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Summary. In this fourth paper of a series on acoustic
waves in stellar atmospheres the leapfrog type finite dif-
ference method and various forms of modified charac-
teristics methods are compared for accuracy and effi-
ciency. Although the choice of the method depends
somewhat on the application we found that the most
accurate and the most efficient method is a modified
characteristics method with natural cubic spline inter-
polation.
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1. Introduction

In recent years a growing number of hydrodynamic cal-
culations has been made to investigate acoustic wave
processes in the solar and in stellar atmospheres. Various
mathematical methods are used for this purpose.

The explicit second order leapfrog type finite dif-
ference method (FDM)using pseudoviscosity (Von Neu-
mann and Richtmyer, 1950) was employed for instance
by Christy.(1964), Leibacher (1971), Stein and Schwartz

. (1972, 1973), Klein et al. (1976). The modified charac-

teristics method (MCM) with fixed time steps (Hartree,
1952; Lister, 1960; Hoskin, 1964) on the other hand was
used by Stefanik (1973), Chow (1973), Ulmschneider
et al. (1977a, Paper I of this series), Kalkofen and Ulm-
schneider (1977, Paper II), Ulmschneider and Kalkofen
(1977, Paper III), Ulmschneider et al. (1977b). Because
these computations, especially with the inclusion of radi-

ation, ionization, statistical equilibrium etc., are highly

time consuming on the computer and yet of fundamental
importance for the understanding of the chromosphere,
transition layer and corona, a detailed comparison sing-
ling out the most accurate and efficient method is of
great urgency. It is the aim of this fourth in a series of
papers on acoustic waves to make such a comparison as
far as is presently possible.
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For this purpose the exact simple wave solution of
a sinusoidally oscillating piston is employed. Compari-
sons are also made for the constantly accelerated piston
and for a sinusoidal piston in a gravitational atmo-
sphere. A short discussion on the different radiation
treatments is given but a detailed comparison is beyond
the scope of this work.

2. The Hydrodynamic Codes

The MCM computes the solution at a given point P by
backtracing the characteristics at this point to their in-
tersection points with the former time level, where the
solutions are determined by interpolation. The charac-
teristic equations then give the solution at P. Since this
solution influences the slope of the characteristics, the
whole process has to be iterated until convergence is
reached. The type of interpolation at the lower time
level is of great importance for the success of the method.
We used three different types of interpolation,
MCMP : interpolation by quadratic parabolas,
MCMA. : interpolation by weighted quadratic parabolas
as used by Kurucz (1970, p. 16),

MCMS : interpolation by natural cubic spline functions.
For the details of the MCM see Papers I and II of this
series as well as Ulmschneider et al. (1977b).

The interpolation accuracy at grid point i is influ-
enced by the Courant number,

At Pi At
L,-=C,~ —_—= : i
Ax; p;(t=0) ¢ 4a; @

This quantity determines the spatial distance be-
tween the grid points and the intersection points of the
characteristics with the lower time level. Here, ¢ denotes
the sound velocity, p the density, and x and a the Eu-
lerian and Lagrangian coordinates respectively.

The overshooting of the interpolation curve which
may appear with methods MCMP and MCMS is avoid-
ed in MCMA by weighting the coefficients of the back-
ward parabola y;(@) and of the forward parabola
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Fig. 1. The exact velocity profile u,, (drawn heavy) as function of
Lagrangian height represented by an equidistant grid. Also shown is
the deviation of the velocity from u,, for the four numerical methods
indicated

¥i+1(@) inversely by the second derivatives of these
curves, so that
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is used as interpolation curve in the range ¢;<x=<a; ;.
In the FDM a pseudoviscosity term,
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is added to the pressure in the momentum and energy
equations. Here, u is the gas velocity, and ¢, is a free
parameter. Although ¢ originally had been introduced
to avoid discontinuities and to account for shock heat-
ing, its inclusion also improves the accuracy in the case
of continuous flows. This is due to the fact that artificial
viscosity does smooth the oscillations inherent in the
FDM scheme which are seen e.g. in Figure 1. As is
shown in Section 3 below, a certain value of ¢, will
minimize the errors experienced in the FDM method.

We coded the MCM and FDM schemes for the com-
putation of waves in a one-dimensional, compressible,
nonisothermal gas under the action of a constant grav-
itational acceleration g. In order to compare our numer-
ical results with analytic solutions we assume first the
medium to be isothermal with g=0 and at rest at time
t=0. The waves were induced by a piston at the left

boundary of the medium (at grid point 1), moving sinu-
soidally with period t such that at time ¢

u(t)=M, c,sin (21—“ t) , C))

where c, is the sound velocity at =0 and M, the Mach
number. With these special initial and boundary values,
the waves are simple waves (Courant and Friedrichs,
1948, pp. 59, 60, 92—95) with the C*-characteristics
being straight lines, and the analytical solution at any
point of the (a,f)-plane may be computed using the
constancy of the Riemann invariants (Courant and
Friedrichs, 1948, pp. 87, 88) along the characteristics.

