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Summary. This is the first in a series of papers studying
large amplitude, radiatively damped acoustic waves in
the solar atmosphere. We describe a modified method
of characteristics for the solution of the time-dependent
hydrodynamic equations in a gravitational atmosphere.
A new procedure for the detection of shocks is outlined.
Several tests of the accuracy of the method are described.
We have computed the evolution of the wave and the
height of shock formation for several values of the period
and the initial acoustic flux, in isothermal atmospheres
with temperatures 4000 and 5000 K, and in a model
solar atmosphere.
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1. Introduction

Biermann (1946) and Schwarzschild (1948) were the first
to suggest that the solar chromosphere and corona are
heated by the dissipation of shock waves developing
from acoustic waves generated in the turbulent field of
the convection zone. A test of this acoustic heating
theory was difficult because of both observational and
mathematical problems.

On the theoretical side, the computation of acoustic
waves has two main sources of difficulties. One is the
nonlinear nature of the hydrodynamic equations, which
allows the development of a sinusoidal acoustic wave
into a sawtooth-type shock wave. Here the problem is
mainly associated with the mathematical formalism of
treating this nonlinearity accurately, i.e., to follow the
distortion of the wave to the point of shock formation
and to compute the wave in the presence of shocks. The
other difficulty is due to the importance of radiative

. damping, which severely decreases the mechanical

energy of the waves. This transformation of mechanical
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_ energy into optical radiation depends on the acoustic

wavelength and on the optical depth. It is especially
severe in the range of

For earlier work in the field of radiation hydro-
dynamics, we refer to the books by Pai (1966) and
Vincenti and Kriiger (1965). However, these books and
the literature cited therein do not treat the radiation
losses adequately for our purposes. The optically thin
or diffusion approximations usually employed are valid
for small or very large optical depths, respectively, but
break down in the region near 7s5q90=1, Where the
dominant radiation loss occurs. Only very recently have
the hydrodynamic equations been solved with the
simultaneous solution of the transfer equation of
radiation (Klein, 1973; Cannon, 1974; Klein et al., 1976;
Kneer and Nakagawa, 1976). These authors have treated
the radiation damping with differential equation
methods and, in addition, have allowed simultaneously
for departures from local thermodynamic equilibrium
(LTE).

In this first (Paper I) of a series of papers, we describe
the hydrodynamic code and show how the radiative
losses are treated in the equations. In the second (Paper
II, Kalkofen and Ulmschneider, 1976) an integral
method is developed to treat the radiative damping. The
third paper (Paper III, Ulmschneider and Kalkofen,
1976) shows how the acoustic heating theory can be
used to predict the location of the temperature minimum
in the Sun. Here we show the basic equations in the
Lagrange representation. We then give the reasons for
our selection of the characteristics method to solve the
equations and discuss the initial conditions and the
choice of space and time steps. The numerical treatment
is described along with the interpolation and extra-
polation procedures and the method used to find the
point where a shock forms. We conclude by discussing
several tests of the accuracy of our solution and present
the result of adiabatic calculations for waves in solar
atmosphere models.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1977A%26A....54...61U&amp;db_key=AST

FT977ARA © C. 547 761U

62 P. Ulmschneider et al.: Acoustic Waves in the Solar Atmosphere I, The Hydrodynamic Code

IL. Basic Equations

The hydrodynamic equations describing acoustic waves
in a gravitational atmosphere are given by Landau and
Lifshitz (1959, pp. 2, 4, 49, 185). For applications to the
solar atmosphere these equations must be augmented
by the equations of radiative transfer (see Paper II) be-
cause of the low value of the Boltzmann number, the
ratio of convective to radiative fluxes. The appearance
of shocks in the continuous flow complicates these
equations, as does the influence of ionization and of
departures from local thermodynamic equilibrium,
LTE (discussed in Paper II). In view of the great com-
plexity and long computation time of a completely
general treatment we have made a number of simplifying
assumptions in order to make the problem tractable.
Furthermore, we have restricted the region of applica-
bility of our calculations to the photosphere and low
chromosphere, for which we use the HSRA model
(Gingerich et al., 1971). First, we assume that the acoustic
waves propagate only in the vertical direction. Second,
an evaluation of the mean molecular weight p and of the
ratio y of specific heats in the HSRA shows that for the
upper photosphere and the low chromosphere we may
take u and y to be constant. The values we use are
u=1.3g/mol and y=5/3. These assumptions still hold
jf acoustic waves are present because the Mach numbers
(in the Euler frame) of the waves are small, typically
between M =0.03 in the photosphere and M =0.3 in the
chromosphere. Other effects of ionization are neglected
as well, except for the influence on opacity.

