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ABSTRACT

The relation between mechanical heating and radiative cooling in the solar chromosphere
is investigated, and the dependence of the temperature rise on the mechanical dissipation rate
and on the microscopic state of H~ ions at the foot of the chromosphere is studied. It is found
that H- is very nearly in local thermodynamic equilibrium (LTE) at the temperature minimum;
but near the upper end of the range where H~ dominates the opacity, deviations from LTE
should be taken into account in estimating the mechanical energy input from the empirical

temperature distribution.

The use of empirical models for calculating the mechanical energy input into the chromo-
sphere is considered. The estimate of mechanical heating implied by the recent work of Praderie
and Thomas is found to be too low by about an order of magnitude.

Subject headings: atomic processes — opacities — Sun: atmosphere — Sun: chromosphere

1. INTRODUCTION

The outer layers of the solar atmosphere are believed
to be heated by mechanical waves, generated in the
hydrogen convection zone, that travel outward and
dissipate in the chromosphere and corona (Biermann
1946; Schwarzschild 1948). At least half the mechan-
ical energy reaching the layers that are optically thin
in the continuum is estimated to be dissipated in the
high-density regions at the foot of the chromosphere
just above the temperature minimum. However, two
studies by Praderie and Thomas (1972, 1976) have
cast doubt on this statement. Their work appears to
show that the mechanical energy input by wave heat-
ing into the low chromosphere is smaller than usually
estimated, and by a substantial factor. If true, their
conclusion would imply that the heating of the low
chromosphere makes a minor contribution to the
total mechanical energy budget of the outer layers of
the solar atmosphere.

The purpose of this paper is to investigate the
relation between wave heating, the temperature rise
in the chromosphere, and the radiative emission from
the mechanically heated layers. First we study the
radiation emitted from a heated slab with gray opacity
when the source function is increased by a known
amount. Then we consider the temperature rise caused
by wave heating when the opacity is due to H~ ions
in statistical equilibrium and compare our result with
the special cases studied by Praderie and Thomas.
Finally we discuss the use of models of the solar
atmosphere for the purpose of calculating the excess
radiative emission due to wave heating. In the Ap-
pendix we derive an equation for calculating the
excess radiative flux from the low chromosphere and
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give definitions and numerical values of the radiative
cooling rate and the photorecombination rate for H-.

II. THE NET COOLING RATE

We consider the idealized model of the solar
atmosphere of Praderie and Thomas (1972, 1976),
which consists of a gray, semi-infinite, plane-parallel
atmosphere in radiative equilibrium with a mechan-
ically heated chromosphere near the surface. The
chromosphere is represented by a finite slab of optical
thickness 7, covering the depth range 0 < 7 < =..
Dissipation of mechanical waves is assumed to increase
the integrated source function by the constant amount
8B over its value in radiative equilibrium. The prob-
lem is to relate the energy dissipated by the waves to
the increase in the emitted radiation.

The radiated flux ® emitted by the slab can be
calculated either by integrating over the net cooling
rate,

0 Tc
®(0, 7,) =f df‘%F= 4Trf (3B — 8J), (1)
T 0

where 8/ is the mean integrated intensity, or by com-
puting the net flux, 8F(7), from the specific intensity,
81, by integrating over angle,

SF(r) = 2m J bl (o), @)

and then taking the flux difference,

(0, 7o) = 3F(0) — 8F(.) . ©))
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Using the latter method we write for the outward and
inward directed intensities in the slab:

81, = 8B{l — exp [—(r. — DJul},
8I,- = 8B[l —exp(rfp)], T <7, (4

with the convention p = |u| for the inward intensity
8I,~. The angle integral (2) of I, yields the net flux

8F(r) = 2n8B[E;(7) — Ea(|7. — 7|)] &)

for an isolated slab, where 0 < 7 < =, as well as for
a slab overlying an atmosphere. In the latter case the
net flux below . is obtained by observing that
8I,* = 0 for 7 > 7, and that 8], decays exponen-
tially with depth from the boundary = = 7. The
radiative flux at the upper and lower boundaries of
the slab is given by

8F(0) = 2m8B[} — Es(v.)], 8F(r) = —8F(0).

