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SHORT PERIOD ACOUSTIC HEATING THEORY AND ITS APPLICATION
TO THE CONSTRUCTION OF MODEL CHROMOSPHERES

P. ULMSCHNEIDER
Astronomisches Institut der Universitit, Wiirzburg, G.F.R.

1 - Hydrodynamic equations

For a general introduction to the hydrodynamic equations and to sound
waves, read the first few chapters of the excellent books of LANDAU and
Lirsuirz (1959) and ZerpovicH and Rarzer (1966). STeEIN and LEIBACHER
(1974) give an up to date review of waves in the solar atmosphere. The articles
of L1sTER (1960) and HoskiN (1964) show in greater detail the numerical methods
used in this work.

Assume: neutral, ideal gas no viscosity
plane geometry no thermal conduction
purely vertical motion solar gravity

Let x be the outward geometrical distance (Euler coordinate). Consider a
plate of gas at time # = 0 (see fig. 1).

The height x at time # = 0 is called Lagrange coordinate, a.
a=x at ¢t =0, (1)

The plate has the thickness da and extends to infinity in y, z directions.
At a later time # = ¢ the plate, defined by a and da has moved to

x = x(a,t), (2)

and has nof the thickness dx|; .
Conservation of mass requires for the mass density p:

p(a,8)dx|s = p(a,t = 0)da = po(a)da. (3)

Thus the specific volume v may be written
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da
a
t=0
X
t=1t
Fic. 1
Euler x and Lagrange a position of a plate of gas at time # = 0 and &
0x Po
v = |—| = —. (4)
( da Jt p )
The gas velocity # is defined as the temporal derivative of the position x of the
plate,
( dx ) (5)
u = |— .
ar ),
Any change in density arises from a differential motion of the two faces of the
plate,
1(8p] (au] p(au) 6)
e \dr), Ox ), o\ da),’

Considering action of pressure, p, and gravitational forces on the plate, the
equation of motion is given by

(), + 23] v
dt a Po da P &=

where g is gravitational acceleration at the solar surface. Because the entropy §
is conserved in absence of radiation, the energy equation may be written as
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0,
(25) 3
dt ),  ds
where the right hand side is the radiative damping function which is usually given

as a function of temperature T and p. For an ideal gas the equation of state is
given by

=

(8)

Rad

197 7VHBAT

RT
p=p—— 9)
O
where p = 1.3 g/Mol is the mean molecular weight and R the gas constant.

The combined second and third law of thermodynamics connect § with p, p and T.

1 R 1
c—1 o 3| ted4| I R dT
ds| = — i
a T vy—1 pu T

R dp

. b

- (10)

a

Here vy = 5/3 is the ratio of specific heats. Sound velocity and scale height are
given by

RT
c? o= v — 'Y_p‘ (1n
0 0
and
RT
H=—. (12)
Ug
2 - Adiabatic, linear waves in an isothermal gravitational atmosphere
Assume: static atmosphere u = w = 0 (13)
isothermal atmosphete T = Ty = const. (14)
We have from eqs (7), (9) independent of #
dpo
= — 1
1 Pog (15)
W Do
0 = . 16
Po RT (16)

From this the density po and pressure po distributions are easily computed. Assume
now small adiabatic disturbances in the static atmosphere,
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ds$
— =0 (17)
d# | Raa
e =p+p, p=op+p, u=uw+u et (18)
and neglect quantities of second order.
From egs (6), (13) we find
1 (3dp ) ( du’ )
o ( ), da ),
Eliminating T from eq. (10) using (9), (11), (17) we have
dp'le = c?dp’la. (20)

Linearizing eq. (20) and integrating, using p* = 0 at p” = 0 we have

p = co’ p'. (21)

With this eq. (7) becomes

du’ " 602(89’) 1 (apo)
— — = 0. (22
[8t]a+po da t+po da t+g ) )
The last two terms cancel because of eq. (15).

Note that further differentiation of eqs (19), (22) and combining the results gives
wave equations for #’, p” or p’ describing sound waves. We assume normal modes

%, A U ei (wt—Ka)
A 00 3bei (wt—Ka) (23)
K+ ib.

0
It

Here U, & are polarization factors, A an arbitrary amplitude with the absolute
value much less than one and K a complex propagation vector.
With this we have from egs (19) and (22)

iw —ik+ b K

N co’ =0 24
— ke + b — ° i U (24)

L Ho

where we have used
apo Po

= - — 25
( aﬂ )[ HO ( )
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@hlch is derived from eq. (16) using (15), (12).
D;:ﬁnmg the acoustic cut off frequency

2T c
Wy = = = re (26)
Pa 2 Hy Z co

eq. (24) has a non-trivial solution only if

b = — (27
Ce

and
w — w? = K. (28)

By inspection we find for the polarization factors

I
5{:\/1——(—0—)—/1—]—|—z'wA (29)
(63) (63]

U = o . (30)

The complete solution is given by

u = Ace CAo ei(mi"_ég_\/ W) (31)

— (@)’ cwa ] 20 g (e L Vel ag)
= Apo[\/l - ("(‘D—] -l—z—;]e " e (32)
Vo= (33)

