth of the wave amplitude, that
is strength of the wave. However as shown above a
wave of this frequency is very likely not developed
before the transition region. Moreover Jordans
general conclusion seems not valid for short period
waves either. We have found in our work <1
everywhere in the chromosphere for all periods less
than 100 s. This indicates that Eq. (10) based on the
assumption of weak shocks will be valid for com-
putations in the chromosphere.

For the strong shock waves which are needed in
the corona we may take the equations given by
Ulmschneider (1967). For our computations here we
may in first order neglect the influence of the solar
wind and restrict ourselves to plane geometry.

The neglect of the solar wind in the region before
the coronal temperature maximum may be justified
as follows. At the earths orbit one observes an
average ion flux of 8 x 10%ions/em?s (Ness, 1968).
At the solar surface we obtain from this a mass flux
ou of 3 x 107! g/em? s. With a particle density of
10° to 10® ions/em?® we obtain a solar wind velocity »
of between 1.5 and 0.15 km/s. Thus with a sound
velocity ¢ of 100 km/s the flow Mach number M =u/c
is very small.
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‘We then have for the shock equation

dM, & det | (C(E+0D-1g (1 dy
Bl g 85 )
1 x
~ a
The flux of the strong shock wave is
Py =7(¢— 1) & po i ¥ 12)
and the dissipation rate
dnF,
e = - Pem@ger).  (19)
Here M, is the shock Mach number defined by
U
M,= o (14)

where U is the velocity of the shock front and ¢, the
sound velocity in front of the shock.

For weak shocks M, =1 + & where a < 1.

The connection with 7 is given by

_ 4
=y

For a— 0 the above equations reduce to the ones
for weak shocks.

The quantities ¢, 0, & are defined by

(15)

2yMi—(y—1)

p="T= T (16)
(y+1) M3

O=w-vm+z> an
2M2—2

E=Gr0i, - (18)

For 8,¢,, x see Ulmschneider (1967), i #is a shape
factor.

In these equations the influence of reflection is
not taken into account. It is convenient to integrate
this shock equation and include reflection by writing
an equation similar to Eq. (10) by eliminating M,
numerically out of Egs. (13) and (12). For the
shape factor g # which for sawtooth waves is P/12
we take P/6 where P is the wave period. This is for
the case that an acoustic wave develops into a strong
shock wave with the compression part growing into
a triangular shock and the expansion part being
small.

From this we find

2y _gm-1y
ERARTER 8 (19)

which is solved for M, and substituted into Eq. (13).

7 peoh =
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3. Radiative Loss Mechanisms

The radiative losses in the lower chromosphere
are shown by Athay (1966) to be mainly due to the
H™ ion and the Balmer series of hydrogen. The losses
by the Lyman continuum and the strong radiative
losses due to the Lyman lines of hydrogen govern the
onset and lower part of the transition layer, while the
upper transition layer and lower corona suffer
radiation losses primarily from the lines of highly
ionized metals. For the highest temperatures in the
corona bremsstrahlung becomes more and more
important.

A. H Losses

The total energy loss due to the H™ ion may be
computed under the assumption of LTE (Athay,
1966; Ulmschneider, 1970) using the equation

an

——4nj' (B,(T)— B,(T)) KX dv. (20)
Here as usual B, denotes the Planck function, » the
frequency and KF' the H™ absorption coefficient.
The H~ absorption coefficient was computed with
an approximation given by Gingerich (1964). As the
H~ losses sensitively determine the temperature
behavior of the chromospheric model the integral of
Eq. (20) was computed rather accurately by doing
a 64 Gauss integration cutting off the integration
at a maximum frequency of

Vax = 3.3 x 1017, 1)

For the boundary temperature T, a value of 4200° K
was taken.

B. Balmer Series Losses

For the Balmer series losses Athay (1966b) has
given an approximate formula

I e o (940) Ny O (22)

Here N, is the number density of hydrogen atoms in
the second level, Oy, the rate of collisional excitation
from the second to the third level and <& w,,)
= 4.0 x 10-12 is a mean energy of the Balmer series.
C,3s was computed using the BOW cross section
(Burke et al., 1967). We have

Cw=N, 47m0(

) Vg

° Uzs(E1 (Ugs) +0.148 Uy By (Uzs)) s (23)
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where Uys = Eg yos/kT, ys3 = 5/36, fo3 = 0.6407
is the absorption oscillator strength, N, the electron
density, B, and E;are exponential integral functions
and the rest of the symbols have their usual meaning.

