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ABSTRACT: We discuss a method of solving line transfer problems
in moving media with plane symmetry. The method is an adapta-
tion of the core saturation method of Rybicki (1972) to a medium
with internal structure, such as shocks. Its speed follows from two
simplifications: the neglect of detailed transfer in the line core, and
the neglect of atmospheric regions that contribute negligibly o the
formation of the emergent spectrum of interest.

In this version of core saturation, the separation of the line profile
into core and wings is defined in terms of the monochromatic optical
distance along rays between neighboring spatial grid points. In the
line core, the specific, monochrematic intensity is assumed equal to
the source function; in the wings, the intensity is obtained from
a generalization of the Eddington-Barbier relation to an interior
point of the medium, or from the first-order differential equation
of transfer for the specific intensity, or from the formal integral
assuming a piecewise linear source function.

The method has been tested with the calculation of a line source
function in a static, isothermal medium and in a model solar atmo-
sphere traversed by multiple shocks.

1. INTRODUCTION

In many time-dependent media of interest in astrophysics, energy
is deposited by the dissipation of waves and is lost by radiation, often in
only a small number of transitions. A typical case is a stellar chromosphere
where the energy balance is believed to be between input from acoustic or mag-
netohydrodynamic waves (Ulmschneider & Stein 1982) and loss mainly in the
strong resonance lines of Ca II, Mg II, and H I (Linsky 1980, 1981). In the quiet
solar chromosphere (cf. Vernazza et al. 1981), 90% of the cooling occurs in these
line transitions and less than 10%% comes from H™ continuum radiation originat-
ing in the lowest and densest layers at the base of the chromosphere. Thus, if
one wishes to model the time-dependent behavior of the middle chromosphere,
for example, it is sufficient to treat the radiative loss in a few lines, or even in
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a single, representative line.

For the numerical description of such a2 medium one needs a method
for solving the transfer equation that is capable of giving a solution very fast
since in a time-dependent problem, with typically 10* time steps, by far the
largest fraction of the computer time tends to be used in the transfer calculation.
Speed of the computation is therefore of the utmost importance. The description
of some details of the transfer may have to be sacrificed; they can be calculated
later from the known solution at particular time steps. Thus, it is important
to treat macroscopic velocities that may be of the order of the sound velocity,
but it will in general not be necessary - at least not for determining the overall
structure of the medium - to treat partial redistribution with an anisotropic
phase function. By restricting the transfer to complete frequency redistribution,
and choosing a method that benefits from:this simplification, one can gain
perhaps two orders of magnitude in speed over the most general method, that
of Grant, Hunt, and Peraiah (cf. Peraiah 1973, 1978). Further gains in speed are
possible by confining the numerical treatment to those parts of the line profile
where significant transfer occurs, namely the wings, and simplifying it in the
line core, where radiation tends to be trapped and transfer takes place over
regions where the properties of the medium change only little.

The critical feature of the transfer that permits a simple descrip-
tion of the radiation is that deep inside an atmosphere the mean intensity of
radiation is equal to the source function, with corrections depending on the
source function curvature and higher, even-order derivatives. This feature has
been exploited by Kalkofen (1970) in approximating the discretized integral
operator for the average intensity far from the boundaries of the medium by
the identity matrix plus a tri-diagonal matrix representing the second deriva-
tive. Rybicki (1972) has used the relation between intensity and source function
to build a numerical scheme for solving the transfer equation in statistical equi-
librium, based on the simple physical idea of core saturation for sufficiently
large monochromatic optical depth: in the line core, the monochromatic mean
intensity is equal to the source function; in the wings it is determined from
the transfer equation. Rybicki’s method employed iteration in the wings and
avoided the extensive storage requirements of other, more accurate methods.

Stenholm (1977) has extended Rybicki’s core saturation approxima-
tion method to the solution of line transfer problems in media with geometries
other than plane-parallel, and Scharmer (1981) has used it to derive a probabilis-
tic equation similar to those of Athay (1972), Delache (1974), and Frisch &
Frisch (1975).

The core saturation methods described above have in common that
the separation of a line into core and wings is defined in terms of monochromatic
optical distance of a point from the surface. They are thus unable to treat
adequately media with internal structure, such as shocks. Since we wish to deal
with such media we must allow for the exchange of energy between internal
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points of the atmosphere. We therefore modify the definition of the line core
in order to account for this energy transfer. In section 2 we s‘tate the blasu:
equations of the transfer problem, define the separatir?n of the ll-nf‘i prr.:)ﬁle n}to
core and wings, and describe several ways of calculating the specific 1nt:ens|1ty
in the line wings; in section 3 we discuss numerical tests perform<?d with an
isothermal static atmosphere and with a moving medium representing a layer
of the solar atmosphere; and in section 4 we summarize the results and present

conclusions.