©®
The total net cooling rate (3) of the slab is therefore
(0, 7) = 4mdB[} — Es(7.)]. @)

The isolated slab loses one half of the energy at the
top, 7 = 0, and the other half at the bottom, » = 7.
If the slab overlies a semi-infinite atmosphere, the
inward flux, 8F(z,), heats the lower layers, thereby
increasing the outward flux from the atmosphere.
In the layers = > 7, this reflected flux exactly compen-
sates for the inward emitted flux. All the emission (7)
caused by the mechanical wave dissipation then
appears as energy flux lost from the atmosphere at
T = V.
The source-function increase in the lower layers
which drives the additional outward flux is very small.
It can easily be estimated from the inward intensity
(4). In the two-stream approximation at the Eddington
value of the angle, where p = 1/4/3, the inward
intensity just below the heated slab is equal to
3123 Br,. Since the reflection from the deeper layers
contributes an equal amount to the mean intensity and
since heating and cooling balance in the steady state,
the source function rise is equal to 3'/28Br,. Thus,
the ratio of increases in the source function on either
side of the boundary between the atmosphere and the
slab is 3%27,; for a very thin chromosphere, the
source function in the underlying atmosphere has
therefore practically the radiative equilibrium value.
When the slab is optically thin, the exponential
integral in equation (7) may be expanded. The
radiative energy flux @ lost from the slab may then
be written as

D0, 7;) = 4wdB7.Ey(7.[2), 7.5 0.1,
and

(0, 7.) = 4ndB7,, 7. K 1. 8)

The expressions indicate that the emitted flux @, and
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therefore the inferred mechanical heating, depends
only on the total emission in the slab and is inde-
pendent of the detailed structure of the increased
emission, provided the slab is very thin.

Since the solar temperature minimum lies near
+ = 10~%, the chromosphere satisfies the condition
7. « 1, at least for the H~ opacity, suggesting that
the model of Praderie and Thomas is a valid repre-
sentation of the solar chromosphere.

The result (8) for the mechanical energy dissipated
in the chromosphere was given by Ulmschneider
(1970, 1974). Praderie and Thomas (1972) determined
the emergent flux 8F(0) given by equation (6) and
asserted that it measured the dissipated wave energy.
They also calculated the flux at the bottom of the
chromosphere; from the sign of the flux 8F(+;) they
concluded that it implied mechanical cooling. They
therefore rejected it and took 8F(0) as the total flux
of the mechanical waves, stating (1976) that the ex-
pression obtained by Ulmschneider was wrong and
was too large by a factor of 2.

The conclusion of Praderie and Thomas (1976,
p. 341) is due to an inconsistency in the calculation of
the radiative cooling rate (1972, p.486): For the
inward-directed intensity they used their chromo-
spheric model, in which the source function is in-
creased by the amount 3B in the thin layer 0 < 7 <
7.; for the outward intensity, however, the source-
function increase extended throughout the atmosphere,
0 < 7 < . The outward-directed intensity therefore
contributed no net heating; and since the specific
intensity in the chromospheric model discussed here
is symmetric about the midplane, r = 7./2, and the
net flux antisymmetric, their neglect of net heating
due to the outward radiation led to an error in the
calculation of energy emitted by the slab of a factor
of 2 exactly.

III. THE CHROMOSPHERIC TEMPERATURE RISE

The source function and the kinetic temperature in
the chromosphere are increased by the dissipation of
mechanical energy. The source-function rise is inde-
pendent of the microscopic state of the gas; the
corresponding temperature rise depends, however, on
the state of the gas. We now determine the increase
of the source function and of the temperature due to
wave dissipation. For the temperature rise we assume
that the gas is in statistical equilibrium. We then
compare our result for the temperature rise in the
limits of infinite and vanishing collision rates with
the results of Praderie and Thomas.

The transfer equation may be written as (cf.
Appendix)

d
f"alvu = —uk,(I,, — Svu) ’ (9)

where « is an average or typical opacity, such as the
monochromatic opacity at 5000 A, and k, is the ab-
sorption profile. For a single absorber with only one
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bound state, such as H- with only bound-free tran-
sitions, the source function S,, may be written as

1 I,
—bW(1+h3/) (10)
where W, is the monochromatic Wien function (cf.
eq. [A6]) and b is the H~ departure coefficient (cf.
eq. [A7)). )
We define the average optical depth,
dr = —kdx , (1

and the angle and frequency integrals of the intensity,

© 1
F, = 417—[ dvlf dppl,, ,
o 2J.

© 1
J= J dvk, 3 f dul,, ,
(1] -1

© 1
S= J' dvkv-;- f duS,, . (12)
0 -1

Svu

The integrated transfer equation for nongray opacity
is then

dF,

e =4n(J - S). (13)

In radiative equilibrium the radiative flux, F,, is
conserved. In an atmosphere with a mechanically
induced chromospheric temperature rise, it is the
sum of the radiative and mechanical fluxes that is
constant:

F, + F, = const . (149)

The dissipation of the wave flux F,, heats the gas. In
the steady state the increased emission rate per unit
optical depth and solid angle is expressed by the source
term Q,

4nQ = 3"; F, . @15)

The energy equation for the mechanically heated
atmosphere may therefore be written as

S=J+0, (16)

which balances the local rate of radiative cooling
against the rates of radiative and mechanical heating.

