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Summary. In this second of a series of papers studying
large amplitude acoustic waves, we consider the calcu-
lation of the entropy change due to emission and
absorption of radiation. We develop a method for the
numerical solution of the equation of radiative transfer
for atmospheres in which shock discontinuities may
occur. As an illustration of our numerical method we
construct a radiative equilibrium model of a stellar
atmosphere by solving the time-dependent equations.
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I. Introduction

In this second paper (Paper II) of a series exploring the
behavior of acoustic waves in the solar atmosphere we
show how radiation is included in the hydrodynamic
code described by Ulmschneider et al. (1977, called
henceforth Paper I).

In previous research, the transfer equation has usu-
ally been solved approximately either in the diffusion or
optically thin limit. For example, Vincenti and Baldwin
(1962) studied the propagation of acoustic waves of small
amplitude in a radiating gas with the diffusion approxi-
mation for the radiative transfer, and Christy (1964) used
the diffusion approximation while solving the non-linear
hydrodynamic equations. Hill (1972) extended this work
to include transfer in a grey gas in the Eddington
approximation. Radiation transfer was treated without
making these approximations by Cannon (1974), Klein et
al. (1976) and Kneer and Nakagawa (1976) in studies of
shock wave propagation in an atmosphere of one-level
atoms in statistical equilibrium. They solved the time-
dependent hydrodynamic equations with finite differ-
ence methods rather than the method of characteristics
(cf. Paper I) and treated the radiative damping with
differential equation methods. In addition, these authors
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allowed for departures from local thermodynamic
equilibrium (LTE). We restrict our computations to the
photosphere and low chromosphere. Vernazza et al.
(1976) have shown that up to the temperature minimum
at optical depth 7549, =5E — 5 the departure coefficient
by- of H™ is very close to unity. For radially propagating
acoustic waves the main contribution to radiative damp-
ing arises in the depth range 7540, =10 to 0.01, and we
feel that the simplifying assumption of LTE is a very
good approximation in the treatment of this process.

The method we describe in this paper is based on
integral equations (Kalkofen, 1974). We derive the basic
radiation expressions to be used with the time-dependent
hydrodynamic equations, describe the numerical so-
lution of the transfer equation, and consider approxi-
mations valid in limiting cases. We then test the numeri-
cal solution against an exact solution and indicate the
range of validity of the approximate expressions. Finally
we combine the transfer equation with the hydrodynamic
equations to construct a model atmosphere in radiative
equilibrium.

II. Radiative Damping

Equation (25) of Paper I requires the specification of the
entropy change per unit time due to gains and losses of
photons in an element of mass. Let dS be the entropy
increase per gram and dQ the amount of energy per cm?
gained by a net influx of photons into the gas element. We
may then write

as| _1do

= = 1
dt Rad QT ]dt ( )

Rad

The notation used here is the same as in Paper I. The
increase in thermal energy dQ is provided by a decrease of
the radiative flux nF,

dQ onF

= 2
A ©

where x is the geometrical height coordinate pointing
vertically out of the sun. The flux nF is computed from
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the equation of radiative transfer (Sampson, 1965, p. 25),
oI, oI,
c 0t

_—xv(Iv_Sv)> (3)

where I, is the intensity, S, the source function, x, the
absorption coefficient and c¢; the velocity of light.
Integrating Equation (3) over angle and frequency leads
to the radiative energy equation

477: dJ oOnF ©
o a + i —4n i %,(J,—S,)dv. )

Multiplying Equation (3) by u/c; and integrating over
angle and frequency we obtain the radiative momentum
equation,

1 onF 6P
2 ot T o

=;1— g”andV- (5)
L

Here J,,J are the mean intensities, nF,, nF radiation
fluxes and P, the radiation pressure.

The energy and momentum Equations (4) and (5)
augment the hydrodynamic equations of Paper I
(Sampson, 1965, p. 33). In the solar atmosphere the
derivative of the energy density 4znJ/c; and of the
radiation pressure P, may be neglected. The ratio of the
energy density term to the emission term on the right
hand side of Equation (4) is approximately equal to

dr/c AB/AP 2

= ~107°
4dnxAB ¢ xP ’ ©)

where P=25s is the period of a typical wave and x=2E
—7cm™ s the absorption coefficient near optical depth
unity. Similarly, the ratio of the radiation pressure to the
gas pressure perturbation is in the range

1 34T
Ap, _4ndB _166T°AT 105 t0 10~ %)
Ap  3c dp 3¢, 4p

for typical values 4p=7E3dyn/cm?, AT=30K near ¢
=1and Ap=150dyn/cm? AT=300K near t=10"* B
is the integrated Planck function. Under the assumption
of LTE in the solar photosphere and low chromosphere
the radiative damping function D may therefore be
written as

ds 4

EﬁR;QT({ %,(J,—B,)dv, ®)

where B, is the Planck function.