The shock insertion point (ay, ¢,) is defined by the
earliest intersection point of two characteristics of the
same kind. There the solution is no longer unique. There-
fore, this point may be computed as the cusp of the en-
velope of the characteristics (Courant and Friedrichs,
1948, pp. 107—115). For a piston motion after Equation
(4), this gives

PR < y(y+1)
K o+Dr\(1+2y g+ D) M2 -1

-1 1/2
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T

Here, y denotes the ratio of specific heats and #g is
the time at which the C*-characteristic through the
shock point originates at the piston:

- [n-aresin (102704 D M|

L 2 (+1) M,
K for My<0 0
0 for My>0.
3. Accuracy

Under solar chromospheric conditions (y=5/3, ¢c=7.3
E 5 cm/s), Equation (5) gives a shock time of 86.4 s for
a wave of period =30 s and amplitude M,=—0.05.
Figure 1 shows the exact velocity profile u,,(a) of the

~ wave as function of Lagrange height a at the time 60.75s.

Also shown in Figure 1 are the deviations u—u,, of the
numerical result for all four methods. For these com-
putations, we used an equidistant spatial mesh with grid
point density n=40 grid points per wavelength. The
total number of gridpoints was N=_80. The boundary
condition on the right was chosen to transmit forward-

" facing simple waves without reflection (see Paper I).

The errors of the MCMS method are roughly pro-
portional to the second derivative of the exact curve.
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This may be due to the tendency of spline interpolation
to underestimate the curvature. The deviations of the
other three methods have mostly the same sign as the
slope of the exact solution, with the exception of the
peaks which occur in the MCMA near turning-points
of u,,. For all methods, the largest errors occur in the
region of high compression (i. e. with steeply descending
velocity profile) near grid point 62, which is soon going
to steepen into a shock near point 96.

A simple parameter which allows to judge the ac-
curacy may be defined in various ways. Two commonly
used choices are the maximum norm of the error vector,
max |u;—u; .|, or the Euclidean norm. In a scaled and
dimensionless form, the Euclidean norm may be written

M 1/2 M 1/2
F(M)=<z=:1 (ui_ui,ex)z) /(2_;1 ui%ex) (8)

This quantity gives the mean relative error in the gas
velocity for grid points 1 through M where M <N is
some intermediate grid point. As M is allowed to vary,
different regions of a wave (like compression regions or
the vicinity of the right boundary) may be investigated
separately.

As is demonstrated in Figure 2, this function shows
a plateau-like structure which is caused by the fact that
the largest errors occur in compression regions. Figure
2 shows that the accuracy of the MCMP and FDM
schemes is almost the same, while the MCMA is much
better. Spline interpolation, MCMS, gives even smaller
errors, especially in the compression region. This scheme
is found to be superior to all other methods.

The accuracy of the FDM depends on the pseudo-
viscosity parameter, the best choice of which is not
known a priori. This has been shown for shock propa-
gation by Colombant and Gardner (1976), and is also
true for adiabatic flows. The above calculations have
been done with ¢Z=0.88, since this value minimizes the
height of the lower plateau. For larger values of ¢, the
errors due to irreversible viscous heating increase, while
for smaller values the oscillations of the u—u,, curve
increase. For example in computations with ¢;=0 or
¢;=1.7, the errors are increased by about 10%; relative
to the optimum case with ¢Z=0.88. The optimum vis-
cosity parameter depends on the definition of the ac-
curacy as well as on the shape of the wave and the grid
point density. Our sinusoidal wave, for instance, re-
quires an increasing pseudoviscosity for decreasing grid
point density.

4. Computing Time and Efficiency

All codes were written in the same language, namely the
ASA standard version of FORTRAN IV. Moreover,
similar programming and storage techniques have been
used. The net computing times—i.e. the times without
data initialisation, input, and output—are therefore a
good measure for comparison of the speed of the codes.
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Fig. 2. Cumulative errors measured in the Euclidean norm F(M) as
function of grid point number M for the four methods. Also shown is
the exact velocity profile u,, (drawn heavy)

Time step and grid point density n are interlocked
by stability criteria. These are the Courant-Friedrichs-
Lewy condition, L<1, for the MCM schemes, and a
somewhat stronger condition in the case of the FDM
which has to be tested experimentally (Richtmyer and
Morton 1967, p. 329). Therefore, one would expect that

computing time ~(4a) ~2 ~n? ®

holds. We found that this relation is fulfilled quite ac-
curately by all codes.

However, the relative computing times of the four
methods differ: While the MCMP and FDM need al-
most the same time, the MCMA and MCMS codes are
slower by about 35 and 559, respectively. Since FDM
and MCM schemes use different stability criteria, these
numbers are slightly different when using other ampli-
tudes and different types of waves. We tested such cases
with the MCMP and FDM codes, and found that the
above result is representative.

Since all codes are based on second order methods,
the errors should be inversely proportional to the
square of the grid point density #,

F(N)~n—? (10)

As is shown in Figure 3, this relation holds quite well
in the limit n— co. :

Neither computing time nor accuracy alone are good
parameters for the judgement of the quality of a code.
However, since computing time is proportional to n*
[Eq. (9)] and the errors are roughly proportional to n ™2
[Eq. (10)], the quantity

n=/(error - computing time) ~!