From eqs (31) to (33) the phase shift between the # and p’ oscillation is

04

w
o = arctan . (34)

J-(5)

w
For w > w4 we have no phase shift, @ = 0, and the acoustic flux (EckarT, 1960
p. 52)
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f p'udt f pouZCodt

Period Period

Fu = = cos o . (35)
ds J dz

Period Period

: T
For w—> ws the phase shift oc—->—2—and Fu—>0. For w < w4, as seen from

egqs (29), (30), a is allways—qz.L and Fy = 0. Note that because of egs (17),
(21), (8) to (10) the phase shift between # and p’ is the same as between # and

p’ and between # and T.
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Fic. 2
STEIN’s (1968) flux spectra. The vertical line marks the cut off period P, at the temperature
minimum.

In fig. 2 the frequency spectrum of acoustic waves in the solar atmosphere,
generated by the turbulent motions in the convection zone is shown (STEIN 1968).
The acoustic cut off period P4 =. 193 s at the temperature minimum is indicated.
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WBAT = A%

is seen that the largest part of the spectrum is at periods small compared to
. This is the reason why these waves are called short period oscillations.

e
L

3 - Nonlinear isentropic waves, method of characteristics

Assume g = 0
S = S = const.

It is convenient to choose for the two thermodynamic variables the entropy §
(which in the present case is constant everywhere) and the sound velocity ¢. In
otder to eliminate p and p from eqgs (6), (7) we solve eq. (10) for p and use
(9), (11) :

2 de W
de = — ds 36
P p(y_l ; R ) (36)
2¢ cu
dp = de — ds 37
p p(?—l ¢ TR ) (37)

under the assumption of constant § and g = 0 using egs (36), (37) in (6) and

(7) we have
3 (dc e (Ju
Z = Ll =0 8
C(ai]a+ Po(ad]z (58)

(EEJ BPC(acJ = 0 (39)
0: ). T \aa),” ¥

With eq. (36) and § = const. we find
3
L — _.1__ — (_C_] . (40)
Adding eq. (38)] * ¢ to (39) we have
du ¢t Qu dc ¢t dc
+ 3
(a; e aa)+ (a; e aa)

Consider a function f (4, ¢). For a change of f along a given curve a (#) we have

Il
o

(41)

af af . 9 df da
df_?t—dt_l—addd— atdt+8ﬂ dtdt
or: (42)
df 34 3f da
—d—; along a(t) B at aﬂ df '
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Thus from eq. (41) with (42) we find:

du +3dec = du+3¢) =0 (43)

along
de ¢ (44
dz - 6‘03 ( )

where the curve described by eq. (44) is called C* characteristic.
Similarily, subtracting eq. (38)| - ¢ from (39) we find

du —3dc = d(u—3¢) = 0 (45)

along
da _ ct 16
dz - Co3 ( )

the C~ characteristic.
With these equations we have for the Riemann invariants J*, J-

J* = u+ 3¢ = const. along C* (47)
J- = u—3c = const. along C~. (48)

The physical significance of the characteristics can ben elucidated by going
over to the Euler (Laboratory) frame by using eqs (44), (46), (4), (40)

dx=* de* ( dx
= [ )—i—u=utc. (49)
t

d: ds \ da

Thus the characteristics are world lines of disturbances traveling with sound
velocity = ¢ relative to a medium that is moving with #.

Assume that the solution is given everywhere on the 4 axis between the
points A and B. (see (fig. 3).

We thus know at

A: wa,ca or J¥ J(A)
B: Up,Cp Or ]+,]“(B)

We want to compute the solution at point P. We have from eqs (47), (48)
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N 4 P

[

L

>
a
Fre. 3
Domain of dependence.
J*(P) = J*(A) : w4+ 3cr = ua+ 3ca (50)
J-(P) = J(B) : wup—3cp = up— 3ca. (51)

This system (50), (51) can be solved for #p and cp

s+ up+ 3ca—3cs J*(A) + ]~ (B)

= 2
up 5 5 (52)
3¢ca+3 — *(A)— ] (B
o — ca ¢+ ua — us _ J*(A) — ]~ (B) ' (53)
6 6
The slope of the C*, C~ characteristics at P is then
da|= cpt (54)
dz |» T o’ '

We know now #p and cp but we do not know the position ap, #r of P. This
position may be found approximately by triangulation using the known slopes of
the characteristics (45), (46) at A, B. A better position of P can be found by
first computing the solution and position of points Q and R using values at
A, D and D, B and then computing P etc. From this limiting process it is obvious
that the solution wvector (up, cp, ap, tp) at P is completely determined by the
initial conditions on the segment A B of the a axis and is independent of the
initial values outside this segment. The triangle A B P is called the domain of
dependence.
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Consider in fig. 4 the gas bounded by a piston.