Since the model chromosphere starts at a very
shallow optical depth, the intensity J is practically
unchanged from its value in radiative equilibrium
for which heating, J, and cooling, S,, balance each
other. The chromospheric source function rise, 8B,
is therefore given by

B=S-S,=0, a7

where S, and S are the source functions in the radiative
equilibrium and the mechanically heated atmospheres,
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respectively. Thus the increase of the emission rate is
equal to the dissipation rate per unit optical depth,

478B = dF,[dr . (18)

From equations (8) and (18) the total radiative
cooling rate is seen to equal the rate at which mechan-
ical energy is dissipated in the chromosphere,

“  dF,
00, 7,) = fo LR (19)

as is expected from energy conservation. The radiative
flux (6) lost at the surface = = 0 of an optically thin
chromosphere is

8F(0) = 3oF,, 8F, = (dF,ldr)r.. (20)

Equation (20) shows that the slab emits only half the
dissipated mechanical flux at the upper boundary,
and it emphasizes again that Praderie and Thomas
account for only half the wave energy dissipated in
the chromosphere. Therefore, as noted by Athay
(1965) and Ulmschneider (1974), estimates of the
mechanical energy input to the chromosphere must
take into account energy radiated at the front and
back faces of the chromosphere.

The temperature rise caused by the mechanical
heat input depends on the opacity and on the state of
the gas. At the temperature minimum and the foot of
the chromosphere the main opacity source is the H-
ion. At the highest density, H~ is nearly in local
thermodynamic equilibrium (LTE) because of the
collisional control of H~ dissociation; in higher layers
in the chromosphere the state of H- is strongly
influenced by the intensity of the radiation field.

The thermal response of the gas to the mechanical
energy input is bounded by the case of LTE in the
high-density limit and that of statistical equilibrium
without collisions in the low-density limit. In the
high-density limit the dissipated energy is shared
equally among all degrees of freedom of the particles
and the temperature rise is relatively low; in the low-
density limit, on the other hand, most of the added
energy is transferred to the random motions of the
particles but the internal degrees of freedom do not
receive the full share and the degree of dissociation
of H~ is increased much less than it would be if the
gas were in LTE; a much larger temperature rise is
therefore needed in order to radiate away the dis-
sipated wave energy.

We now determine the temperature rise in the
general case of statistical equilibrium. We then
specialize the solution for the high- and low-density
limits and compare the results with the equations of
Praderie and Thomas. In this discussion we assume
that the opacity is due to H- bound-free transitions
only. The temperature rise is obtained from the
relation (17) between the source function rise 8B and
the mechanical heating rate Q. The integrated source
function S, which is given by

S——fdka(1+ h{,/c) @1)
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may be written as the ratio of the frequency integral B,

Jy
B-= f dvk,,Wv(l + 27175/7’“’) : 22)

which depends on kinetic temperature, and the de-
parture coefficient, b, which in general depends on
temperature and density:

S = B/b. (23)

We evaluate the frequency integral (22) with the
aid of the polynomial expansion of Gingerich (1964)
for the photodissociation cross section of H-, using
the correction given by Ulmschneider and Kalkofen
(1978) of a misprint in Gingerich’s formula. For the
induced emissions we assume that the photospheric
radiation field may be described by a dilute Planck
function,

J,=WB(T), W=1%, T=5800K. (24

Representing the frequency integral (22) by a power
law for the kinetic temperature, the function B may
be written as

B~T", m=dhnB/dnT. (25)

Column (2) of Table 1 lists the exponent m for several
values of the kinetic temperature (see also the Ap-
pendix, following eq. [A13]).

The departure coefficient b is determined from the
equation of statistical equilibrium for the H- ion
which balances the rates of formation and destruction
of ions in the bound state. For solar conditions the
important rates are those for photo dissociation and
associative detachment and for the corresponding
inverse processes. We write the net rate #Z of photo-
dissociation as

R = nH'R( - nH—*R , (26)

where R is the radiative recombination rate per ion,
defined by equation (All) in the Appendix, and R,
is the photo ionization rate without the correction for
induced emission, which is included in the recombina-
tion rate. The net collisional rate € for associative
detachment, H + H- <> H; + e, is

€ = (ng- — ng-*)nuT, 27

where ny is the hydrogen density and I' the rate
coefficient for associative detachment, given by
Browne and Dalgarno (1969) and quoted by Vernazza,
Avrett, and Loeser (1973) as

T =210 x 10-°. (28)

For the two processes considered, the equation of
statistical equilibrium of H~ is

RA+€=0, (29)
with the formal solution for the departure coefficient b,
dinb=(1 —e¢dlnR, (30)
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TABLE 1