For a given temperature and pressure one can
easily compute N3, the LTE value of the number
density. But in conditions out of LTE we have

N, =b, N¥ (24)
with b, differing substantially from the LTE value 1.
Noyes and Kalkofen (1970) have shown that b,
varies from 1.56 at a height of 801 km over 7595 = 1
to 183 at a height of 1865 km in their empirical solar
model based on Lyman continuum observations.
There is no way of knowing b, beforehand as it is
determined by the temperature structure of the
atmosphere as a whole.

The point-dashed line in Fig. 2 shows the result
of computations with b, = 1 in comparison with the
observed temperature versus height relation of Noyes
and Kalkofen (1970). It is seen that the computed
temperature gradient becomes increasingly smaller
relative to the observed temperature gradient at
about 1300 km. We cut off our computation there-
fore at a specified height Ay;, for which we take 1100km
and continue from there upwards with a constant
temperature gradient. This serves as a very crude
method to correct for the unknown b, factor at
heights up to 1400 km.

C. Lyman Series Losses

For the Lyman series losses one could take, as in
the case of the Balmer series, the approximate for-
mula given by Athay (1966b). However the question
of the departure coefficient b, is much more severe in
this case where b, ultimately becomes very much
larger than b,. To get a reasonable estimate of the
Lyman series losses in spite of this uncertainty about
b, we had to use information from the observation of
the Lyman o line which dominates all other Lyman
series losses. Hinteregger (1961) gives a flux of
7t Fyy = 2.04 X 10° erg/cm? s and Detwiler ef al. (1961)
give a flux of wF;=2.35% 105erg/cm?s at the solar
surface. We suppose that the emission of this flux
occurs over a height interval of D km, the emission
rate rising linearly to a maximum at D/2 and falling
back to zero linearly again. We have then

D). D
daF,, _ A(h—th+7)mkMid'"'2_§h§hMid
“dh Dy. D
(25)
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where hyy, is the height of the greatest emission and

4

A=—rnFy. (26)

For D we usually took 5—20 km and for hyq 1865 to
2200 km see Section 6.

D. The Metallic Line and Bremsstrahlung Losses

For the high temperature region the radiation
losses may be computed following Tucker and Gould
(1966) with the lines published by Pottasch (1964,
1967). However adding up all XUV line fluxes with
shorter wavelength than 1206 A as given by Hall
et al. (1963) we find only a radiative flux of 7.4 x 104
erg/ecm? s. This may then simply be introduced as a
fraction of the Lyman loss in Eq. (25).

Thus the total radiative loss may be written

dnFry _ AnFy- dnFy, = dnF.,  dnFipy
ah —dh T an Tan tT—a - @D
4. Thermal Conduction

In the transition layer thermal conduction serves
as a most effective means to balance radiative losses.
To see the competition of the shock dissipation and
thermal conduction it was necessary to compute in
detail the coefficient K of thermal conduction from
the region of a completely neutral to the region of a
fully ionized gas (Ulmschneider, 1969). We have
taken the values of this coefficient for a mixture of H
and 10 percent He by number. Using thermal con-
duction as a means to balance radiative losses one has
to keep in mind that as we have no external heat
reservoir we need to put in ultimately the radiative
loss in form of mechanical heating by waves travel-
ling out of the convection zone. Thermal conduction
serves simply as a means to transport energy from
the shock heated lower corona to the region of Ly o
radiation loss. Thus the conductive flux

P g = K21 (28)
rises rapidly to a maximum and decreases again when
shock heating takes over, eventually reaching zero
at the height of maximum coronal temperature.