Piston

- >
0 B D a
Fic. 4
Piston boundary.
At point P the velocity # is a prescribed function of ¢
up = Upix(a = 0,12). (55)
The Lagrange position of the piston is 2 = 0.
We have
]-(P) = ]_(B) : Upist(a = 0,¢p) —3¢cp = up— 3c¢cp. (56)

Here c¢p could be computed if #» were known. But 7 can be determined ap-

da |~
proximately using the slope a4
B

The complete knowledge of the initial values at the segment O B determines
the solution vector at P uniquely.
Eventually the solution vector at Q can be determined using

J*(Q) = J*(P) and J°(Q) = ] (D). - (57)
This procedure to advance the solution vector in time using approximate positions

a, t triangulated with straight lines is called method of characteristics.
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égl- Simple waves
&' Simple waves are waves for which |~ (4,#) = const.
L

J-(a,t) = u(a,t) — 3c(a,t) = const. (58)

Fic. 5
Simple wave generated by piston motion,

Usually one has such waves when a disturbance from a piston travels into an
undisturbed nongravitational isothermal atmosphere. Because the disturbance (see
fig. 5) starts for # = 0 at 4 = 0, we have at every point of the s-axis at r = 0
that

J (a,t = 0) = — 3c = const. (59)

Consider fig. 5. Because J* = const. along C* : PQ and because [~ (P) =
= [-(B) = J-(D) = ] (Q) = const. after eq. (59) we have c» = co
da*

= const. and #p = wo = const. after (52), (53) and thus = const. after

eq. (54).

In a simple wave the C* characteristics are straight lines, and the values of c
and u are conserved along these C* characteristics.

This property of simple waves can be exploited to construct the development
of the wave profile.
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Field of characteristics in a homogeneous atmosphere which is excited by a piston.

Fig. 6 shows an isentropic calculation. Here the isothermal atmosphere is excited
by a piston starting at time ¢ = 0. We have

. 2T
Upiss = — #o SIN T t (60)

where #9 = 1/10 ¢, the period P = 30s and the temperature To = 4000 °K.
It is seen that a simple wave results with the C* characteristics being straight lines.

450 Mem. S.Alt., 1977

© Societa Astronomica Italiana * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1977MmSAI..48..439U

o
&

&égort period acoustic beating theory and its application ecc.

S
2 ula,ty)
l':: ShOCk
[

] |

a
Fic. 7
Development of the wave profile in a simple wave.

5 - Shocks

Fig. 6 shows that after some time C* characteristics intersect and form shocks.
Using the properties of simple waves this behavior is explained in fig. 7. The
consetvation of the velocity amplitudes along C* leads to a wave distortion and
to multivalued profiles after the C* intersect. The shock discontinuity replaces
the multivalued profile. This allows a geometric construction of the shock and
a calculation of the dissipation of the wave energy by the shock (see Section 11).

6 - Nonlinear nonadiabatic waves in non isothermal gravitational atmospheres

Using eqs (36) and (37) to eliminate the derivatives of p and p from egs
(6) and (7) we have with (4)

2 dc pec dS c du
vy—1 d¢ R 0t + v da (61)
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and
du 2 c dc vwe ¢ 98

dt + y—l?@a_yR—v—Sa

+g=0. (62)

Adding egs (61) and (62) using (8) the ordinary differential equation

ds
dc——”—c—[duw—n—

d
u+p.—1 v R ds

dt] +gdtr =0 (63)
Rad

is obtained along the C* characteristic given by

da c
2 = = 64
d:z v (64)

where v from eqs (4) and (36) is found to be

2 (S=So)
V= (c_] e R (65)
C

Here co and So are the sound velocity and entropy distributions of the static
atmosphere.
Subtracting eq. (61) from (62) using (8) we find

ds
du — dc+if—(ds+(u— <2
Y

v—1 R d¢

dt] +gdz = 0 (66)
Raa

along the C- characteristic, given by

da c

—_— = - — 67
dz v (67
Finally from eq. (8) we have
ds
dS = —| d: (68)
d# |paa
along the C° characteristic, a = const.

For an arbitrary temperature distribution the initial sound velocity co is
found using eq. (11). In a static atmosphere, o = 0, the initial entropy distribut-
ion S, is found using eq. (62)

dSe yR( 2  de g)'

+— (69)

vy—1 da Co

da W Co
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+ Note that the concept of conservation of the Riemann invariants eqs (43),
(%:5) is now generalized into eqs (63), (66). The method of characteristics is
@neralized likewise, using now 3 characteristics. In fig. 8 the procedure to
compute the unknown position and state at point P, where we have now the
unknowns a4, ¢, #, ¢, S, is as follows.

Frc. 8
Computation of the solution at point P using the three characteristics C°, C*, C-.

With the known solution everywhete at AB the slopes of the C*, C~ cha-
racteristics at A and B may be computed from eqs (64), (65), (67).
Thus the position 4, ¢ of P may be found by triangulation. The position ap
determines the C° characteristic and therefore point D. With the known solution

(entropy S and radiative damping function 1 ) at D, eq. (68) may be
Rad

integrated to give the entropy S at P. The integration of eqs (63), (66) gives the
remaining unknowns #p and cp at P. This procedure to compute the solution at P
is quite similar to the one discussed in Section 3. Boundary points are treated
therefore in a likewise manner.

ds

Fig. 9 shows the result of a calculation of an adiabatic (——| = 0) wave

Rad

of petiod P = 30 s with #o = 1/10¢ in eq. (60) taking an initial atmo-
sphere of T = 4000 °K and solar gravity. It is seen that the C* characteristics,
except in the nodes, are not straight lines anymore as in the isentropic case
of fig. 6.

