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V1. Feautrier Type Radiation Treatment
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Summary. A differential equation method to solve the radiative
transfer equation in the presence of shocks is developed and tested
against exact solutions. The method appears sufficiently accurate
for cases where the shock is at relatively small optical depth. A
comparison with an integral method shows that the present
method is 5 times faster.
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1. Introduction

In Paper II (Kalkofen and Ulmschneider, 1977) as well as Paper V
(Ulmschneider et al., 1978, Appendix A) of this series we have
described a method of solution of the radiative transfer equation
in the presence of shocks which was based on an integral
representation. Although that method being exact for parabolic
source functions is very accurate and well behaved it is rather slow
when used on the computer due to many exponential functions
and extensive expansions. This is not a great disadvantage if only
one frequency point (grey atmosphere) and one angle point is
taken as has been the case in our previous work. However, in
future work usage of several frequency and angle points will be
unavoidable. It consequently is of great importance to look for a
faster method that prevents that the computer spends most of its
time solving the transfer equation.

In the present work similar to Tscharnuter (1977) and Mihalas
(1980) we describe a method of solution of the transfer equation in
the presence of shocks that is a modification of the Feautrier
method (1964, 1965) and is based on differential equations.
Section 2 describes the method while Sect. 3 gives tests and a
discussion.

2. Method

Let I* and I~ respectively be the outgoing and ingoing specific
intensity along a ray inclined by an angle 3 (0=3< %) against the
outward vertical in a stellar atmosphere. y=cos$ =0 is the angle
cosine. * and 7 respectively represent the optical depth in the
atmosphere and along the inclined ray. If we assume a symmetric
source function S(u)=S(— y) then the transfer equations may be
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written with
*
= (1)
u
ar- ‘
= I"-S, 2
ar-
——=I"-s. G
Defining a mean intensity
It+1-
J=
3 4
and a flux
F=2nu(I*-17), 5)
wé find by subtracting and adding Egs. (2) and (3)
dJ] F + _
E_E_I —J=J-1 6)
and
dF
I =4ru(J-S). W)

Differentiating Eq. (6) we have Feautrier’s differential equation

—5=J-8§. ®

dz

Assuming a 7 grid (7, i=1, ..., N) we now discretize Egs. (6) and
(8). Following Paper II in order to improve accuracy for large
depths where J approaches S we write the difference equations in
terms of J—S. From Eq. (8) we find with §{=1;—1;

(J—=8);—, (1 1 1 ) (J—8); 44

S0t S\t s o s e
=(Si_Si+1) (Si_Si—l) (9)
ST oo

for every interior point i#1, +N. For the boundary points
i=1, N we follow Auer (1967) and obtain

Jo=J,+J = I7)02+3(J—9),(6))?, (10)
from which we have
(J=8),=(J=8),(14+ 67 +3(6D)*)—(I7 —§,)67 +8, -5, (11
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Fig. 1. Source function near a shock

and
In-y=Iy—U§ =IOy -1 +3( = SNy 1), (12)
from which we have
(J=S)y- 1= =Syl +y_ +30x-1))
— (I —Sy)ON _ +Sy—Sy_y. 13)

For cases where no shock discontinuities occur Egs. (9), (11), and
(13) can be solved with recursion relations similar to the standard
Feautrier fashion provided the boundary values I —S; and
Iy — Sy are specified.

In the presence of shocks we have a discontinuous source

function S but a continuous mean intensity J when going across
the shock front.
Consider in Fig. 1 the source function near a shock. The shock
discontinuity is between the infinitesimally close points L and R.
These points e.g. lie between grid points k and k— 1 of a given 1
grid. In order to avoid complications when shock points lie close
to grid points we follow the method described in Paper V, omit
the grid point closest to the shock and replace it by the shock
point. After completion of the solution in the thus modified grid
we subsequently evaluate the solution at the disregarded grid
point.