(1n
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Fig. 3. Cumulative errors measured in the Euclidean norm F(N) as
function of the grid point density per wavelength n

should be nearly a constant for each code, at least in the
limit n— 0o. We therefore use # as a measure for the ef-
ficiency of a code. Figure 4 shows, for all codes, that 5
varies only slightly with grid point density. The error
has been measured by F(XN), but the qualitative results
are the same if the maximum norm or any other value
of F(M) is used instead of F(N).

Figure 4 demonstrates clearly that the MCMP code
" is only marginally (by about 20%,) more effective than
the FDM scheme. Interpolation by weighted parabolas
yields a significant improvement. The most effective
code, however, is MCMS. For not too small values of
n, it is superior to the other methods by an order of
magnitude. For small grid point densities, the differences
between the curves decrease.

5. Constantly Accelerated Piston,
Gravitational Atmosphere

In addition to the sinusoidal piston we have compared
the different codes for the constantly accelerated piston.
Here exact analytic solutions are known (Landau and
Lifshitz 1959, p. 370). The results were found to be simi-
lar to what we found for the sinusoidal piston and are
thus not repeated here.

For the more interesting case of a sinusoidal piston
with gravity no exact solutions can be constructed. Here
one has to rely on the property that for zero step size
(n— o0) the exact solution is approached. We found that
for this nonisentropic case the overall results described
for the sinusoidal, g=0 case still apply. In the most
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Fig. 4. Efficiency #, the inverse of the product error times computing
time, as function of the grid point density per wavelength n

severe nonisentropic cases with large temperature gra-
dients (see also Ulmschneider et al., 1977b) the spline
interpolation may tend to show oscillations at the trail-
ing edge of the velocity profile near shock formation.
These oscillations have even greater amplitudes in the
MCMP but do not occur in the MCMA scheme due to
the higher intrinsic dissipation of this interpolation
method. In the FDM scheme such oscillations are like-
wise found and may even appear in isentropic cases.
Here increasing c, will suppress the oscillations. Since
as shown in Figures 1 and 2 the most severe errors occur
in the compression region these oscillations do not great-
ly affect the total accuracy. They may however present
a problem for the numerical procedure to find shocks.

6. Non Hydrodynamic Criteria

The codes for the computation of acoustic waves in
stellar atmospheres are not judged by the treatment of
the hydrodynamics alone but also by the way how they
solve the equations of radiative transfer, of the ioniza-
tion equilibrium and, if non-LTE effects are important,
how they solve the statistical equations. In recent com-
putations that include radiation (Cannon, 1974; Klein
et al., 1976; Kneer and Nakagawa, 1976, Papers I-11I;
Ulmschneider et al., 1977b) the largest time is usually
spent in these non hydrodynamic parts of the code. It
is very difficult and beyond the scope of this paper to
give a comprehensive comparison of these non hydro-
dynamic methods. For instance we found that the inte-
gral method of Paper II for the solution of the transfer
equation is by about a factor of four times slower than
the Feautrier method used by Klein et al. (1976). How-
ever, this is offset by the greater accuracy of the integral
method. It is important to note that the choice between
integral or differential method for the solution of the
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transfer equation does not depend on the hydrodynamic
method. In both the FDM and MCM schemes either
radiation method may be used. For the hydrodynamical
schemes the important fact is that the treatment for the
simultaneous solution of the energy and transfer equa-
tions in the FDM and MCM schemes both involve
iterations, the rapid convergence of which depends
heavily on good initial estimates. Thus it is difficult to
assess whether the Newton-Raphson iteration in the
FDM (e.g. Klein et al., 1976) is more efficient or the D
iteration in the MCM (Paper II) where incidentally the
number of iterations could be shortened considerably
by sacrificing accuracy.

7. Conclusions

Disregarding the efficiency of the non hydrodynamic
parts of the four numerical methods, a few general state-
ments may be extracted from our results. These are:

Relative to accuracy, computing time, and efficiency,
the MCMP and FDM schemes do not differ much. The
FDM method has two disadvantages: First, it needs a
pseudoviscosity, the optimum amount of which cannot
be known in advance. Second, it needs more timesteps,
which is of importance if additional, non hydrodynamic
processes are included.

The MCMA, and even more distinctly the MCMS
scheme, is by a factor of approximately 1/3 for the
MCMA and 1/2 for the MCMS slower but much more
accurate and efficient.

In addition it should be noted that for problems
in which shocks form out of a continuous flow, the
schemes based on the method of characteristics are pre-
ferable, since in these codes the shock insertion points
may be found as intersection points of characteristics.
This is more difficult in the FDM scheme because with

pseudoviscosity the characteristics do not intersect and
without pseudoviscosity oscillations impair the shock
finding. Therefore, the MCM scheme is in principle more
appropriate for shock finding and shock fitting problems.

As a consequence, the FDM scheme is only then
advantageous if shocks exist and shock fitting is not
necessary. In all other cases—i.e. if there are no shocks
in the medium, or if there are shocks and exact informa-
tion on these shocks and their insertion pointsis needed—
the MCMA and MCMS schemes are preferable.
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