The increasing density amplitude (see eq. (32)) in a gravitational atmosphere
leads to an increasing sound velocity amplitude (eq. (36)) and to an increasing
curvature (eqs (64), (65), (67)) of the characteristics. Fig. 10 shows the result
of an adiabatic wave in an empirical atmospheric model (HSRA, GINGERICH et al.
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Field of characteristics in an isothermal gravitational atmosphere which is excited by a piston.

1971). Here the period was P = 30 s and the velocity amplitude # = 1/10 co.
The C* characteristics ate now seen to be curved even in absence of a disturbance
due to the decreasing sound velocity of the atmosphere (eqs (64), (65)). The
heights of shock formation of waves with various periods and fluxes in the HSRA
atmospheric model is seen in fig. 13. Because the rate of profile distortion is due
to the rate of convergence of the C* characteristics and because this rate depends
on the amplitude (eqs (64), (65)) waves of greater flux form shocks eatlier. In
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Field of characteristics in the HSRA atmosphere which is excited by a piston.

waves having short periods the areas of strongly differing slope of the C* cha-

.

racteristics

(the magnitude of the slope depends only on the flux of the wave)

will be closely spaced, leading to an early intersection, that is to a low height of

shock formation (KaLkoFEN and ULMSCHNEIDER 1976).
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7 - Radiative damping

Because radiative damping may decrease by an order of magnitude the
acoustic energy that reaches the chromosphere, an accurate treatment of radiation
is of great importance. Consider the transfer equation of radiation (M1HALAS 1971)

dI,
u = - k\) (I\; - Sv) . (70)
dx

Here I, is the specific intensity, v the frequency, p the angle cosine,
k, the absorption coefficient and S, the soutrce function. As radiative damping of
acoustic waves propagating radially out of the Sun happens mainly at optical
depths s = 0.1 to 10, departures from local thermal equilibrium (LTE) are
unimportant thus

¢ — B = 2hV 1 (71)
cr e"th——l

where B, is the Planck function, » Planck’s constant and Cy the velocity of light.
Integrating eq. (70) over angles and frequencies gives with eq. (71)

dFr
dx

_ —4nfkv(]V—Bv)dv (72)
0

where
o +1

anfulvdudv (73)
0 -1

Fr

is the radiation flux and
+1
1
] = —-f Idw (74
2
-1

is the mean intensity.
Using eqgs (70) and (71), I, can be computed for p = 0 using

?V e v — Ty ’ TyMax " Ty
I, (o, ) = f B, (T (T’)) e wu + I* (TvMax)U)e~—“—— (75)
TV
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éﬁd for p < @ using

8' Tv ’
o _TV_T d‘C, ﬁTV—TVN[in
IV (T\U U«) = f—Bv (T (T,)) e IU«' l[.LI + Iv*(TvMin, H) € ]u! (76)
TvMin
where
T, = — f kydx’ (77)
0

and I,* (Tymax, B), I,” (Tomin, &) = O are boundary conditions. The entropy §
lost by an outflux of photons is then given by

ds.
d¢

1 dFR 41 J
= — = ky (], — B,)dv. 78
. ST dx pTof (J )dv (78)

At large optical depth ©,>> 1 this equation may be approximated using the
Eddington approximation

s
d:

an (1 dY,
= — | —4& dv. 7
Rad pT 3 d=.? Y (79)
0

This is the diffusion approximation. At small optical depths ©,<€ 1 the mean
intensity is practically the constant surface value J, (0) thus

ds 4 f
- = — kv v 0 - Bv dV . 80
37 | rus T ) (J» (0) ) (80)
This is the optically thin approximation.
ds
The procedure to compute this radiative damping function 17 is as
Rad

follows: Because radiation processes occur with the speed of light and the
hydrodynamic processes with the speed of sound, radiation processes are essentially
instantaneous compared to the hydrodynamic time scales. It is thus necessary
to have the solution #, ¢, S at every height for a fixed time ¢. From the
thermodynamic variables ¢, § we may compute T and p and thus B, and 4,
for every height and frequency point. Here kb, must be taken from an opacity
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table. Integrating eq. (77) we find 7, and integrating egs (75) and (76) we
find I,. The integrations of eqs (75) and (76) are performed recursively starting
from the respective boundaries. In order to reproduce the diffusion and optically

thin approximations the source function is evaluated using parabolic sections
see fig. 11.

BvA

<41
& J .- -
1 2 3 Ty
Fic. 11

Interpolation of the source function B between grid points.

Consider a parabola going through the source functions at points 1, 2, 3.
The ingoing intensity I,~ at point 2 is evaluated using the segment 1-2 of this
parabola and the outgoing intensity I,* is evaluated using the segment 23 of
the same parabola. After evaluation of the specific intensities I,, the mean
intensity ], is computed using eq. (74). Subsequent frequency integration (eq.
(78)) gives the damping function (KaLkOFEN and ULMSCHNEIDER 1976).