Third we neglect the details of the hydrodynamic
shock structure and treat it as a discontinuity. Thus the
detailed dependence of the thermodynamic variables
and the flow velocity on height are misrepresented over
a distance of a few atomic mean free paths. The atomic
mean free path however is only about 0.01 cm in the
photosphere and about 1 cm in the low chromosphere.
This is very small compared to both the wavelength and
the scale-height. Contrary to the situation for strongly
ionizing shock waves of large Mach number (Cannon,
1974), the optical depth over a mean free path in our case
of small amplitude waves is only about At=1E-10.
Thus radiation is unimportant for the structure of the
hydrodynamic shock and hence the radiative flux may
be neglected in the Hugoniot relations. Since the entropy
increase is independent of the detailed dissipation
mechanism (Zeldovich and Raizer, 1967, p. 471) and
since it is correctly predicted by the Hugoniot relations,
the treatment of the shock as a discontinuity will be a
very good approximation. Note, that in many applica-
tions, as for example to strong shocks in variable stars
(e.g. Castor, 1972), not only the hydrodynamic shock but
also the adjoining radiative relaxation regions are in-
cluded under the term shock. We do not follow this usage
but rather take shock to mean only the hydrodynamic
discontinuity. The pre- and post shock radiative
relaxation regions are treated explicitly in our work.

Fourth, viscous and thermal conduction effects are
neglected in the non shock regions. This may be justified
taking viscosity and thermal conductivity coefficients
from Brezing (1965) and Ulmschneider (1970) and as-
suming a typical wave period of 30 s (Stein, 1968) and a
typical velocity amplitude of u=c/10, where c is the
sound velocity.

For mathematical convenience we use the Lagrange
frame, where the Lagrange coordinate a is the geo-
metrical coordinate of a gas particle at time =0
(Courant and Friedrichs, 1948, p. 13). The Euler co-
ordinate x is given by

x=x(a,t), ‘ 1)
~the flow velocity u by
0x
u=|—| . 2
o= (), @
Conservation of mass is described by the two equations
0x\ o .
=\l =— 3
’ (aa)t e’ @
and
0o o (0u
@) L 4
(51,5 el -0 @

where ¢(a, t) and g,(a) are the density distributions at
times ¢t and t=0 and v is the dimensionless specific
volume. The equation of motion reads

ou 1 (op :
(a),,%;(a‘a‘)fg-"' ©

Here p is the gas pressure and g=2.736 E4 cm/s? is the
solar gravitational acceleration. The energy equation is
given by

) -8
ot), dt

. N . e
where S is the entropy and as is the radiative
dt |Raa

damping function, which is assumed to be given as a
function of g, T, and a (see Paper II). The combined first
and second law of thermodynamics connects S with g
and temperature T

(©)

2
Rad

1
TdS=c,dT+pd (5) , )
where for constant y the specific heat ¢, is given by
¢,= 1 R , ®)
y—1p

and where R=8.3144 E7 erg/mol K is the universal gas
constant. In Equation (7) we have neglected the ab-
sorption of energy due to H ionization. This energy
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becomes important in the high chromosphere. With the
equation of state for an ideal gas,

RT
U

the problem is now posed by the six Equations (3) to (7)
and (9), which are to be solved for the six unknowns,
u,9,p, T, v and S.

III. Method of Characteristics

Several recent workers (Leibacher, 1971; Stein and
Schwarz, 1972, 1973; Klein, 1973; Cannon, 1974; Klein
et al, 1976; Kneer and Nakagawa, 1976) have chosen
the finite difference method for solving the posed system
of partial differential equations [Egs. (3) to (6)]. Apart
from the different treatments of radiation (discussed in
Paper II) the handling of the shock among these
workers differs greatly. The most detailed calculation
was done by Cannon (1974) who computed the shock
structure. Replacement of the shock by a discontinuity
as in our characteristics method represents a less de-
tailed treatment over a distance that is of the order of a
few mean free paths. However as discussed previously,
the errors in this approximation are quite small because
first the thickness of the shock is very small compared
to characteristic length scales of our problem and second
because due to the small optical thickness across the
shock, the entropy jump is given correctly by the
radiationless Hugoniot relations, regardless of the de-
tailed shock structure. Thus the replacement of the
shock by a discontinuity does not result in significant
loss of accuracy in this case. Loss of accuracy can occur,
however, if the shock is computed with the artificial
viscosity method. There the hydrodynamic variables
and the source function of radiation are changed signif-
icantly over several macroscopic grid points. This led
us to adopt the characteristics method which, in addition,
needs fewer points to represent a wave and allows faster
advance in time.