III. Approximations

In optically thick and in thin regions the flux derivative of
Equation (4) may be computed from approximate ex-
pressions. At large optical depth, 7,>1, we make the
Eddington approximation and write Equation (4)

dnF © 144

E=*4ﬂf%V3d2d )

This is the diffusion approximation.
Since far from the boundary J,~B,, Equation (9)
may also be written as
dnF © 1d*B,
d—x——4 j ”3d2d' _ (10)

The mean intensity J, at the surface may be regarded
as originating from optical depth 7,=1. Thus, near the
surface, where 7,<1, the mean intensity is practically
constant. The energy Equation (4) may therefore be
written as

onF ®

T —dn [ 40,0 S)dv, (11)
O0x 0

where J (0) is the surface value of the mean intensity. The

approximations (9)—(11) are useful in tests'of the numeri-

cal procedure.

IV. Numerical Treatment

The calculation of the radiative damping function D of
Equation (8) from a prescribed source function S,
requires three numerical integrations: the t-integration
for the specific intensities I] and I, the angle in-
tegration for the mean intensity J,, and the frequency
integration in Equation (8). Of these, the u and v
integrations are straight forward with a Gaussian in-
tegration scheme (Abramowitz and Stegun, 1964, p. 887).
The t-integration is more complicated, because the
source function S, is given at a fixed height grid and not
at positions determined by an integration scheme.
Consequently care is required in the interpolation of the
S,’s. Moreover, since the 7-integration involves many
exponentials whose computation is time consuming, this
integration must be treated with care.

1) The t-integration

We assume that the source function S, is given at a finite
set of depth points x; (i=1,N),

Si=Sv(xi7 ﬂ) (12)

and is allowed to depend on angle. This x-grid cor-

responds to a t-grid

B, (13)
|l

For the numerical integration of the source function a

parabolic expansion recommends itself because it leads

to the diffusion approximation at large depth, a feature
that is important for flux conservation.

2) Outward Radiation I'*(u>0)

For the set of discrete t-points we write the transfer
equation as

N—=1 1+
=Y [ S*@e " di+Ije T, (14)
k=i Tk
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Fig. 1. Approximation of the source function by leading or trailing
parabolas for the computation of I;*
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Fig. 2. Source function jump near a shock wave
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where I;' =1 (z).

This equation suggests that we compute the in-
tensities I; recursively.

For the parabolic expansion of the source functlon in
the interval 7,St<<,,, we write

S*(t)=S;} +(t—1,)S +(t—1,)25". (15)

Since the contribution of the source term S;" is usually
large we improve accuracy by subtracting this term:

I =S =(I  — S5 1)e  + (S — 5 )e™?
+ST1—(1+8)e™?]
+8"[2—(2+26+6%e?], (16)

where

5=4i1. 17

The values S’ and S$” are determined by the require-
ment that Equation (15) be satisfied at three neighboring
grid points.

Thé integration interval (i, i+ 1) is spanned (see Fig. 1)
by a parabola passing through the points (i—1, i, i+ 1),
the leading parabola in the integration for the outward
intensity I'*, and a parabola passing through (i, i+1, i
+2), the trailing parabola.

At large depth the diffusion approximation holds:
The value of the mean intensity J, is equal to that of the
source function S, up to a term proportional to the
second derivative of S, with respect to optical depth.
Deep in the atmosphere, where the source function
becomes a linear function of optical depth, the mean
intensity becomes equal to the source function. There the
net radiative heating and the entropy change vanish. It is
necessary that the numerical integration of the transfer
equation reproduce the diffusion limit faithfully.
Otherwise a spurious energy source or sink results, which
can set a static atmosphere in motion (see Paper I). To
ensure that the diffusion limit is reproduced, the same

1_— .
5’( =Tl_Tk ’

parabola must be used for both the inward and the
outward directed intensities. This is achieved when the
intensities I* and I~ at point i are both calculated with
their respective leading parabolas, except when i refers to
a boundary point or a shock point where trailing
parabolas have to be used.