TEMPERATURE DEPENDENCE OF THE COOLING RATE E AND OF
THE RECOMBINATION RATE R

T(K) m=dnE/dinT n=dlnR/dinT

0)) (¢)) 3
3000.............. 5.34 4.97
3500.............. 4.92 4.52
4000.............. 4.60 4.18
4500.............. 4.35 391
5000.............. 4.15 3.69
5500............L 3.98 3.50
6000.............. 3.85 3.35
6500.............. 3.73 3.22
7000.............. 3.63 3.11

where the collision parameter e,

_ ngl
=R+l @1)

is defined in terms of the photo recombination rate R
in the heated atmosphere. The rate R, defined by
equation (All), may be evaluated with the poly-
nomial for the photodissociation cross section, giving

RxT', n=dhnR/dnhT. (32)

Column (3) of Table 1 lists the exponent n for several
values of the kinetic temperature and equation (A13)
gives the value of R at T = 4000 K so that the re-
combination rate per ion at other values of the
temperature can be calculated.

Now, the energy equation (17) may be written in
terms of the temperature rise as

ar_ 1.9
T, dinS/dinTS,’

where T, is the kinetic temperature in the radiative
equilibrium atmosphere. From the expression (23)
for the source function S and the definitions (25), (30),
and (32), the dependence of S on temperature and
collision frequency is obtained as

din S/dInT =m — (1 — on. (34)

€

(33)

The temperature rise in the statistical-equilibrium
atmosphere due to mechanical energy dissipation is
therefore given by

ar_ _ 12
Tob m—(1—enS,

The equation shows that the temperature rise is
high when the dissipation rate Q is high. Even when
the value of the mechanical energy flux F,, is small
compared with that of the radiative flux F,, the tem-
perature increase is large if the mechanical flux is dis-
sipated in a layer of sufficiently small optical thickness.
In the case of the Sun, for example, the mechanical
flux reaching the temperature-minimum region is only
about 10~* times the radiative flux. But since the
chromosphere is optically thin in the continuum, with

(35)
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Ts000 ~ 107%, the chromospheric temperature rise is
large. Equation (35) also shows that the temperature
rise is lowest when the gas is in LTE, where € = 1,
and highest when the microscopic state of the opacity
source is completely determined by the radiation field,
with collisions playing no role, where ¢ = 0; and,
conversely, when the observed temperature increase
above the radiative equilibrium value is used to es-
timate the mechanical dissipation rate Q and the
mechanical flux F,, the inferred value of F,, is highest
in LTE and lowest in the collisionless case € = 0.

Equation (35) expresses the relative temperature
rise as the ratio of the dissipation rate of mechanical
energy flux in the chromosphere and the radiative
flux emitted from the whole atmosphere. The scale
factor depends on the microscopic processes that
determine the state of the particles contributing the
opacity. The source function S,, which is propor-
tional to the cooling rate per H- ion in the radiative
equilibrium atmosphere, is independent of the state
of the gas since it balances the radiative heating rate
J per ion. But the undisturbed temperature T, de-
pends on the state of the gas. However, near the
temperature minimum, where B is proportional to
T**° (see below), T, depends only on the 4.49th root
of the departure coefficient . The dependence of the
equilibrium temperature T, on the state of the gas is
therefore quite weak.

Consider now conditions in the solar atmosphere
at the foot of the chromosphere, where the kinetic
temperature T, ~ 4200 K. The temperature depen-
dence of the cooling rate and of the photorecombina-
tion rate is given by m = 4.49 and n = 4.06, and the
relative radiative recombination rate, listed in’ the
last column of Table 2, is (1 — €) = 0.21. The frac-
tional temperature rise for several values of the
collision parameter e is

a7\ = 0220/S,, e=1,
(Tr‘) =0.270/S,, =079,
o/« =2330/S,, ¢=0, (36)

and the temperature rise relative to that in the LTE
case is

0.
0. 37

Several interesting conclusions may be drawn from
equation (37): The temperature rise in the collisionless
case, € = 0, is 10 times as high as in the LTE case.
But, at the foot of the chromosphere the actual
temperature increase hardly differs from that in LTE
so that the LTE description of the medium is a very
good approximation. Higher in the chromosphere this
is no longer true. At the level where the kinetic tem-
perature is 5000 K, the assumption of LTE under-
estimates the temperature rise for a given dissipation
rate by a factor of 3, and the collisionless case over-
estimates it by the same factor. However, the density
at the 5000 K level is lower by an order of magnitude
than at the temperature minimum. Therefore, the
assumption that H- is in LTE is a much better
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TABLE 2