8 - Modified method of characteristics

We have seen in the previous section that for the inclusion of radiation
the solution of the hydrodynamic equations must be given for every height, 4, at
the same time #. In the full method of characteristics the intersection points of
the characteristics do not lie on ¢ = const. line (see figs 6, 9, 10). In order

to make certain that the intersection points lie all at the same time level P Q,
the method of characteristics is modified as shown in fig. 12.

Here the position «, # of the points Q, P etc. are predetermined.
The characteristics intersecting at point P now emanate from the old time level
at points R, §. The solution at R, § is interpolated from the known solution at
the grid points A, D, B. Aside of this procedure the modified characteristic
method proceeds like the full characteristic method.
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F1e. 12
Computation of the solution at point P in the modified method of characteristics.

9 - Perturbation method for nonlinear radiatively damped waves in gravitational
atmospheres

With the specification of the radiative damping function 1 in eq. (78)
Rad
the eqs (63) to (68) can now be solved in principle with the modified characteristics

method similar to the procedure outlined in Section 3. In practice the evaluation
of eq. (78) needs a large number of frequency and angle points (more than 30
for a realistical photospheric model) and an opacity table including a large
number of absotbers. In order to keep the computation time within reasonable
limits we evaluated eq. (78) with one angle and one frequency point, employing
the grey approximation for which an opacity table is given by Kurucz (1970).
With a one frequency and one angle point calculation a realistic model of the
Sun can 7oz be made. Thus we use a published nongrey model as static atmosphere
on top of which the acoustic waves propagate (KALKOFEN and ULMSCHNEIDER
1976). For this model we have from eq. (72)

dFg°
dx

= —4nm f/ef(]vﬂ — BY)dv. (81)

In the perturbed atmosphere we have

oo

dFg° dFy!
R + R = — 4 f(kvo + kvl)(]vo + ]vl - BVO - Bvl)dv . (62)
dx dx

0

Here the quantities of first order are due to the wave.
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Subtracting eq. (81) from (82) and neglecting quantities of second order we have

dFg!
dx

= — 4T f k\ao (]vl - Evl)dv (83)
0

where ]! is computed using eqs (74), (75), (76) replacing B, by the angle
dependent source function

1
v

A (w) = B! — 5.0 (Ivo(p«) - Bvo) (84)
and where
. +1
St o= —E-va‘ (v)dp . (85)
1

We use the grey approximation of eq. (83).

10 - Theoretical temperature minima

Using eqs (78), (83) for the description of radiative damping egs (63) to
(68) may now be solved with the modified method of characteristics. We follow
the development of the wave until shock formation. Because the shock dissipates
rapidly as soon as it forms we expect that the shock formation height is close
to the height of the temperature minimum (T. M.).

In fig. 13 shock formation heights for waves of different period and initial fluxes
are shown. It is seen that for waves of initial fluxes between 3 and 6 - 107 erg/cm? s
and periods between 25 and 45 s the empirical T. M. can be reproduced.

These acoustic fluxes agree well with those computed from the Lighthill theory,

T o7t dx
Fu = —_— 86
M f 38 e H (86)

0

where v is the mean turbulent velocity, o the ratio of mixing length/pressure
scale height. Table 1 exhibits acoustic fluxes computed with eq. (86) using a
stellar envelope program. In addition values of STEIN (1968) are given, who uses
more elaborate expressions in place of eq. (86). Note that values of @ = 1.1
to 1.3 are presently accepted for the Sun (CHRISTIANSEN - DALSGAARD and
GoucH 1976).
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Shock formation heights (drawn) in the HSRA atmosphere for waves of different period with
the initial acoustic flux as parameter. Dashed lines indicate shock heights for adiabatic waves.

HSRA and VAL show heights of the temperature minima in the HSRA and VAL models.

TaBLe I - Theoretical and empirical temperature minima for the Sun.

o Mode Fy (erg/cm?®s) P (s) bo (km) F, (erg/cm’s)
1.0 ) 16 E7 275 650 32E6
1. . 26.0 590 OE
25 | Eq. (86) 30E7 5.0E6
1.5 S 5.1E7 245 540 7.2 E6
20 1.1E8
20 SteIN 1968, EE 99 E7 25
2.0 STEIN 1968, SE 55E7 40
in EE
1.5 Ste%n E % Scaled 45E7 25
1.5 Stein EE 25E7 40
empirical HSRA 550 5.0 E6
empirical VAL 500
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The period of the waves agrees also well with theoretical expectations as
seen in fig. 2 (STEIN 1968). Because of the v~ dependence the main contribution
to eq. (86) arises within 1/2 H at the top of the convection zone. Thus the
period is approximately

’ P. H 120km -
M =0 T 2% T 2 2kmis

Table 1 shows a comparison of the theoretical T. M. with two empirical T. M.
for the Sun.

o=15

log m (g/cm?2)
1

|

Arcturus
Arcturus
'r + 2 }
x empirical + 2
B + theoretical ]
2 | 1 ] | L | | ] ) | ]
4000 5000 6000 4000 5000 6000 7000
Tets (K) Test (K)

Fic. 14
Shock formation heights on a mass scale for various stars of different T.;; with log g as para-
meter. Crosses indicate special stars. o is the ratio of mixing length to pressure scale height.