We use the notation:

A=87Y; 6.=8_,; =61 5,=612

(18)

Evaluating S’ and S” for the leading parabola we find

-8 =U, - Sth)e ’+85,
+8;PO+S;. PP 19
where
1 _
PM=——5_(5+5_)[2—5—(2+6)e |
53
~2%_6+6.)
1 1) 0
: [_1+§(1—Z(1—5(1——)))(2+6)] (20)
P0=—1—[6—5_—2+(5+5_+2)e"’]
06_
0 0 52
z—1+§(1+z)—§:
0 0 0
82 orssn.
and
Al )
) 1) 62
~1-— (1+5+5 )+6(5+5_)
1-2(1—%(1—é))](2+26+5 ). (22)

When the optical distances é and 6_ become very
short, the three lowest orders in é or § _ of Equation (20)
and the two lowest orders in Equations (21) and (22)
cancel. To avoid a loss of accuracy we use the expansions
whenever § becomes smaller than 1072,

For an expansion of the source function S* using the
trailing parabola, the solution for the outward intensity is

S+—(I:+1 Sf e’ +5RM
l+ 1R0+S1+2 (23)
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where Near a shock the typical behavior of the source
1 function is given in Figure 2. The Points 1-3 and 6-8 are
RM=————[2-26—0,—(2-05,)e %] assumed to be grid points. Points 4 and 5 are on either
0(0+0.) side of the shock discontinuity such that the distance 45 is

1
= Gis )[5 +2- 5+)

[H

RO 55 —2+4+(2+46-6,)e" %]
)
NKLS*_H(H&_&*)E
) ) P) )
’ (1-3(1-1(1—5(1—3))))]’ @9
RP=—1—[2—5—(2+5)e"5]

0,.(6+6,)
5 q
~ 25+(5+5+){ 3(2+9)

(RS

3) Inward Radiation I (u<0)

For the inward intensity we write

Ir= Z jk S (t)e” 7 0ds. (27)

k=2 g,

Again we calculate I; recursively and determine the
coefficients §' and S” by fitting the expansion to the
source function at the points (i—1, i, i+ 1) for the leading
parabola and at (i—2, i—1, i) for the trailing parabola.

For the leading parabola, which is used for non-
boundary points we have

I =87 =(Ii_—1—Si_—1)e_6_+Si_—1QP+Si_Q0 _
+55,0M, (28)

where QM, QO, QP are obtained from the values PM,
PO, PP of Equations (20)22) respectively by replacing 6
by 6_ and é_ by 4. For the trailing parabola we find

I7—S;7=(I;_,-S_)e " +S_,TP+S;_,TO
+87TM, 29)

where TM, TO, TP are obtained from the values RM,
RO, RP of Equations (24)—(26) respectively by replacing 6
by 6_ and 6, by A. Here the expansions are used
whenever §_ <1072,

4) Boundaries and Shocks

Since we treat the case of zero incident radiation at the
upper boundary, the surface boundary condition on the
inward intensity is I; =0. At the bottom of the atmo-
sphere the outward intensity I5 must be specified.

infinitesimally small.

The outward intensity I;” may be computed from the
boundary up to Point 6 with leading parabolas, using
Equation (19), as for an interior point. I{ must be
computed with a trailing parabola, using Equation (23).
In the preshock region, the outward intensity may again
be calculated, with leading parabolas, using the condition

I =1} (30)

at the shock. Similarly, the inward intensity I;” may be

computed from the surface up to Point 3 with leading

parabolas, using Equation (28), and I~ at Point 4 is

computed with a trailing parabola, using Equation (29).
With the condition

Is =1y €2Y)

at the shock, the intensity at deeper points may again be
calculated with leading parabolas.

V. Numerical Tests

The method described in Section IV was tested for a
parabolic source function,

S*=8"=a+br+ct? (32)

for which the analytic solution may be calculated.
As expected, the numerical solution agreed with the
analytic result to machine accuracy (12 digits).