2. THE BASIC EQUATIONS

2.1 The Transfer Problem. i
The transfer problem we wish to solve is defined by the line transfer

equation and the equations of statistical equilibrium: for the two combining
gtates of the atom. We assume that the atmosphere has plane symmetr.y and
that the kinetic temperature, T, the collision parameter, €, and the velocity, g,
of flow in the normal direction are known; for convenience we assume that they
are given as functions of the optical depth, 7, at the undtsplac-ed line center.
For a line that is sufficiently strong that the background continuum may be
ignored, the transfer equation may be written

pgm,u,m = (r,v, wI(r, v, ) — (7)) (1)

where I is the specific, monochromatic intensity of the radiation field, u the
cosine of the angle between the direction of the photons and the outward normal,
and ¢ the absorption profile, given by the Voigt function,

¥(r,v,p) = H{a,v) , (2)

(see Mihalas 1978 for references to tables of H (a,v)), where the para.met..er a
is defined in terms of the damping constant J' and the thermal Doppler width,

AVD) r

a(7) ixAvp '’ (
and v is given by v—vy— (vofc)gp
v(r,v,p) = Avp ' i

For pure Doppler broadening, where a = 0, the function 9 = 1 at the displaced
line center, v = wp(1 + (g/c)p); and in a static atmosp}}ere, vlwhere g=20, t:.he
reference optical depth coincides with the monochrorlftatlc optical deptih at hz}e
center. The Voigt function ¢ is related to the normalized profile function ¢ via

¢[?’,V,ﬂ] T ¢/(\/;AVD) ’ (5)
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whose frequence integral satisfies the condition

[ aptrvm =1 (6)

The function § in the transfer equation (1) is the source function,
which is assumed to be frequency-independent, corresponding to the assump-
tion of complete redistribution of scattered photons. A formal expression for §
is obtained from the equations of statistical equilibrium for the two combining
states of the atom. If all transitions other than the direct radiative and colli-
sional transitions are negligible, these equations can be cast into the form (ef.
Thomas 1957, Jefferies 1968)

J
g — +eB , 7)

1+¢

where € is the well-known collision parameter, B the Planck function, and J
the integrated mean intensity,

1 oo
10) = [ an [ sttt )

The integral can be written as the sum of integrals over the line core and the
line wings, defined below,

I = %/dpfdp¢f+%fdvfdu¢1, (9)

v, 1E care v, uE wings

which is a generalization of Rybicki’s (1972) equation for the intensity in the
core saturation method, where the separation into core and wings depends on
frequency alone. The normalization integral may also be split into core and
wing contributions, where the wing integral.is defined as

Q(r) = %fdff/duﬁb(f:”:#) : (10)

v, pE wings

The equation suggests that we define a new profile function, x,,. = Pou/,
whose integral over wing frequencies and angles is normalized to unity (cf.
Rybicki 1972). For the numerical work it is assumed that this normalization
has been enforced.

The integral of the profile function over the line core may now be
written

%fdu/ dud(r,v,p) = 1—Q(r) . (11)

v uE core
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Note that, in a static atmosphere, £} is similar to an approximate, asymptotic
expression for the escape probability from large depth (cf. Mihalas 1978, p. 341).

We now assume (cf. Rybicki 1972) that the value of the intensity in
the line core is equal to the local value of the line source function,

I(rv,0) = S(),  v,p€ core . (12)

‘We thus neglect contributions made to the integral (9) over the intensity by
the second and higher (even) derivatives of the source function. This is usually
justified - even though the intensity is multiplied by the large core value of
the profile function - since the second derivative is proportional to ¢~%; the
exception is regions of very large source function gradients where the curvature
of 8 might make a contribution. We may nevertheless make the assumption (12)
since we could force the error to be arbitrarily small by choosing a criterion for
the core-wing separation that treats most or all of the photons as wing photons,
for which our integration sclves the transfer equation without approximations,
except those that are inherent in the discretization.

The core saturation approximation allows us now to write the equa-
tion (9) for the mean integrated intensity as

J(r) = S(1-Q)+ %fdu/ dudl | (13)
v, pu€ wings

and hence to simplify the source function equation to

fdufd,uqﬁ!+EB

L
2 et
5 = b ﬂ_-fE " (14)

in which reference to core photons has been cancelled on both sides of the
equation.