5. Energy Balance and Hydrostatic Equation

In order to construct a theoretical chromo-
spheric model one may neglect at first the influence
of the gas flow due to the solar wind. The justification
for this is that with an ion flux as mentioned in
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Section 2 one may estimate that the heat flux of the
solar wind o w H is only about 2 x 10%erg/em?s.
Here H=5/2RT/u is the enthalpy and T =2
x 108 °K. The flux due to the kinetic energy of the
solar wind is even less than this heat flux. In this case
the continuity equation is fulfilled identically and
Eulers equation is reduced to the simple hydrostatic
equation.

0. (29)
Here p is the pressure, g the density and g the solar
gravitational acceleration.

The importance of wave pressure which arises
from absorption and reflection of wave momentum
may be estimated using

deave — -A- annech
ah o dh (30)

where A4 is a value between 1 for pure dissipation
and 2 for pure reflection. With the results for sz Fyeq,
shown in Fig.3 we find that the wave pressure
gradient is only about 1 percent of the gas pressure
gradient. Thus wave pressure may be disregarded
in the chromosphere. From Eq. (29), knowing o at
a lower point one simply computes p at the higher
point.

The temperature is determined by the energy
balance equation.

anMech dﬂchd - dﬂFm
dh T dh — dh (31)

We have found it necessary to fulfil Eq. (31) very
accurately because wrong use of this equation leads
to great difficulties.

Ulmschneider (1967) and de Loore (1970) have
used this Eq. (31) in the form valid for cases with
solar wind flow

ar 7o
dr KT
{FLOW ~ DISS+ RAD + 2 7, 5/2%} . (32)

Aside from the fact that the 7%/ behavior of the
coefficient of thermal conductivity is used, valid only
in the fully ionized region, this Eq. (32) is correct.
However one has to take great care to use this
equation in the lower chromosphere. At these heights
the values of the radiative flux RAD and the mechan-
ical flux DISS are by a factor of up to 105 greater
that the remaining conductive and solar wind fluxes.
Equation (32) solves for a small term being the result
of the cancellation of two very large terms. In the
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works of Ulmschneider (1967) and de Loore (1970)
these large terms were not properly cancelled and
therefore huge temperature gradients resulted.

This difficulty was avoided in Eq. (31) by starting
with a balanced initial condition and subsequently
balancing this equation to an accuracy of 10-8 of the
largest term. The procedure to do this was to guess a
temperature which overfulfilled Eq. (31) then to
search for another temperature which underfulfilled
Eq. (31) and finally to use the extremely fast Aitken
interpolation scheme (Abramowitz and Stegun, 1964,
p. 879). The target accuracy was usually reached by
solving Eq. (31) seven times.

This gives the temperature at the higher point.
Repeating with the new pressure and temperature
the above process we step through the whole atmo-
sphere.

6. Results and Discussion
A. The Chromosphere

Because the acoustic waves suffer radiation
losses it is uncertain how much energy finally ends
up in a fully developed shock wave at a certain
height. We assume that at an initial height for which
we take 800 km above 75y =1 temperature and
pressure are given by an empirical model. This height
is some distance away from the temperature mini-
mum such that we may expect shock heating to be
the sole heating mechanism. Likewise the departure
from LTE for the second hydrogen level is small.
This indicates that the Balmer series losses are
negligible against H™ losses (see Fig. 3). Taking now
the wave period P = 1/» as a free parameter we may
construct a series of models of different periods by
integrating Egs. (10), (29) and (31). The initial
strength of the wave is computed by requiring that
shock heating is exactly balanced by radiation loss.
The initial shock strength is therefore

__( 12 dnFy )1/2
T=\o+hpy  dh

Integrations performed are shown in Fig. 2 based on
the Noyes and Kalkofen (1970) model. It is seen that
a wave period P of around 25 s described best the
observed temperature versus height relation at
heights less than 1400 km. A similar computation
using the model of Gingerich ef al. (1971) shows a
wave period of around 30 s. Note that the temper-
ature gradients are constant after 1100 km in order
to account for the unknown b, factor in the Balmer
emission. The decrease of the agreement of theore-

(33)
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Fig. 2. Temperature 7' versus height % for theoretical models

with the shock wave period as free parameter. Values

indicate periods in s. Dots give the observational model of

Noyes and Kalkofen (1970). The influence of changing the

height of constant temperature gradient is shown dashed.
An LTE model is shown dash-point-dashed

tical and observed curves is due to the crudeness of
the approximation of the Balmer losses and also to
the fact that longer period waves which by now have
developed into shocks are not taken into account.
The dashed curves in Fig. 2 show the influence of
lowering the point at which we continue with a
constant temperature gradient. The dash-point-
dashed curve in Fig. 2 shows a theoretical model for
which the H™ and Balmer losses are in LTE and no
adjustment is made for b,.