The method of characteristics that we employ is the
constant time step version due to Hartree (1952), de-
scribed by Lister (1960), Hoskin (1964) and Stefanik
(1973). We eliminate all thermodynamic variables
except two, for which we choose the entropy S and the
sound velocity ¢, which in the regions where H ionization
is neglected, may be defined by

RT
=y—. 10
i (10)
To eliminate p and ¢ from the equations we find from

Equations (7), (9) and (10)

2c uc?
= —_pdc— —odS 11
d y_lgdc yRed (11)
and
20 e
do= 1 cdc R ds. (12)

Eliminating derivatives of p and ¢ from Equations (4)
and (5), we have

2 0c pucdS cou

— = —+-—=0 13
y—10t R 0t wvaa (13)
and

ou 2 c¢dc pccoS

— === = 14
6t+y—1vé’a YR v da g=0 (14

If we add Equation (13) to (14) and use (6), the ordinary
differential equation,

2 uc as

dt) +gdt=0, (15)
Rad

is obtained along the C* characteristic, which is given
by the equation

da ¢

=_Z 16
dat v (16)
Similarly we get the differential equation,

2 uc ds

Rad

dt) +gdt=0, (17)

along the C™ characteristic, given by

da c
— = 18
dt v (18)
Finally from Equation (6), we have
ds
=— dt 19
as dt |Raq s)

along the C° characteristics, a=const.
From Equations (3), (12), (16) and (18) and with
y=>5/3, we obtain the specific volume,

3 _(S—Sou
e (Z_z) _ (269) P (20)
t

where ¢, and S, are the sound velocity and the entropy
distribution in the undisturbed atmosphere.

IV. Initial State and Grid Selection

With a given arbitrary temperature distribution, hydro-
static equilibrium is enforced when the initial sound
velocity ¢, is computed from Equation (10) and the
initial entropy distribution S, is determined from
Equation (14):

dSy_1Ro( 2 dey g
da = pco\y—1da ¢y’

The choice of the height grid is limited by two height
scales: A sinusoidal wave should be represented by at
least ten points per wavelength, and there should be at

1)
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least ten points per scale height. Thus we have chosen
a height step 4a such that

. (A H
Aa=Min (E, E) , (22)
where 4 is the wavelength and
RT :
H=— (23)
. K9

the scale height.
The time step At in Hartree’s (1952) method is chosen
to be

At=0.9 4a (24)
Co

in order to exclude extrapolations and to include only
neighboring points for interpolation. In principle, how-
ever, we are not bound to the Courant condition because
the method of characteristics automatically ensures that
the points at the new time stay within the domain of
dependence. In an isothermal atmosphere, e.g., the
numerical factor in Equation (24) may be chosen equal
to unity to simulate a moving boundary condition.

V. Numerical Treatment

The detailed numerical treatment proceeds as shown by
Lister (1960) and Hoskin (1964) and will not be repeated
here.

V.1. Method of Solution

We assume that at the old time the solution is given at
grid points and at a number of special points like
boundary or shock points. Because radiation transport
occurs essentially instantaneously (see Paper II) the full
characteristics method, where the solution advances
with unequal time steps, cannot be applied. Instead we
use the modified characteristics method due to Hartree
(1952) which allows for a constant time step At. Thus
the position of the grid at the new time t+ At is known.
For radiation (see Paper II) we assume the radiative
damping function

as

D= —
dt Rad

(25)
to be given at every grid and special point in the old as
well as the new time level. For adiabatic cases D is zero.
The entropy S at the points of the new time level is
computed by integrating Equation (19) along the C°
characteristic using the trapezoidal rule. The remaining
unknowns, u and ¢, are then found by integrating
Equations (15) and (17), respectively, along the C* and
C~ characteristics given by Equations (16) and (18).
Since the slopes of the C* and C~ characteristics are
known only at the old time level an iterative procedure is

necessary. We found that about four iterations were
needed for a relative error of 1.0 E-8 in u or c.