Let us consider the case where grid point k— 1 is omitted. The
case where point k is disregarded is treated analogously.
Originally we followed Auer (1967) using Taylor expansions to
second order similar to Egs. (10) and (12) around the shock points
L, R. The resulting solutions however were rather inaccurate as
for intermediate optical depth intervals both (5:*')? and (J—S)
were large such that the third term in the Taylor expansion was
not small against the second. Note that this does not happen in
Auer’s case as at the boundary points either (6:*!)? or (J—S) is
very small. We thus discretize the first order Egs. (6) at the shock
points L, R:

J.—J

e L_g,.=I;, (14)
Te—TL

J._,—J

k2T URgo=T. (15)
k-2 TR

As at the shock

I;=Ig, Ij=If, J,=Jg, 71,=1g, (16)
we have

Jk_JR =Jk—2—JR (17)
Te—TR  Tg-2—"Tr ’

from which we find

(J_S)k—Z

+

- J+0-9)

Sr—Sk-» n Sr—5Sk
T,—Tg

TR T2 T TR Tk~ TR

(18)

TR= Tk-2
Here the point R at the shock front takes the place of .grid point
k—1 and the solution is carried out in the usual Feautrier manner
except that for the point R now Eq. (18) is used instead of Eq. (9)
and appropriate differences 6 are taken. After completion of the

solution we find for the back of the shock
(J=S8),=(J—=S)g+Sz—5,. (19

The solution at the omitted grid point k—1 is obtained by using
Eqg. (6):

Jeo1=Jg+Ug—Ig) (-1 —7R). (20)
With Egs. (15) and (16) we find
T 1 —T
Jeoy =Jg+ U —Jp) 221X, (21)
Te— TR
from which we have
TR~ Tk—1
=81 =(J =95 (1+——) —8,+58x
Ty —Tr
Tp—T,_
+ 2 (S —8—(J=95)). (22)
Te—Tr

This procedure is applicable for all situations except cases where
shocks between grid points 1 and 2 or N—1 and N are very close
to the boundaries. In these cases we omit the boundary points in
favour of the shock point R. Using Eqgs. (33)(36) of Paper V we
evaluate e.g. (I~ —S); from the boundary values (I~ —S),. After
completion of the solution we use those equations again to
evaluate the solution (J—S), at the disregarded boundary point.

3. Results and Discussion

After this work was completed the recent paper of Mihalas (1980)
came to our attention. To effect a useful comparison between his
and our method we have decided to adopt similar test situations in
which we check our results against exact solutions. To avoid
adding numerical errors arising from a double-Gauss quadrature
scheme which is unrelated to the solution method of the transfer
equation we however did not carry out angle integrations.
Following Mihalas we tested our method using linear source
functions.
S(r)={a1+ﬁlt for tgrs, 23)
o,+p,t for =714

where 14 is the optical depth of the shock along the ray and where
a;=p,=1,0,=10, §,=p,. We use a t* grid extending from 10~*
to 102 with 8 or 15 intervals per decade.

The exact solution for the mean intensity is then
Xy — 0y

oy +pyTt+ e s7o

for =14

‘IExact (T) = (24)

U=y
Uyt fyr— 2—Le T

3 for t=1g.
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Table 1. Maximum relative errors E for 8 and 15 intervals per
decade as function of different shock position t¥. Values in brackets
are for cases where instead of Eq. (18) an Auer expansion was made.
S marks cases where the maximum error occurs at the shock

¥ 8 per decade 15 per decade

1072 221073 (391073 6.11074 (1.61073)

1071 1.81073 (201073 511074 (1.1107%
1 $141072  S(14107Y)  S361073 $(79107?)

10 §251072 S(1.8107Y)  S1.1107%2  S(1.6107Y)

We measure the accuracy of our method by computing the
relative error E=|J—Jg,,//Jpxaee- Table 1 shows the maximum
relative errors E for various cases t¥.

The errors generally are in the same order of magnitude as
those reported by Mihalas (1980). An exact comparison however
has not been performed as Mihalas did not treat the one ray case.
Nevertheless it appears that our method is similar if not superior
to the cases using Hermitian equations. For cases where the shock
is at low optical depth ¥ <0.1 which are the most interesting
situations for stellar chromospheres the present method seems
sufficiently accurate.

Table 1 clearly shows that usage of an Auer (1967) expansion
to second order instead of Eq. (18) is considerably worse. This is
due to the fact that the second order term in the Auer expansion is

103

not small any more at the shock. The errors of Table 1 do not
depend on the word length of the computer as tests with double
precision did not improve the accuracy.

Calculations of the same cases as shown in Table 1 have been
performed with the integral method described in Papers I and V.
Here machine accuracy (E~1071°) has been found in every case
and at every depth. This is not surprising as that method was
designed to give machine accuracy for parabolic source functions.
It was found however that the integral method is about a factor of
5 slower in computation time than the present method. The
overall increase of speed of the solution of the hydrodynamic code
with the two stream approximation was a factor of about 1.5.
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