In Fig. 3 the total radiation loss (Rad), H™ loss
(H"), Balmer loss (Ba), mechanical heating (Mech),
as well as mechanical flux (Pfm), shock strength 7
and gas pressure p are shown for a wave with 25s
period and an initial point from Noyes and Kalkofen
(1970). It is seen that the shock strength 7 is always
<1. The curve labelled A4/B is the ratio of the first
over the second term in Eq. (10). This shows that
the reflection part of the mechanical flux loss is much
less than the dissipation part which is a consequence
of the slow temperature gradient in the chromo-
sphere. It is seen that the total radiation losses (Rad)
is balanced exactly by mechanical heating (Mech)

Fig. 3. Total radiation loss (Rad), H~loss (H™), Balmer
loss (Ba) mechanical heating (Mech), mechanical flux (Pfm),
shock strength 7, gas pressure p, departure from LTE
coefficient b, for the second level of hydrogen, non-LTE
Balmer losses (Ba-NLTE) and non-LTE radiation loss
(Rad-NLTE) as well as the ratio (4/B) of reflection over
dissipation in Eq. (10) as function of height 4. The model is
for a shock wave of 25 s period. The initial point was taken
from Noyes and Kalkofen (1970)

up to 1100 km. Because at heights above 1100 km
the temperature is fixed by the constant temperature
gradient, heating and cooling are not balanced.

In addition we have plotted in Fig. 3 the depar-
ture coefficient b, taken from Noyes and Kalkofen
(1970). The resulting Balmer loss (Ba-NLTE) is
shown dashed. This changes the total radiation loss
curve into the dashed curve (Rad-NLTE). It is found
that this change amounts to an additional flux of
3 x 10°% erg/cm? s at about 1000 km. As this can be
taken out of the shock wave of 25 s period only with
difficulty it is suggestive to assume that this flux
becomes available for heating by longer period waves
which have developed into shock waves in the height
interval between 900 and 1000 km.

B. Transition Layer
and Constant Conductive Flux Region

The transition layer according to Lyman con-
tinuum observations takes place at about 1800 to
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Fig. 4. Inverse temperature gradient log % versus

temperature log 7' for theoretical models with a total
Ly & and XUV flux of 3.1 x 10° erg/cm? s. Different models
are labelled by the emission interval of Ly « in km. Line obser-
vations given by Dupree and Goldberg (1967) are shown.
Si lines are shown by rectangles, O lines by circles and Fe
lines by triangles. The dash-point-dashed model is an
extension of the model of Gingerich et al. (1971) with a flux
of 4 X 10° erg/fem? s

2200 km (Noyes and Kalkofen, 1970; Gingerich et al.,
1971). In Figs. 2 and 3 we have shown that given the
right flux and wave period a shock wave may easily
balance a radiation loss of a few times 10—3erg/cm3 s
in the chromosphere if the energy loss varies not too
rapidly with height. In addition to this a lot of
mechanical energy becomes available through the
shock formation of waves of longer and shorter
periods. Thus it might be reasonable to assume that
up to the point where the optical thickness of the
Lyman « line gets small enough so that strong Lye
losses suddenly occur the radiation losses are still
balanced by shock dissipation. The onset of Ly«
losses however, through which in a distance D of
about 5 to 20 km a flux of 2.5 x 105 erg/cm? s with
a peak loss rate of around 5 x 10~ erg/em? s is
emitted, is certainly too rapid for shock dissipation.

At this point thermal conduction enters as a
means to balance the radiation loss. Figures 4 and 5
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show the results for models which start with the
initial point of Noyes and Kalkofen (1970), a period of
25 s for the chromospheric shock waves and have a
combined Ly« and XUV line flux of 3.1 x 105 erg/
cm? 8. The height of greatest loss is at 1865 km.