For non interior points the treatment is slightly
modified. At the lower boundary the velocity is known
from the prescribed piston motion and only ¢ needs to
be iterated along the C™ characteristics. For the piston
velocity we usually took

. (2w ).
U= —1ugsin (F t), (26)

where u, is given by Equation (38) and P is the period
at the acoustic wave. At the upper boundary we usually
took a “transmitting” boundary condition as used by
Leibacher (1971) and Stein (1972). Here the velocity
amplitude u is assumed constant along the C* charac-
teristic. This choice is suggested by comparison to
sound and simple waves, where the constancy of u is
rigorously true. The constancy of u is however only
approximately true in more general situations. In our
cases the transmitting boundary condition was found
to give excellent transmission even for waves with large
amplitudes less than c.

At the shock, which is treated as a discontinuity that
separates the preshock region 1 from the postshock
region 2, we search for the solution at two infinitesimally
separated points. As described by Hoskin (1964) there
are the characteristics C*, C° and C~ that emanate
from the preshock point and the C* characteristic
from the postshock point. Thus from the integration of
Equations (15) to (19) we find four of the seven un-
knowns, u;, ¢;, S, Uy, C5, S, and the shock velocity
Ugg. The remaining three unknowns are determined by
the three Hugoniot relations (Landau and Lifshitz,
1959, p. 319), which in cases of no ionization may be
written

+1 +1 2 1/2
Usg=u; + 74 (uy—uy)+ [(V_) (uz—u1)2+cf] >

4
@7)
V=1 o 2y, 2 12 ’
€= T(Vl -V )+01} ) (28)
and
s2=sl+y%1§1n2—j—§n% 9)
where
Vi=u,—Ugy (30)
and
Vy=u,—Ugy. (31)

The slope of the shock path in the Lagrangian frame
is given by
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A hierarchy of iterations is employed in order to find
the shock position and to integrate the unknown
quantities with the trapezoidal rule. Since this procedure
is strongly oscillatory, damping was introduced by
averaging u, with the previously computed value. For
grid points in the vicinity of boundaries, special treat-
ment is necessary because of the intersection of charac-
teristics with the boundaries. In such cases we obtained
the solution at the boundary by means of an inter-
polation.

V.2. Interpolation and Extrapolation Procedures

The method of characteristics of Hartree (1952), in
contrast to the full characteristics method, involves
interpolation of solutions at the old time level. This
may be performed in several ways. Hartree (1952) used
parabolic interpolation and ensured that the pair of C*
and C~ characteristics emanating from a point in the
new time level always fell within + Aa of the position of
the point in the old time level. This forces the time step
[see Eq.(24)] to be close to the Courant time. In principle
one is not bound to this procedure and one can allow
for time steps greater than the Courant time. However,
when many grid points fall between the intersection
points of the C*, C™ pair, the accuracy is lowered since
the influence of the intermediate points on the curvature
of the characteristics is ignored. Thus we always kept
close to the Courant condition. Other types of inter-
polation either lead to poor solutions, as for linear
interpolation, or to long computation times, as for
interpolation employing higher order polynomials.
Extrapolation to zero step size, as described by
Lister (1960) and used already by Richardson and Gaunt
(1927), also may lead to difficulties when used in the
modified characteristics method. This method increases

-the accuracy considerably when applied to the full

characteristics method, as shown recently by Smith
(1970). For the modified characteristics method, how-
ever, we found that this procedure amplifies the errors
of the parabolic interpolation scheme and leads to
oscillations in the compression region, eventually
resulting in double peaks. Note that this oscillation has
nothing to do with oscillations appearing in the same
region when using finite difference methods but is
simply a result of the parabolic interpolation. This can
be demonstrated by comparison with the full charac-
teristics method where these oscillations do not occur.
We found that discarding the extrapolation procedure
improved the solution considerably.

V.3. Shock Finding and Insertion

In the modified method of characteristics, the shock
finding procedure presents certain difficulties that are
not found in the full method of characteristics. Shocks
appear in a continuous flow whenever characteristics of

the same family intersect. We thus followed C* charac-
teristics from adjacent grid points by integrating
Equation (16) with the trapezoidal rule. Here the slopes
da/dt at the new time level were interpolated after the
solution is known. Straight line intersection of two C*
characteristics predicts the position and time tgy of
shock formation. When the characteristics were close to
intersection, however, we found that if ¢ is the time of
the last computed level then shock times tgy less than
t+ At were never found, and at every time step, t5y was
increased by At. We avoided this difficulty that is due to
interpolation, by always keeping only the lowest value
of tgy. In order to take into account the fact that the
approach -to the shock should involve interpolation
curves of higher order than second, Stefanik (1973)
employed the three left points of four grid points for the
interpolation of the left C* characteristic. This procedure

~led to satisfactory shock finding.