Fig. 14 shows such a comparison for other stars where the empirical T.M.
were taken from AyrEs (1975). Another quantity of great importance is the
acoustic flux Fy at shock formation. This flux should heat the chromosphere and
should therefore be comparable to the empirical chromospheric radiation flux. In
fig. 15 the flux Fo is shown as function of the wave period and the initial acoustic
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Fiec. 15
Acoustic flux at the position of shock formation (drawn) in the HSRA as function of period
with the initial acoustic flux as parameter. HSRA indicates chromospheric radiation flux.

flux. The empirical radiation flux is produced by waves which have initial flux
between 1 and 5-107 erg/cm’s and periods less than 45s. Table I shows a
theoretical prediction for the Sun. Fig. 16 shows a comparison for other stars.
Here the chromospheric fluxes are taken from Ayres (1975).

11 - Weak shock heating formulas for the chromosphere

The time-independent approach to construct model chromospheres starts usually
by specifying heating formulas which describe the shock dissipation. Other
heating mechanisms like conductive or viscous heating (MCWHIRTER et al. 1975)
can be shown to be unimportant in the chromosphere (VANBEVEREN and DE
Loore 1976). A heating formula for weak shocks may be derived from the
behaviour of simple waves exhibited in figs 5, 6, that the velocity amplitude «
and the sound velocity ¢ remain constant along a C* characteristic. This behaviour
will be valid as long as the amplitudes are sufficiently small such that shock
heating does not change the straight line nature of the C* behind the shock
(see fig. 6).
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log F, lerg/cm2s)

x empirical
+ theoretical

| L | L
4000 5000 6000 4000 5000 6000 7000
Teff (K) Teff(K)

Fic. 16
Acoustic flux at shock formation (drawn) for various stars of different T.; with log g as
parameter. Crosses indicate special stars. Initial acoustic flux is shown dashed.

Consider a fully developed sawtooth type shock wave (fig. 17). From the
definition of simple waves, eqs (58), (59) we have

=1, (88)

c = o +

With this and the slope of the C* given by eq. (44), we are able to construct
the development of the wave profile. As the heating formulas are usually given
in the Euler frame we find using eqs (49), (88)

dx |* 1
el :HC:COJH"; ‘. (89)

Similarily to ﬁg. 7 the development of the sawtooth wave may be constructed
using eq. (89) as seen in fig. 17. The original wave OBAE at + = 0 with the
discontinuity A B is seen to develop at # = ¢ into a multivalued profile OB’A’E.
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Fic. 17
Development of a sawtooth shock wave.

Actually only the profile ODCE is realized with the discontinuity DC. For short
period waves the flux at # = 0 using eq. (35) and & = 0 is

A
2
Fy = ——fpo cor? (x)dx (90)
1]

wher: \ is the wavelength. Taking

4(x) = 2{‘“ x (917)

where o is the velocity amplitude we find from eq. (90)

1
Fu = "'3‘—906‘0 uoz. (92)

At time # (see fig. 17) the velocity amplitude is reduced to o’

4]
uo' - -~ p . (93)
14+ (y+ 1)ﬂ07

Using x = cot in eq. (93) we find

1 5 to -2
Fu(x) = ”3—9060%0 14+ (v + 1)“6—94) (94)
0
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Differentiation with respect to x and using A = ¢ P gives at ¢+ = 0
dFM Ho
= —2(v+1 F 95)
P (r ) P (

where P is the wave period. Eliminating # from eq. (95) with egs (92), (11)
we find (ULMmscuNEIDER 1971a, Kuperus 1965, Bray and LoucHEAD 1974)

dFw [12(y+ 1))1/2

1
— Fu?/?. 96
dx ‘Ypoc‘03 M ( )

P

Recently VANBEVEREN and DE LoorRe (1976) have used a simplified version
of eq. (95) assuming

2+ 1214, (97)

o

We see however no necessity for making such an approximation.

12 - Time independent models for the chromosphere

It can be shown that in the chromosphere at heights below 1600 km (above
Tsow = 1) one may safely neglect wave pressure, thermal conduction, viscosity
and the mass and energy flow due to the solar wind. For a time independent
model one simply solves the hydrostatic and energy equations assuming the weak
shock heating formula (96)

dpo
= - 98
Ix Pog (98)
dF 12 1YY 1
LR [ wE )) — Fu? (99)
dx Y PoCo P
dFu " dFr - 0 (100)
dx dx
This system of equations together with egs (9), (11) can be solved if boundary
conditions po, Fmo at x = xo are given and the wave period P is specified,
dFr

provided the radiative cooling function is given. Assuming that the

radiation loss is primarily due to H~ we may write
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% dF =
5 q ? = 4T fka (B, (T) — B, (Tg))dv (101)
o X
0

where Tp is the boundary temperature for which the minimum temperature can
be taken.

| | | | | | °
T
K */
— . ot
7000 b—
| 100 / Al
V/
_ /{ y/,
- V7,
so/ /S / 4
@,
6500 [— 134 7/
/// N
/ () ]
| 4 -
- 7 -]
6000 |— V 4 —
- 5 —
5500 p—— —
- / -
5000 | ] | l | ] ] |
800 1000 1200 1400 h (km)
Fic. 18

Temperature T versus height 5 for theoretical chromospheric models of the Sun with the shock
wave period as free parameter. Values indicate periods in s. Dots give the observational model
of Noves and KALKOFEN (1970).