Figure 4 shows the inverse temperature gradient
as a function of temperature with XUV line obser-
vations given by Dupree and Goldberg (1967). We
have however used a different oxygen abundance of
log 4o = — 3.23 given by Lambert (1968) and a silicon
abundance of logdg = —4.45 given by Lambert
and Warner (1968). For the iron abundance we took
the values log Ay, = —4.40 given by Garz et al. (1970)
(open triangles) and log Ay, = —4.70 given by Aller
(1970) (filled triangles).

First, the lowest temperature silicon point is far
away from the decreasing part of the theoretical
curve. This comes from the fact that we have used a
constant temperature gradient from 1100 km up-
wards as an approximation for the Balmer losses.
Comparison with the observed temperature behavior
(see Fig.2) shows that actually the temperature
gradient is greater at a greater temperature im-
mediately before the Lyo region. This shows that a
better treatment of Ha and Lyman continuum losses
would bring observation and theory to closer agree-
ment.

Second, models for which the height of the maxi-
mum emission is raised to Aymg= 2200 km from
hyig = 1865 km give exactly the same temperature
gradient curve in Fig. 4. This is expected in models
of identical conductive flux in a temperature gradient
versus temperature plot considering the fact that
the coefficient of thermal conductivity is quite
insensitive to pressure.

Third, the influence of changing the emission
interval D in Eq. (25) on the models is shown in the
lower left hand side of Fig. 4. The curves are labelled
by the emission interval D in km. It is shown that
the smaller the emission interval the larger the
temperature gradient. This is in agreement with the
expectation that a larger emission rate per cm? leads
to a larger curvature and larger steepness in the
temperature versus height curve. Comparing the
theoretical curves with the oxygen line observations
we conclude that the emission interval is between 5
and 20 km.

Fourth, immediately adjacent to the Lya region
the constant conductive flux region is shown by the
straight portion of the models in Fig. 4. With the
temperature dependence K = K, T'%/2 of the coeffi-
cient of thermal conductivity for a fully ionized gas
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Eq. (28) may be written approximately

ar
nFyy+ mFxyy =7 Foona =Ko T2 7= . (34)

Thus we have a —% ~ T-5/2 behavior in agreement

with observations (Athay, 1966a; Dupree Goldberg,
1967). The best fit of a conductive flux constant
temperature profile to the observations is obtained
for a flux of 6 x 10%erg/ecm?s for the Dupree and
Goldberg (1967) abundances. This flux must be
reduced as shown in Fig. 4 to about 4.5 x 105 erg/
cm? s because of the new oxygen abundance Lambert
(1968). The difference between our models with a
flux of 3.1 x 105 erg/em?s and the observed flux
amounts to a difference in the silicon abundance of
about A log Ag; = 0.15. This is slightly above the
uncertainty in the silicon abundance of less than
+0.10 (Lambert, 1968) combined with the un-
certainty in the oxygen abundance of +0.05 (Lam-
bert and Warner, 1968). In view of the fact however
that these uncertainties are probably overestimated
we see a small but significant difference between the
theoretical flux and the observed flux which is larger.

C. Magnetic Fields and Inhomogeneties

Some of this discrepancy might be taken up by
the fact that in a magnetic field the coefficient of
thermal conductivity is lowered the more, the greater
the angle between flux direction and field line. The
consequence of lowering K, in Eq. (34) would be a
lowering of dh/dT in Fig. 4, that is, the right direc-
tion to solve the discrepancy between observational
and theoretical values.

Suppose the magnetic field lines are inclined by an
angle « to the radial direction then the coefficient of
thermal conductivity decreases by a factor of cose
because of the low thermal conductivity across the
field lines. If we assume an angle « of around 30 de-
grees we would shift our theoretical curve in Fig. 5
downwards by a factor of 1.15 or about A4 log 4g;
= 0.05. Thus a magnetic field inclined at random
against the radial direction with an average value
of about 30 degrees could close the gap between the
theoretical and observed temperature curves.