In order to avoid following a large number of
characteristics we employed a method that allows the
shock to be found without integration of characteristics.
Since the position where the shock might occur can be
found by searching for the maximum of the slope
difference

_da

da
AyMax= E

LT d (33)

c3

of adjacent grid points 1 and 2 we may compute the
separation 44 of the two C* characteristics by using

AA=A404(4a—Ayy.,4t)/4a, (34

where 4Aq,4 is the separation at the previous time step
and originally 445,4=4a.

The shock is inserted whenever t5y is found at a
time ¢t less than t=1t,4+4t. This procedure is different
from that of Stefanik (1973), who inserted the shock
at a much later time. At the midpoint in the interval
where Ay is found  we interpolate with Stefaniks
method uy, ¢y, D; and S, =S, using the three forward
points, and u,, ¢,, D, using the three backward points.
This method never led to any oscillation of the type
found by Stefanik (1973) and the increase of the entropy
perturbation always proceeded in a smooth monotonic
manner.

VL. Tests

We have tested our numerical procedure in several ways.
Direct tests were done to check the conservation of
energy. Using Equations (7) to (10) we derive an energy
conservation equation in the Lagrange frame,

0 1 o(up) ds
a_t(QOCVT+ 590“2) + “oa +0oug—0oT

E Rad=0,

which is similar to an equation given by Landau and
Lifshitz (1959, p. 11). Here g, is the density of the un-
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disturbed atmosphere. Integrating the five energy terms
in Equation (35) individually over time and over a
vertical column, one square centimeter in area extending
from a=0 to a=ay,,, we find energy conservation to be
accurate to about three significant figures. Because no
error accumulated in time after many time steps, we
attribute the remaining error to the integration and
consider the convergence of the total energy established.
The Euler grid x was calculated by integrating Equation
(3), evaluating the piston position directly from Equation
(26).

Energy flux conservation was checked by computing
the mechanical flux

nFM=} (p—po)udt/jE dt

ta

(36)

ta

where p and p, are the instantaneous and the initial
pressures. At frequencies high compared to the cut off
frequency this flux can also be found by using

t t
nFy =] roouzdt/j dtcosa (37

tq ta

where o is the phase shift [cf. Eq. (52)]. Here ¢, is the
arrival time of the wave at the height where the flux is
being computed. ¢, was evaluated under the assumption
that the initial disturbance, usually an expansion wave,
travels with sound velocity. The flux nF,, as a function
of time ¢ oscillates with decreasing amplitude around the
average flux value. This average flux is equal to nF,, at
large t or simply at t=t,+ P. With Equation (37) we
were able to check whether the initial flux zF; introduced
at the lower boundary according to Equation (26) and
with

2nF;

1/2
_— s 38
go(l)co(l)] (8)

u0=

propagates through the atmosphere. An accuracy of a
few percent was found for flux conservation in adiabatic
cases.

We performed checks against analytic solutions for
a number of cases. Deviations were always found to be
far less than one percent when compared with simple
wave solutions. Very good agreement with analytic
results was also found in the case of a constant velocity
piston (Landau and Lifshitz, 1959, p. 357). This solution
allowed to test the jump conditions, the velocity of the
shock, and the integration of the shock path through the
Lagrange space. The analytic solution of the constantly
accelerated piston (Courant and Friedrichs, 1948, p. 110)
serves as an excellent test for our shock finding procedure.
We have varied the grid size by a factor of ten and found
the shock in each case within 4a and At of the true
position. Again, in contrast to Stefanik (1973) we found
that the variables behind the shock did not show
oscillatory behavior.