TEMPERATURE AND MAss DENSITY* AND RECOMBINATION RATES
FOR H~ As FUNCTIONS OF OPTICAL DEPTH AT 0.5 MICRONS

To.s T(X) p R R/(R+ ngl)
6.3 x 10-6,.. 5590 8.11 (—11) 2.13 (6) 0.96
1.0 x 10-%,.. 5300 2.00 (—10) 1.78 (6) 0.90
1.6 x 10-%,.. 5040 4.16 (—10) 1.49 (6) 0.79
25 x 1075,.. 4790 8.28 (—10) 1.23 (6) 0.61
4.0 x 10-5,.. 4530 148 (-9) 1.00 (6) 0.42
6.3 x 105,.. 4280 2.31 (—9) 0.80 (6) 0.27
1.0 x 10-%... 4170 3.24 (-9) 0.72 (6) 0.19

* From Gingerich et al. 1971.

approximation to actual solar conditions than is the
assumption that it is in statistical equilibrium with
negligible collisional transitions. Of course, the correct
description of H~ radiation throughout this region,
in which H- is the dominant opacity source, must
treat H- in statistical equilibrium, with collisions,
provided the model on which the calculation is based
allowed for deviations from LTE (see § IV).

The temperature rise in the limiting cases of € = 1
and e = 0 was studied by Praderie and Thomas
(1972, 1976), whose results differ from ours in some
details because they assumed that the H~ photo-
absorption cross section was frequency independent,
and, in a more basic respect, because they assumed
that the kinetic temperature T, in the radiative equilib-
rium atmosphere was the same in the two cases of
e =1 and € = 0. However, since the cooling rate,
described by the source function S,, must balance the
radiative heating rate in the radiative equilibrium
atmosphere, the source function S,, and not the
temperature 7,, must be the same in the two cases.
Because of the assumption of gray H~ opacity, the
factor Praderie and Thomas found for the relation
(36) between the temperature rise and the dissipation
rate was 0.5 instead of our value of 0.22 for e = 1,
and 2 instead of 2.33 for € = 0; and instead of the
value 10.5 for the ratio (37) of temperature increases
they obtained the value 4b,. The difference between
the equations of Praderie and Thomas and those of
this paper is most evident when the same data on
kinetic temperature and departure coefficient at the
foot of the chromosphere are used to infer the value
of the mechanical dissipation rate, using in both
instances the statistical equilibrium solutions: Praderie

“and Thomas would conclude that the chromosphere

can be heated with only 14%, of the dissipation rate
required by our analysis. This difference is due partly
to their neglect of the inward traveling radiative flux
and partly to the temperature dependence of the
source function, which grows linearly with kinetic
temperature in their case and with the 3.64th power
in ours.

We note that Athay (1976) has also discussed the
relation between temperature rise and mechanical
dissipation in the limiting cases of e = 1 and ¢ = 0.
His treatment of the radiative transfer takes account
of radiation emitted in both the inward and outward
directions. But he did not distinguish between the
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radiative equilibrium temperature in LTE and that in
statistical equilibrium, which affects the difference in
the required mechanical energy fluxes but not the
estimate of the dissipation rate implied by observa-
tions. And Cram (1978) considered the temperature
rise in a gray atmosphere for a mechanical dissipation
rate that decreased exponentially with optical depth.
He solved the transfer equation analytically for the
source function using the method of discrete ordinates
and determined the kinetic temperature for a collision
parameter e that had an exponential depth dependence.

In their discussion of the relation between tem-
perature rise and mechanical energy dissipation
Praderie and Thomas assumed that the H~ photo-
dissociation cross section «, was frequency-indepen-
dent. This assumption deserves further comment since
it affects the temperature dependence of the source
function S and the value of the H~ departure
coeflicient b.

When the cross section «, is constant, the cooling
integral B and the photorecombination frequency R
are proportional to T* and T3, respectively; apart
from corrections due to the finite threshold energy
of the dissociation reaction, which Praderie and
Thomas neglected. The source function S in statistical
equilibrium is then proportional to temperature.
However, near the temperature minimum the tem-
perature dependence of B and R is different from that

-obtained for constant cross section (see Table 1);

the T* law for B is found near T = 5500 K and the
T? law for R near T = 7500 K. Thus the dependence
on T assumed by Praderie and Thomas is reached at
different temperatures for B and R, and the implied
linear dependence of S is not found at any temperature
of interest. This affects the numerical factor in the
relation between temperature rise and dissipation rate,
which at the foot of the chromosphere is in error by
a factor of nearly 4. By comparison, the error made
by neglecting deviations from LTE in H- is much
smaller.