At this point we want to discuss the influence of
magnetic fields on chromospheric heating. For weak
shock waves magnetic fields may easily be introduced
into the shock equation as shown already by Oster-
brock (1961). A comparison of the energy densities of
the atmosphere, the acoustic wave and the magnetic
field shows however that except at the highest parts
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Fig. 5. Temperature 7', mechanical flux (Pfm), conductive
flux (Pfc), shock Mach number M,, gas pressure p as well
as ratio 4/B of reflection over dissipation versus height A.
The curves are labelled by the ratio of initial mechanical
flux of coronal shock waves over the conductive flux. Dashed
curves are for wave periods of 1008, drawn curves for
200 s. The dash-point-dashed curves give an extension of

the model of Gingerich et al. (1971)

of the chromosphere magnetic fields need not to be
taken into account if we are not in a plage or sunspot
region. As we are interested mainly in the overall
behavior of the outer atmosphere of the sun we
may disregard active regions as far as the heating
of the chromosphere is concerned.

The important question of the influence of the
inhomogeneous emission of the XUV lines which is
closely connected with magnetic field is presently
too difficult to answer.

D. Corona

Finally we want to discuss the coronal region
where shock heating replaces thermal conduction. In
the absence of any knowledge about the height of
shock formation of waves of longer period we arbi-
trarily select the two heights 5000 and 20000 km at
which we introduce a fully developed strong shock
wave after Eqs. (11) to (19). The resulting shock
dissipation decreases the conductive flux gradually
up to the point where the conductive flux and thus
the temperature gradient becomes zero, that is the
maximum corona temperature is reached. The slow
decrease of the conductive flux shortly after the
onset of shock dissipation leads to the fact that the
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atmosphere is still largely dominated by thermal
conduction and thus the exact point of shock forma-
tion and whether the wave dissipates in a not yet
fully developed manner is not very important. The
amount of shock wave flux which has to be intro-
duced at 5000 or 20000 km is a free parameter as well
as the frequency of the shock wave. These two para-
meters have to be chosen carefully however such
that the conductive flux becomes zero at some height
and that coronal temperatures are reached.

In Fig. 5 we show models which start with the
Noyes and Kalkofen (1970) initial point and have a
combined Ly« and XUV flux of 3.1 x 10% erg/cm? s.
The shock wave period of the fully drawn model is
200 s and for the dashed models 100 s. All shocks are
introduced at full strength at a height Agy,q = 5000km
and are labelled by the amount of mechanical flux
in units of the conductive flux (3.1 x 10° erg/cm? s
after Eq. (34)). Temperature 7', mechanical flux
(Pfm), conductive flux (Pfc) as well as the shock
Mach number M, and pressure p are shown. The
curve labelled 4/B gives the ratio of the reflection
to the dissipation term in the strong shock version
of Eq. (10). It is seen that due to the large temper-
ature gradient the loss of mechanical flux because of
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reflection is initially much larger than the loss be-
cause of dissipation. Thus the mechanical flux has
to be larger than the conductive flux by a factor of
between 2.0 and 2.6. The initial shock Mach number
for the 200 s period model is M, = 1.93 which cor-
responds to 4 = 1.40 indicating a strong shock. This
is what we expect from Table 2. The dependence of
our theoretical models on the mechanical flux, the
wave period, the height of shock formation as well as
on the conductive flux may be explained as follows.

First it is seen in Fig.5 that increasing the
mechanical flux input from 2.0 to 2.9 while keeping
the wave period constant (100 s) lowers the temper-
ature maximum and shifts it to a lower altitude. This
is due to the fact that increased dissipation because
of a greater initial mechanical flux reduces the con-
ductive flux much more rapidly leading much faster
to the point where the conductive flux becomes zero
and the temperature maximum is reached. A further
decrease of the initial mechanical flux to the value
1.9 did however yield a model in which the conductive
flux is not balanced and which has therefore no
temperature maximum. For shock periods of 100 s
we thus find that the mechanical flux has to be
larger than 1.9 in order to obtain a physical solution.

Table 3. Extension of the model of Gingerich et al. (1971) into the transition layer and corona
Temperature 7', pressure p, electron pressure p, and density g are given as function of height A

k (cm) T (°K) p (dyn/em?) s (dyn/cm?) o (g/em?)