1

RELATIVE AMPLITUDE

-1.0 1 | |
(o] 100 200 300 400

HEIGHT (km)

Fig. 1. Acoustic wave with a period of P=20s and an initial flux of
nF,=2E7 erg/cm? s at time t =61 s. The ordinates must be multiplied
by the values in parentheses: gas velocity U (drawn) (1.60 E4 cm/s),
temperature T’ (dashed) (6.00 El1K), and pressure perturbation
P’ (—-) (1.32 E4dyn/cm?). The calculation with the flux of nF;=
1.6 E8 for the same time is indicated by short arcs at the maxima and
minima. The ordinates for this calculation are larger by a factor of
1/§ than those of the low flux wave

1.0 x T T T T T

M 50 S
-\

0.5 —\

RELATIVE AMPLITUDE
o

L \ \\\~’/ §
-05 \ :
I /
L \ ‘ /
N
-1.0 | ] | i i/
(0] 100 200 300 400 500

HEIGHT (km)

Fig. 2. Acoustic wave with a period of P=50s and a flux of nF;=
2E7erg/cm? s at t=78 s, with the same symbols as those of Figure 1.

- For an amplitude of unity, the ordinates are U=2.00 E4, T'=6.81 E1

and l/If'= 1.01 E4. For nF,=1.6 E8 erg/cm?s the ordinates are scaled
by I/8

VIL. Results
V1I1.1. Isothermal Gravitational Atmosphere

Figures 1 to 4 show calculations of acoustic waves in an
isothermal gravitational atmosphere with a temperature
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1.0 I I ' I I ' ' flux nF;. Figures 1 to 4 give the results for periods
i ] P=20, 50, 80 and 190s with initial flux nF;=2.0E7
QT erg/cm? s and, indicated by short arcs, with nF,=1.6 E8
i 80S S h erg/cm? s. Displayed in these figures are the gas velocity
] u, the temperature disturbance T'=T-—T;, and the
| pressure disturbance p'=p—p,. In order to minimize
\ | the effects of transients, we always started with an
\ N expansion wave.
\
\ .
;\___7 a. Comparison with Linear Theory
‘\ 7 It is interesting to compare these results with the linear
‘\ T theory of small amplitude waves. Since the results of the
\\ 7 linear theory in the Lagrange frame exhibit character-
\ ] istic differences compared to the results in the Euler
» \\ ] frame (Hines, 1960; Pitteway and Hines, 1965), we show
i / \ ] here the relevant equations for the Lagrange frame.
/ \ T Taking an isothermal gravitational atmosphere with
L \ . . . .
/ AV the scale height H in the Lagrange frame, we obtain
10 /| L /o 7] from Equations (3) to (5) by linearization
0O 100 200 300 400 500 600 700 a0’ ou
HEIGHT (km) aﬁ+goa—=0 (39)
Fig. 3. Acoustic wave with a period of P=80s and a flux of nF,= t a
2E7erg/cm? s at t=10s. For meaning of symbols, see Figure 1. For and
an amplitude of unity, the ordinates are U =3.51 E4, T'=1.15 E2 and
P'=1.23 E4. For a flux of nF;=1.6 E8 erg/cm?s the ordinates are ou ¢} 0o’
led by /8 e+ — =0, 40
scaled by /8 ot g Oa (40)
10r<7 T 1 T T T T T T where
SN .
P'=p—po (41)
and
¢'=0—0o> (42)

RELATIVE AMPLITUDE

-1.0 1 | 1 | | 1
o] 100 200 300 400 500 600 700 800 900

HEIGHT (km)

Fig. 4. Acoustic wave with a period of P=190s and a flux of nF;=
2E7erg/cm?s at t=143s. For symbols see Figure 1. The ordinates
at unit amplitude are U=5.20 E4, T'=1.65E2 and P'=2.60 E3. For
nF;=1.6 E8 erg/cm? s the ordinates are scaled by ]/g

T,=4000 K. The gravitational acceleration has the
solar value g=2.736 E4cm/s?, and the density at the
lowest point is g, = 1.0 E5 g/cm3. The wave was excited
by a piston oscillating sinusoidally according to

~ Equations (26) and (38) for a chosen value of the initial

with p" and ¢’ as well as u assumed to be small. For
vertical propagation of the sound wave, we assume

Q1=Q0RAei(wt—Ka) (43)
and
u=UAe' @Ko (44)
where
K=k+ib 45)

is a complex wavenumber vector, 4 an arbitrary ampli-
tude, w =2nv the wave frequency, and R and U complex
polarization factors.

We find the characteristic equation,

i —ik+b\ [R
N P N (6)
—ikc3+bcd— 2> iw U
which has a nontrivial solution only if
Wy
=— 47
- @)
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and transmits much energy but will eventually be strongly
w? —a? = kil (48) damped, as is pr‘edicted by the linear' theory.