The frequency dependence of the photo cross section
«, also affects the H~ departure coefficient . We can
define an effective frequency dependence of the cross
section by noting that if «, & v*, then B & T*** and
R =~ T3*k if the correction for finite threshold energy
is neglected. At a kinetic temperature of T = 4200 K
the cooling integral B implies that the effective cross
section behaves like 4/v, and R implies that «, X v.
Thus the effective cross section rises with frequency.
Now, in an investigation of deviations from LTE in
a model atmosphere of one-level hydrogen atoms with
radiative equilibrium in the Lyman continuum,
hydrostatic equilibrium, and statistical equilibrium,
Kalkofen, Klein, and Stein (1978) found that the
departure coefficient was less than unity if the photo-
ionization cross section rose sufficiently rapidly with
frequency. The increase with frequency of the effective
H- cross section is not fast enough, as is shown by
pure H- models which give b > 1 (cf. Feautrier
1968). However, the heavy line blanketing in the solar
atmosphere, which increases rapidly with frequency,
is equivalent to a cross section increasing rapidly with
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frequency. Therefore, an underpopulated bound state
may be expected, and is actually found (Vernazza,
Avrett, and Loeser 1976), which is consistent with the
low kinetic temperature of the empirical models at
the foot of the chromosphere (Kalkofen 1977).

In the case of the gray Lyman continuum, Kalkofen
et al. found the hydrogen departure coefficient to
vary between b = 2.2, when the radiation field was
not affected by the departures, and b = 43, when the
intensity was affected to great depth. Clearly, there
was no upper limit on b; b = 2 was a lower limit.
Hence, we would expect the same to be true for a
model solar atmosphere in radiative equilibrium,
where b ~ 2 for ¢ = 0 would be found under the
assumptions that deviations from LTE occur only
near the surface, where they are unable to change the
intensity of the radiation field, and that the opacity—
and not merely the H~ opacity—depends only weakly
on frequency (a uniform picket-fence opacity would
be similar to a gray opacity in its effect on deviations
from LTE). The first assumption is satisfied in the
solar atmosphere, but the second one is not. Lines are
more prominent in the blue than in the red; their
opacity lowers the intensity in the blue, which de-
presses the color temperature associated with the
radiation field and reduces the departure coefficient.
It is therefore not surprising that the value of the
departure coefficient in the layers below the chromo-
spheric temperature rise should be less than unity.
We note that Vernazza, Avrett, and Loeser (1976)
found b = 0.9 at the temperature minimum, a value
that is incompatible with the limiting value of b = 2
given by Praderie and Thomas for negligible col-
lisions. The value of b = 0.9 and the associated
kinetic temperature also describe the source function
in the higher layers where the H~ opacity dominates
(cf. the Appendix following eq. [A9]).

IV. EMPIRICAL MODELS

The dissipation rate of mechanical energy flux is
equal to the excess radiative emission of the solar
atmosphere over the emission that would take place
if the Sun were in radiative equilibrium. Thus the
calculation of the radiative flux gradient depends on a
model of the actual solar chromosphere and on a
model of the solar atmosphere in radiative equilib-
rium. Since both types of models are uncertain, the
resulting estimate of the mechanical dissipation rate
is uncertain. We consider first the errors in the models
and then ways to minimize the uncertainties in the
computed radiative emission rates.

Semiempirical models of the solar atmosphere are
constructed by choosing the temperature structure
that matches observed and predicted intensities and
the pressure structure that satisfies hydrostatic equilib-
rium (Gingerich et al. 1971; and Vernazza, Avrett,
and Loeser 1976). The temperature structure at the
temperature minimum and the foot of the chromo-
sphere is determined from observations in the far-
infrared at wavelengths between 0.1 and 0.2 mm and
in the ultraviolet between 0.1 and 0.2 pm. In the
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infrared, the theory of radiative transfer is relatively
straightforward since the emission takes place in LTE,
except that the electron donors are not in ionization
equilibrium at the local kinetic temperature (Vernazza,
private communication), but the emitted intensity
depends only weakly on temperature since the Planck
function is in the Rayleigh-Jeans region; therefore,
the temperature structure of the atmosphere is un-
certain because of the low temperature sensitivity of
the Planck function. In the ultraviolet, on the other
hand, the Planck function is much more sensitive to
temperature—by a factor of 20 to 30—but the emitted
radiation depends on deviations from LTE of the
emitting ions; therefore, the temperature structure is
uncertain because of the difficulties inherent in the
radiative transfer in statistical equilibrium. Con-
sequently, the resulting temperature structure is un-
certain, in the temperature minimum region by
+ 100 K (Vernazza, Avrett, and Loeser 1976).