- In a further test we compared the numerical results
with the diffusion and optically thin approximations
Equations (9) and (11) in an actual computation of an
acoustic wave. The numerical differentiations in this test
were performed by a finite difference method. For the
diffusion approximation we found better than 5 digit
accuracy at 7>300, but only one digit accuracy near t
=0.001. At depths < 0.004 the diffusion approximation
became very poor. The optically thin approximation had
a greater than 5 place accuracy for t <5107 3, decreased
to about a 1 place accuracy near t=0.03 and thereafter
became rapidly very poor. The t values here are optical
distances along the ray defined by u=1/ ]/§ The ac-
curacy of the approximations in the range t =0.5 to 0.001
depends on the phase of the wave.

VI. Radiation Hydrodynamics

Given values of the thermodynamic variables as func-
tions of height we can now use the method described
above to compute the radiative damping function as a
function of height.

1) Radiative Damping Iteration

As shown in Paper I, to achieve high accuracy the
integration of the entropy along the C° characteristics
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requires the radiative damping function at the old as well
as the new time. The function is known only at the old
time, its value at the new time must be determined
iteratively. For this calculation a convenient starting
estimate is given either by the damping function at the
old time or by an extrapolation of the values at several
previous times. We found that the solution tends to
oscillate about the correct value. To accelerate con-
vergence we averaged the damping function D and the
speed of sound ¢ over the current and the previous values
at the new time,

D= (Dnew + Dprev.)/2 ’
c= (cnew + cprev.)/2 . (33)

With this procedure, convergence is rapid; we usually
needed between 5 and 6 iterations for convergence to 3
significant figures, the limit of accuracy of a trapezoidal
integration of D along the C° characteristic.

2) Maximal Entropy Change

In addition to the hydrodynamic time scale, the inclusion
of radiation brings another characteristic time scale into
the problem. The radiative relaxation time describes the
raté of radiative energy or entropy exchange of a fluid
element. A

To prevent the entropy S of a fluid particle from
changing too rapidly due to radiative damping we
impose a restriction (like the Courant condition for the
hydrodynamic time scale) on the time step whenever the
change A4S becomes too large. Taking the real atmo-
sphere to be locally isothermal with sound velocity ¢, and
gravitational acceleration g we find [see Paper I, Eq. (21)]
for the allowed maximal entropy change between two
adjacent grid points:

YRg H _ R

as< BT _ 2
S< 2 10 10z

(34
This equation sets a limit for entropy changes inde-
pendent of gravity. We usually took A4S <2E6erg/gK.
We found that this condition was less restrictive than the
Courant condition except at the start of a calculation
when the deviation from radiative equilibrium was
greatest. -

VI. Radiative Equilibrium Models

As an illustration we use the methods described above to
construct a radiative equilibrium atmosphere. In this
time-dependent method the surface gravity is in-
corporated into the characteristic equations while the
effective temperature enters as the boundary condition
for the incident flux.

We take

I (N)=B(T=5800K) (35)

MEAN FLUX ERROR LOG AF/F

_s | | | | |

1 100 200 300 400

TIME STEP INDEX

500

Fig. 3. The mean error of the maximum flux deviation 4F/F as function
of the time step index. The one frequency point calculation is shown
dashed the 10 frequency point calculation is shown drawn

and a solar gravity. To ensure that the atmosphere does
not expand we take rigid boundary conditions at the top
and bottom.

u(1)=u(N)=0. (36)

This boundary condition describes the situation of a gas,
irradiated from one side enclosed between two trans-
parent plates which are not allowed to move. We start
with a linear temperature gradient of—7K/km. The
temperature at the deepest point was 7000 K and the
density 5.0 E-7gcm™3. For opacity sources we used H
and H™ as described by Kurucz (1970). The optical depth
at the lowest point was 5.6. Two calculations were
performed, using one (at 5000 A) and ten frequency
points and taking one angle point at u=1/ ]/§ The
frequencies were spaced at roughly equal intervals up to
1.5 E15 Hz. We took 24 height points covering a distance
of 110km. Figure 3 shows the mean error of the
maximum flux deviation at a given time step. It is seen
that a 2% accuracy in the flux is reached after about 100
time steps. The flux error decreases by about one order of
magnitude every 200 (165) time steps for the 1 (10)
frequency point calculation. The scatter of the maximum
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flux error around the mean curves in Figure 3 was about
a factor of 2. The time step, 4t =0.53 s was constant and
determined by the Courant condition. The computing
time of the 10 frequency point calculation was greater by
a factor of 5.
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