’ In computations for the same periods but the larger

where " flux of nF, = 1.6 E8 erg/cm? s, we note the familiar scaling

law for sound waves. We have indicated the results of

W= Y9 _ Co (49) these calculations by short arcs near the maxima and

2¢co 2H minima of the low flux values. In sound waves, the

is the acoustic cut-off frequency, as in the Euler frame.
However, the solution for R and U,

r[i- ()% o
w w

and

U=c¢,, (51)

is different from that in the Euler frame. The phase shift
o of the density oscillation relative to the velocity
oscillation is given by

W,/

a=arc tan tl—_@W

. (52)

Since, in the adiabatic case, the entropy in a fluid
element is constant, both temperature and pressure
oscillations have the same phase shift as the density
oscillation. This is contrary to the solution in the Euler
frame, where the temperature and density oscillations
are 180° out of phase for w—w,. Figures 1-4 demon-
strate the behavior that is typical for the Lagrange frame,
where the phase shifts of p’, ¢" and T’ coincide. These
values always have a common node with a forward
phase shift « relative to the velocity oscillation. The
phase shifts found numerically were 3.0 km for a wave
with a period of P=20s, 16 km for 50s and 42 km for
the 80-s wave. These values are in rough agreement with
the height shifts Ak of the linear theory

o
Ah=c, " P (53)
for a cut-off period of P,=180s and w,=2n/P,.
Equation (53) gives Ah=2.3 km for P=20s, 14.6 km for
50s and 38.3km for 80s. The differences between
theory and numerical computation are most likely due
to transients. The steepening influence of the decreasing
density in the gravitational atmosphere is obvious in
Figures 1-4.

For the 20-s wave, Equations (44)—(49) are satisfied
to an accuracy of about 1%, as judged by the ratio of
successive maxima and minima. For the 50-s wave, the
accuracy is still 8%. As in the case of phase shifts, it is
again obvious that for longer periods the effect of
transients is more pronounced; it can easily be seen in
Figure 4 where the height difference between the head
of the wave and the first node is much smaller than the
value of 1/2=620 km of a 190-s wave. This wave, which
has a longer period than the cut-off period of P, =180s,

amplitude is proportional to the square root of the flux.
As can be seen in Figures 14, the results for the flux of
1.6 E8 erg/cm? s, scaled by ]/§, are almost the same as
those for the flux of 2.0 E7 erg/cm? s. Thus, the scaling
law appears to be valid over a large range of initial
fluxes. For an acoustic flux smaller than about 1.6 E8
erg/cm? s, the solution may be obtained from Figures
1-4 by scaling.

b. Heights of Shock Formation

Figure 5 shows the heights of shock formation in iso-
thermal gravitational atmospheres with temperatures of
T,=4000 and 5000 K and the solar gravity of g=
2.736 E4 cm/s?. The values labeling the curves represent
the initial fluxes nF; that were used in Equation (38) in
order to compute the velocity amplitude of the piston.
For small periods (<80s), this flux represents cosa
times the actual acoustic flux. It is seen that the shock
heights increase with period. This well known effect
(see, e.g., Ulmschneider, 1971a) can be understood from
the theory of simple waves. We have compared these

1000 [~

900

800

700~

HEIGHT (km)

600

500

400
20 25 30 40 50

PERIOD (s)

Fig. 5. Height (Eulerian) of shock formation versus period of acoustic
waves in isothermal gravitational atmospheres with temperatures of
4000 K (drawn) and 5000 K (dashed) and initial flux nF, in (erg/cm? s)
as parameter. Error bars indicate grid size Aa. X marks the calculation
for nF,=1.6 E8 erg/cm? s with 24a
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heights with formula (6) of Stein and Schwartz (1972)
using A=cyP/2 and u, from Equation (38). We found
some discrepancies, suggesting that Stein and Schwartz’s
equation overestimates the shock heights by about
10-20% (see Table 1). From Figure 5 it is seen that a
factor-of-two increase in flux decreases the shock height
by a constant difference of about 60 km. This height
difference was also found from Stein and Schwartz’s
formula, which suggests that their formula needs to be
corrected by subtracting about 50 km, or half a scale
height.