The theoretical model of Kurucz (1974) assumes
radiative equilibrium but does not allow for deviations
from LTE and may be incomplete in its opacity sources
despite the large number of transitions included. Its
temperature throughout the layer in which the actual
solar temperature has a minimum is higher than that
of the empirical models. Therefore it may not be used
directly for the required calculation. That leaves the
choice of either modifying the theoretical model or
adapting an empirical model so as to exclude the
temperature increase due to mechanical heating, e.g.,
by extending the kinetic temperature and the depar-
ture coefficient from the temperature minimum out-
ward at constant value (see the discussion in the
Appendix following eq. [A9]). The underlying as-
sumption justifying this procedure is that the tempera-
ture-minimum region is a layer that is not heated by
waves, except for a negligible amount of radiation-
damping of the acoustic waves, and therefore repre-
sents the atmosphere without mechanical heating,
i.e., an atmosphere in radiative equilibrium. Conse-
quently the mechanical energy input is practically
zero at the temperature minimum and rises outward
according to the difference in kinetic temperature and
departure coefficient between the depth in question
and the temperature minimum.

In the calculation of the radiative losses implied by
the empirical model it is imperative that the assump-
tions concerning the state of the gas be the same in
building the model and in computing the radiative
cooling. Thus, the emission from the HSR A (Gingerich
et al. 1971) must be computed in LTE, that from the
VAL model (Vernazza, Avrett, and Loeser 1976) in
statistical equilibrium with the departure coefficients
they determined. This procedure is necessary for the
sake of consistency between the observed radiation,
which led to the model, and the computed radiation.
For the two empirical models under discussion it will
lead to similar radiative cooling rates, as follows from
the temperature profiles in the low chromosphere (see
Vernazza, Avrett, and Loeser 1976, Fig. 20), which is
steeper for the VAL model, and their increasing
departure coefficient for H~ (quoted by Ulmschneider
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and Kalkofen 1978, Table 1), so that the source
functions in the two models are similar.

In order to minimize the errors inherent in the
models in the calculation of the chromospheric
radiative cooling rate, Praderie and Thomas (1976)
urged that the model be *“obtained from the data in
the same spectral features as those which determine
the effective radiation losses.”” To this should be added
the requirement that the emergent radiation be cal-
culated under the same assumption regarding the
state of the gas that was made in constructing the
model. Praderie and Thomas (1976) failed to recognize
this important point when they criticized Ulmschneider
(1974) for assuming the H~ ion to be in LTE in his
calculation of the cooling rate based on the HSRA.
If he had followed their advice, he would have ob-
tained a much lower estimate for the wave dissipation
rate: At 5360 K, for example, the departure coefficient
of the VAL model is b = 1.53. In the HSRA, b would
have nearly the same value since the photospheric
radiation field and the electron density at that tem-
perature are nearly the same in the two models.
Therefore, as follows from equation (A9), he would
have estimated the net radiative emission rate reduced
by a factor of more than 2, which clearly shows the
importance of consistency between model construction
and radiative transfer calculation when that radiation
carries most of the flux.

V. SUMMARY AND CONCLUSIONS

We have derived an expression for the total radiative
flux emitted by a heated slab overlying an atmo-
sphere. Using the energy equation for a static atmo-
sphere with radiative and mechanical energy transport
we have shown that the mechanical energy dissipated
is equal to the radiative energy emitted in the inward
and outward directions, in agreement with Ulm-
schneider (1970). For radiation due to H~ transitions
we have then obtained estimates of the temperature
rise at the foot of the chromosphere due to wave
dissipation for H- in statistical equilibrium, and for
the limiting cases of H- in LTE and in statistical
equilibrium without collisions. We found that the
actual solar conditions at the temperature minimum
are fairly well represented by LTE. Finally, we con-
sidered the use of empirical models for estimating the
energy input into the chromosphere and stressed
consistency in the assumed state of the gas for the
calculation of the radiative cooling and for the con-
struction of the model. In the Appendix we give an
equation for estimating the mechanical energy input
into the layers in which H~ is the dominant opacity
source.

We considered in some detail two papers by
Praderie and Thomas (1972, 1976), addressed to the
same questions, and showed that the mechanical
energy input estimated with their equations is too low
by about one order of magnitude, leading them to
conclude that the mechanical heat input to the low
chromosphere is an insignificant fraction of the total
mechanical input to the chromosphere and corona.
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We have presented arguments that lend support to We enjoyed discussions with E. H. Avrett and J. E.
the more traditional view that a large fraction of the Vernazza, and we are especially grateful to R. Grant
mechanical energy traveling outward from the con- Athay and Charles A. Whitney for careful and critical
vection zone is dissipated in the low chromosphere. readings of the manuscript.

APPENDIX I

We derive an equation for estimating the mechanical energy input into the low chromosphere from the emitted
radiation in bound-free and free-free transitions of H-, and we define the rates for radiative cooling and
photorecombination.