Mem. S.AIt., 1977 467

© Societa Astronomica Italiana * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1977MmSAI..48..439U

P97 7VNBAr - 487 ~4390!

P. Ulmschneider

In fig. 18 theoretical chromospheric models are shown which start from a
boundary point of To = 5100°K, po = 100 dyn/cm? at x = 800 km with
different periods P. This boundary point was taken from an empirical model.
Note that the choice of To and P fixes the value Fuethrough eq. (100). Because
eq. (99) is only valid for a fully developed sawtooth shock the height was
chosen considerably above the temperature minimum in order to ensure that
the shock is developed fully (see ULmscHNeEmErR 1971b, figs 4, 5). It is
interesting that agreement between theoretical and empirical models is found for
short period waves with periods between 20 to 25 s.

13 - Shocks of arbitrary strength, time dependent shock heating

The width of a shock is generally in the order of an atomic mean free path
(Lanpau and LirsHitz 1959, p. 340). The mean free path [ is given by

vt 1 1 10
Nguvt Ng N« a N

Here 4 is the Bohr radius and N the number density. For N = 10V
cm> atg = 0 km to N = 10% cm™® at x = 2000 km from the photosphere
to the top of the chromosphere / varies between 0.1 cm and 10 m. These distances
are very small against characteristic geometric distances like the wavelength or
the scale height. Moreover the optical distance across the width of the shock
is less than 10~°. Thus the shock can be treated as a discontinuity. If region 1
and 2 define the front and back of the shock, velocities relative to the shock
at rest are given by

v = wm — Ush (103)
v2 = w2 — Usy (104)

where Usy is the velocity of the shock in the Euler (Laboratory) frame. As mass
flux, momentum flux and energy flux must be continuous across a discontinuity
we have the Hugoniot relations (LANDAU and LirsHirz, 1959, p. 319)

Vi = gV, (105)
n+eaVe = p+ eV (106)
1 Y R 1 Y R
—_— V'2 _ e —-—Vz- ——'T . 1
A + T—1 o 1 > 2 -+ Y11 2 (107)

Eq. (107) is valid for a neutral gas, as is the case in the photosphere and
chromosphere. Note that at a discontinuity no radiation terms appear in eq. (107).
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Elix@nating p, p and T from eqs (106), (107) using eqs (11), (65) we find

2 + 1 +1)? 2
T e =)+ [(Y y ] (uz—u1)2+6‘12] (108)
-1 1/2
G = [ Y > (V2 — V2 + 012] (109)

2 = Si + —In— — —In—. (110)

Defining the shock strength

n = 2B (111)

P1

one can show using eqs (105) to (107) and (11) that

(S:-81) (r—Du V2 [ o )T 1+ 5 1
e R = (T] (—p—*) = (112)
1 2 -
(1— L n](1+n)*
and
—3 —1
Vz—-vlzcm[1—" n— = nz) =2m.  (113)
2 2
Expanding these equations for weak shocks n<€1 we have
R 1
S — 85 = _m___).nB' (114)
02 12
Using eq. (114) and eliminating m with eq. (113) we find
dfu v e To(S:— S 2 1 ¥
wo P o (S22 — 81) ~ — o (v +1) u (115)
dx P 3 co P

which with eq. (92) is identical to eq. (95).

With the modified method of characteristics the computation of the state
near a shock of arbitrary amplitude is shown in fig. 19,

Mem. S.Alt., 1977 ‘ 469

© Societa Astronomica Italiana * Provided by the NASA Astrophysics Data System



http://adsabs.harvard.edu/abs/1977MmSAI..48..439U

P97 7VNBAr - 487 ~4390!

P. Ulmschneider

t+ At

Postshock
Region 2

Preshock
Region1

c* C

Fi. 19
Computation of the solution at a shock point P;, P,.

We assume the solution to be given at the time z. The shock occurs between
two infinitesimally distant points Qi, Q.. At time ¢ + A ¢ the physical state at
Pi, P, is determined by the four characteristics emanating from these points and
intersecting the time level ¢ at points R,, Ri, Ti, Si. Note that the shock is
supersonic with respect to region 1, overtaking the C* characteristic there, and
subsonic with respect to region 2. The seven unknowns ui, c1, S1, %2, c2, S2 and ap,
the latter being the position of the shock at the new time, are determined by
the four differential eqs (63), (63), (66), (68) along the four characteristics, and
the three Hugoniot relations (108) to (110), where eq. (108) has to be converted
to the Lagrange frame using eq. (49). With this procedure the correct entropy
jump S2 — S1 and the heating are evaluated automatically.