1.860E+-08 8.930E-03 1.518E—01 4.821E—02 1.828E—13
1.861E-+08 1.927E+04 1.513E—01 7.566E—02 6.187E—14
1.863E--08 4.509E+04 1.510E—01 7.880E— 02 2.525E —14
1.865E--08 7.047TE+-04 1.509E—01 7.873E—02 1.614E—14
1.867E-+08 9.301E+04 1.508E—01 7.869E —02 1.222E—14
1.870E4-08 1.183E-+05 1.507E—01 7.864E—02 9.603E—15
1.920E4-08 2.112E+05 1.494E—01 7.196E—02 5.332E—15
2.020E-+08 3.042E+05 1.481E—01 7.127TE—02 3.670E—15
2.220E4-08 4.032E+05 1.463E—01 7.635E—02 2.735E—15
2.520E-+08 4.921E+05 1.443E—01 7.529E— 02 2.211E—15
2.920E4-08 5.720E+05 1.421E—01 7.412E—02 1.872E—15
3.470E+08 6.449E-+05 1.393E—01 7.267E—02 1.628E—15
5.000E--08 7.871E+05 1.331E—01 6.942E—02 1.274E—15
8.000E-08 9.396E--05 1.231E—01 6.422E—02 9.875E—16
1.050E--09 1.027E}-06 1.163E—01 6.070E—02 8.535E—16
1.300E+09 1.098E-}-06 1.105E—01 5.765E—02 7.587TE—16
1.800E--09 1.206E--06 1.006E—01 5.249E—02 6.286E—16
2.800E4-09 1.333E--06 8.342E—02 4.352E—02 4.716E—16
4.800E--09 1.492E-06 6.030E—02 3.146E—02 3.046E—16
5.800E-+09 1.546E-06 5.196E—02 2.711E—02 2.533E—16
1.080E+10 1.620E--06 1.731E—02 9.029E—03 8.054E—17
1.580E-+10 1.645E+-06 6.280E—03 3.281E—03 2.882E—17
2.080E+10 1.649E4-06 2.346E—03 1.224E—03 1.073E—17
2.580E+10 1.642E1-06 8.786E —04 4.584E—04 4.032E—18
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Second the model with 200 s wave period shows
a much higher coronal temperature in spite of the
fact that the minimal mechanical flux is larger (2.6).
This is due to the slow dissipation rate of the 200 s
type shock wave because of which the conductive flux
decreases much less rapid.

Third we have plotted in Fig. 4 a model (dashed
at log 7' = 6.1) in which the height at which we
introduce a fully developed shock wave was Agoqx
= 20000 km with an initial mechanical flux of 2.4
and a period of 200 s. It is seen that this model does
not give a greater coronal temperature than the
model which starts with Ay, = 5000 km and has an
initial mechanical flux of 2.6. This is due to the fact
that because the pressure is decreased in the 20000km
model the strength of the shock wave is increased
and with it the dissipation.

Fourth in Figs. 4 and 5 (drawn dash-point-
dashed) as well as in Table 3 we give an extension of
the Gingerichefal.(1971) model to higher temperatures.
Our initial point is the highest temperature point of
their model and we have used a combined Ly« and
XUV flux of 4 Xx 10° erg/cm? s, an emission
internal of D =10km at hyyq = 1865 km as well
as a period of 200 s for the coronal shock wave in
order to be in better agreement with the XUV line
observations of Fig. 4. Agoq. was 5000 km and the
(minimal) mechanical flux was 2.5. It is seen that the
increased conductive flux increases the coronal
temperature. However a full agreement with the
iron line observations in Fig. 4 is not expected as
these lines are emitted in the hot spots of the corona
which are not representative for an overall temper-
ature behavior. The averaged temperature at these
heights will therefore be in better agreement with our
model computation.

Finally we must state that radiative losses
should probably be reintroduced at the point where
the conductive flux becomes small, but as the
unknown effects of magnetic fields and inhomogene-
ities of the atmosphere on the dissipation of a strong
shock wave as well as the neglect of wave pressure
in this region introduce large errors it is at the
moment unnecessary to be more accurate.
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