In Figure 5, we show the influence of the grid size on
our calculations. We always used about 28 points per
wavelength [cf. Eq. (27)] and ensured that da< H/14.
The grid size is indicated by error bars in Figure 5. By
reducing the stepsize to 4a/2 we found the same shock
heights within 44/2. Only when we doubled the stepsize
to 24a were somewhat larger shock heights obtained,
as indicated for one case in Figure 5. Even in this case of
14 points per wavelength, the shock heights were found
to within 44a of the true location. This behavior
demonstrates the advantage of the characteristics
method over the finite difference method because the
former needs only a very small number of points per
wavelength.

c. Shock Propagation

The formation of the shock and the computation of the
shock propagation are shown in Figure 6 for a wave
with a period P=80s and an initial flux of nF;=8 E7
erg/cm®s at time t=164s. We see that the entropy

1.0 T T T T T T T T
L I N
N 80 S ',’ |
h
L 7 4
05 I -
w
Wt / -
=) L / .
L /./
| r / h
a | i _
s 7
< 0o z _/
\\ //
w L -~
=
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< L
i
w L
o
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-1.0 1 L 1 ! 1 1 1 1
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HEIGHT (km) :

Fig. 6. Acoustic wave with a period of P=80s and a flux of nF,=
8 E7erg/cm?s at t=164s. For legend see Figure 1. Insertion and
growth of the shock are shown by the entropy perturbation §'=
§—8, (—-). The ordinates at unit amplitude are U=4.17E5, T'=
294E3 and S'=198 E7

Table 1. Shock heights in kilometers for different periods P and initial
fluxes nF;. Heights labeled e are obtained with the full hydrodynamic
code; those labeled a are obtained with the method of Ulmschneider
(1971b). Columns labeled S are values computed from Equation (6)
of Stein and Schwartz (1972). Values are for an isothermal atmosphere

of temperature T=4000 K

nF;=2E7erg/cm?®s nF;=8 E7erg/cm? s

P(s) e a S e a S

25 637 601 708 509 479 583
50 - 765 724 836 642 599 708
80 874 809 923 745 679 795

perturbation S'=S-—S, representing the shock dis-
sipation increases rapidly. The shock has attained a
sawtooth profile and has reduced the width of the
expansion region in front. A comparison of the dis-
sipation with the results of the weak shock theory is
planned for a separate work.

VI1I1.2. Comparison with the Transform Method

One of us (Ulmschneider, 1971b) has given a simple
method for the computation of acoustic waves in an
arbitrary atmosphere. This method essentially trans-
forms. the shape of the velocity profile according to the
requirements of energy conservation and simple wave
theory; it becomes exact for zero gravity. Because this
method is much faster on a computer and requires only
a small fraction of the programing effort of the full
hydrodynamic code, it is interesting to compare it with
the present code. Table 1 shows the shock formation
heights for different periods and initial fluxes in an iso-
thermal gravitational atmosphere with T, =4000 K and
g=2.736 E4cm/s®>. The approximate method gives
results with an error of about half a scale height. Con-
sidering the large range of fluxes and periods and the
completely different approach, the agreement is good.

VI1I1.3. The HSRA Atmosphere

Since the effects of radiative damping on acoustic waves
depend on the radiative emission and absorption pro-
cesses, it is desirable to compute as a first approximation
the shock-formation heights in a solar model without
radiative damping. Our model is the Harvard Smith-
sonian Reference Atmosphere (HSRA) (Gingerich et al.,
1971). In order to show the situation in a radiative
equilibrium atmosphere, this model was modified at
heights above the temperature minimum according to
the theoretical calculations of Kurucz (1974). The model,
which is given in Table 1 of Paper III, is essentially the
HSRA below 500 km. Figure 7 shows the height of shock
formation as a function of period and initial flux. Here
we have taken only periods that are near the range of
calculated maximum acoustic power (Stein, 1968). The
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Fig. 7. Shock height (Euler variable) in the HSRA versus period. The
initial flux of =F; in erg/cm? s is indicated. Also shown is the location
of the temperature minimum in the HSRA. Grid size is indicated by

. error bars

value of the flux is treated as a free parameter that is
chosen in the range between 1 E7 to 2 E8 erg/cm?®s. A
flux of that magnitude is thought to be produced in the
_solar convection zone. It is seen that for a realistic
acoustic flux the shock-formation height lies between
300 and 500 km. Only for the lowest fluxes and largest
periods do shock heights occur that are above the
empirical HSRA temperature minimum, as indicated in
Figure 7. The shock height increases nearly linearly with
period, in contrast to the isothermal cases. This behavior
may be understood from the slowly decreasing tempera-
ture in the upper parts of the HSRA. As in the isothermal
atmosphere, a decrease of the initial flux by a factor of
two increases the height of shock formation by an almost
constant height interval of about 70 km.
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