14 - Comparison of chromospheric heating mechanisms

In this section we want to compare the short period acoustic heating theory
with possible other heating mechanisms. One presently (ULMSCHNEIDER 1974)
thinks of three further heating mechanisms: gravity waves, 300 s oscillations,
Alfven waves and magnetic field annihilation.

a) Short period acoustic waves
The following points are in favour of the short period acoustic heating theory.
1) Short period waves of large flux are observed (DEUBNER 1975, 1976).

2) Short period waves with an acoustic spectrum peaking at periods near
30 s are predicted theoretically (STEIN 1968, and Section 10).
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e minimum in the Sun and some stars (Section 10, figs 13, 14 and Table 1).
' 4) Short period waves have the right energy flux in order to explain the
total empirical chromospheric emission (Section 10, figs 15, 16 and Table 1).

5) Short period waves explain the empirical gradient of emission in the
chromosphere.

f% 3) Short period waves are able to explain the empirical height of the tempe-
ratgr

—
T~
&
L

The last point is seen considering fig. 20.

In fig. 20 the empirical emission rate of the chromosphere as a function of
height is shown as well as the rate of dissipation of acoustic shock waves of various
energy fluxes and periods. The emission is computed using an empirical model and
eq. (101). The dissipation is found integrating eq. (99). It is seen, in agreement
with the conclusion drawn in Section 12 (fig. 18), that the shock waves need

glr__I]IT|||||

10 = \‘\ -
( erg ) - | \i\k -
3
cm3s ‘\ ~
10 = e
- |HSRA \ 33
T = \
S NN
500 700 900 1100 1300 1500

h (km)
Fic. 20
Radiation loss rates (heavy lines) compared with shock dissipation rates (thin lines) in the

HSRA. The shock dissipation curve families are labeled by the wave periods in s and have
initial fluxes 1.0 E6, 4.0 E6, 8.0 E6 erg cm™*s™!, bottom to top.
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to have short periods in order to explain the rapid decrease of chromospheric
emission.

A difficulty for the short period acoustic heating theory is the observed fact
that the chromospheric emission is with greater altitude increasingly concentrated
in the chromospheric network. Here an enhanced generation of acoustic waves in
the presence of magnetic fields (KuLsrup 1955), a delay of shock formation by
the magnetic field resulting in a greater shock energy at larger altitudes (UcHipa
1963) or some mechanism transfering acoustic energy into magnetic regions may
provide an explanation.

b) Gravity waves

These waves (STEIN and LEIBACHER 1974) have not been observed on the
Sun. The reason for this may be that they are not allowed to propagate in the
convection zone and should suffer severe radiative damping at optical depths
T = 10 to .01. At greater heights overshooting granulation could excite gravity
waves. Both the height of the temperature minimum, because of their large periods
and the chromospheric energy requirement can not be explained by gravity waves.

¢) 300 second oscillations

These waves (STEIN and LEIBACHER 1974) represent overstable nonradial eva-
nescent acoustic modes of pulsation of the Sun (see e.g. DEUBNER 1975, AnpO
and OsAk1 1975). From their evanescent nature and a more detailed investigation
(CaNFIELD and MusmaN 1973, ZuucHspA 1973, ULMSCHNEIDER 1976) it appears
that these waves do not transport enough energy to explain the chromospheric
emission. These waves due to their long periods do not explain the height of the
temperature minimum. Because shock dissipation, as opposed to radiative, conduct-
ive and viscous heating, is the dominant heating mechanism in the chromosphere,
300 s oscillations must be unimportant because of the observed 90° phase shift
between velocity and temperature oscillation (DEUBNER 1974). In a shock wave
this phase shift is zero (see fig. 21).

d) Alfvén waves

Alfvén waves (PiopiNngToN 1973, 1976; UchHipa and KABURAKI 1974) are
very likely not a significant chromospheric heating mechanism. A recent estimate
of the energy flux of Alfvén waves (PippINGTON 1976) on basis of horizontal
granular motion seems to be much too large. Granular flow, due to the with height
increasing Alfvén speed, very likely gives rise not to Alfvén waves, but simply
to a secular change of the magnetic field configuration (ScHmipT 1976). Even
under the assumption that Alfvén waves of sufficient energy are present it is
difficult to explain how such waves should dissipate in a medium where the Alfvén
speed is increasing thus decreasing dissipation rate with height, which is opposed
to the observed strong dissipation starting at heights above the temperature
minimum and being essentially zero below.
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Fic. 21
Shock wave of 80 s period in a gravitational atmosphere. The velocity petturbation is shown
drawn, the temperature perturbation is shown dashed.

e) Magnetic field annibilation
This mechanism proposed by John Leibacher at this Erice School is little
understood.

f) Heating mechanisms for the corona

Coronal heating is presently not well understood. Here heating mechanisms
which are unimportant in the chromosphere like the 300 s oscillations or Alfvén
waves may well become dominant and be competitive or replace the acoustic
heating.
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