In an atmosphere with plane-parallel stratification, the transfer equation for H- opacity may be written

d 2m8 2m?
I"a; I, = —ng-oyl,, + nn'*“bfe-hvlkr('cT + Ivu) - nH“*“ﬂ[Ivu - e—hvlkr(c_: + Ivu)] ’ (AD

where x is the height in the chromosphere, ay(v) is the bound-free photoabsorption cross section, «g(v) is the free-
free cross section, ny . is the actual local density of H~ ions, and ng-* is the equilibrium density defined by the
Saha equation in terms of the densities of electrons and hydrogen atoms in the ground state, n, and n,,

ng-* = 2.89 x 10~22n,n,6%26173%0 | § = 5040/T (A2)

(cf. Vernazza, Avrett, and Loeser 1973).
The net radiative flux is defined as

) 1
F =2 f v f dul,, , (A3)
0 -1

and its gradient is obtained from the transfer equation,

T = g [ dooed, + = [ oW, + T) — dang® [ vl = (W, + e,
J 0 (1]
(A4)
where J, is the mean monochromatic intensity,
1
Jy = i‘f L dul,, , (A5)
and W, the Wien function,
3
W, = 26_’1_:_ e~MVIKT (A6)

In radiative equilibrium the net flux & is independent of height. With the departure coefficient of H~ defined
by
= ny-[ng-* (A7)

and the gas variables in radiative equilibrium denoted by the superscript 0, the radiative equilibrium condition
may be written as

0= = dbonddy + 55 [ oW + en) — g [ dbull, = W2+ eI (A9)
[} [ 0

Since the mechanical flux dissipation is assumed to be confined to the surface layers of the atmosphere the increase
in the intensity is insignificant. The intensity J, may therefore be assumed to be unaffected by the wave dissipation.

We combine the radiative equilibrium condition (A8) with the integrated transfer equation (A4) in such a way
that the absorption rate due to bound-free transitions is canceled,

d _ w Wv Wvo Jv ° aLfo — er
a}f = %nn-[J; dvabf(‘b— - F) (1 + ——2hv3/c2) + J.o dv(bo s J,
® W, o WP J
+ fo d"(““T ~ ot 'bT) (1 + 2hv3/c2)] ' (A9)

The intensity of the radiation field now appears only in the stimulated emission term for bound-free transitions
and in the much less important terms for free-free transitions.
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The conditions in the outermost layers of the radiative equilibrium atmosphere are well described by the values
of the kinetic temperature and of the departure coefficient at the temperature minimum even though they both
may rise in the outward direction. If we neglect free-free transitions, it is clear from the assumed constancy of
the intensity, and therefore of the absorption rate per ion, that the emission rate per ion must likewise be depth
independent. Thus the kinetic temperature and the departure coefficient may change together only so as to balance
the bound-free heating rate. We assume that these conclusions are essentially unchanged by the presence of the
free-free transitions. Hence the cooling rate per H~ ion in the upper atmosphere in radiative equilibrium is equal
to the corresponding rate at the temperature minimum. The superscript O therefore refers to conditions at the
temperature minimum. The gradient of the radiative flux in the low chromosphere where H~ is the dominant
opacity source is given by equation (A9) as the net cooling rate relative to the rate in the radiative equilibrium
atmosphere; it measures the local dissipation rate of hydrodynamical waves.

The radiative cooling rate due to bound-free transitions is obtained from the transfer equation (A1) as

Hg-*E = drng-* f: dvabf(v)W,.(l + th—%z) , (A10)
and the corresponding photorecombination rate as
ng-*R = dmng-* L " dvng() % (1 + 2,1‘:—3/62) - (Al1)
At a kinetic temperature of 4000 K the radiative cooling rate per ion is
E =139 x 10-%ergss~!, (A12)
and the photorecombination frequency is
R =6.02 x 105s~1, (A13)

From these numbers and the values of the exponents m and n of the corresponding power laws for the temperature
dependence (eqgs. [25] and [32]), listed in Table 1, the rates at arbitrary temperatures in the given range can easily
be calculated to good accuracy. For stars with effective temperatures not too different from the Sun’s this procedure
may be used as well, since the contribution to the rates made by induced emissions is not very large; at 4000 K
it amounts to about 4%,. If instead of the dilute Planck function (24) representing light coming from the photo-
sphere, the frequency R is computed with the intensity value equal to that of the local Planck function, giving
R corresponding to thermal equilibrium at 4000 K, its value is changed from (A13) by less than 17,.

We note that the cooling rate is simply related to the source function (23) if only bound-free H- opacity is
treated. When the opacity coefficient « is defined as the monochromatic opacity at frequency v,

Kk = ng-oy(vo) , (A14)
the relation between the cooling rate per H~ ion and the source function S is
E = 41Tabt(V0)B N (A15)
with S = BJb.
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