The specific, monochromatic intensity I(r,1,u) at the depth r
depends on the emission §(r) in a layer whose thickness is on the order of
a photon mean-free-path, \,,. Thus equation (14) has the form of an integral
equation,

S(r) = X(r,”)S(r"+Y(r) , (15)

with the angle and frequency integrated matrix operator X. If the equation is
solved iteratively, for example by putting

st(r) = X{(r, 7))+ Y (1) . (16)
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where S(®) is the source function in the nt® approximation, it is impractical
to avoid the approximation (12) to the transfer equation for core photons by
extending the wings to the line center. The reason is the large number of
iterations, of order 1/¢, that would be necessary to solve the resulting Neumann
series (cf. Avrett & Hummer 1985). If the integral equation (15) is solved by
inverting the matrix (1 — X), one can treat all photons as wing photons. But
one loses the time-saving advantage of the core saturation method. It is then
more efficient to include in equation (14) the second derivative term, which will
play a role only in regions where the source function has significant curvature.

Another correction term in the source function equation can arise
in a moving medium. The particle conservations equations will not simplify to
the equations of statistical equilibrium if strong spatial gradients occur in the
particle fluxes (cf. Kalkofen & Whitney 1971). The source function equation
must then be corrected by a term that is proportional to the first derivative
of the source function (cf. final chapter). This term can also easily be included
in the matrix equation (15), but an iteration may still be necessary since that
term can be non-linear.

It is interesting to note, as has been pointed out by Rybicki
(1972), that the source function equation (14) gives directly an estimate of the
thermalization distance, where § ~ B: If we assume that T ~ S deep in the
atmosphere, the wing integral is approximately equal to S. Now,  is essentially
the escape probability, which for Doppler broadening, for example, is given by

0 ~ l/(h/?rr\/lnﬂr)

(cf. the article by Canficld et al., eq. 8.22). Hence, when the optical depth 7 is
of order 1/¢, the source function S is of the order of the Planck function B.
Thus 1/¢ is an estimate of the thermalization length for a Doppler broadened
line in a static atmosphere.

2.2 The Core - Wing Separation.

In the standard core saturation method as introduced by Rybicki
(1972) and developed further by Stenholm (1977) and Scharmer (1981), the
separation of line photons into core and wing photons is defined in terms of the
optical depth of a given point. This procedure treats the escape of radiation
from the surface of the medium but ignores transfer within the medium. Thus,
in this form, the core saturation method cannot deal with structure within the
atmosphere, such as shocks, that lead to transfer of radiant energy between
internal points of the medium.

Since we want to treat radiative transfer inside the atmosphere, as
oceurs when the temperature or the flow velocity far from the surface vary, we
need a definition of line wings that gives to internal points the same status as
to boundary points. We therefore: consider a photon at any depth . to be in

PR—_ L
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the core or in a wing of the line if the monochromatic optical distalmce t..o! t]:fe
next grid point in the upstream direction for the photons um.‘}er dlBCllSSl:; is
larger or smaller, respectively, than v, a parameter of order unity, whose value
depends on the requirements for computational speed _m:td accuracy.

We use the usual convention in which the mwa.rd nor:mal, p=-—1,
points along the positive r-axis. The monochromatic _optlcal d.lstance,'rf , Tor
outward travelling photons between the spatial grid points n and 754 is then
given by

6= FX(ar=n) , kn >0 (1)
m

where ¥ is the average profile in the interval (k, k + 1),

E = %W’(Tk, Vn, le) + Y(Tks1, Vi, pm)] (18)

for photons in the ray (¥n, ptm). The analogous definitions for inward travelling
photons are

ghit %{ax(m—m) A e (19)

for the optical distance between the grid points 7% and mi—; along the ray
(=¥n, —tm), with the average profile

B = S0k, s ) + (k1 Vs )] (20)

in the interval (k, k£ —1). ;

Noie}that vy, is the discretized frequence displacement, v — v,, from
the rest frequency, v,, of the line. The Voigt function (2), as well as the Doppler
and Lorentsz profiles, are symmetric about the displaced line center; hence (cf.
Kalkofen 1970),

é(7, Vn, ﬂm,) = ‘ib(f: —Vn, —Fm) . (21)
This property has been exploited here in the choices for ttEe inward and ollltwar.d
rays and in writing the average profile (20). By comblmyg the beams in this
manner the numerical labor of computing optical dept.h.s is h'alved..

Now, if the optical distance from the spatial grid point £ to the
neighboring point & + 1 is large, i.e.,

bzl (22)

i idered to be
the photons at the depth 7 in the outward be.am (¥ny ) are consi :
in tlfe line core; similarly, if relation (22) is satisfied f01: the distance § acrossthe
interval (k, & — 1), the corresponding photons in the inward beam (_—v,,,-pm)
belong to the core. The inequality (22) is not satisfied by photons in the four
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line wings, which correspond to frequencies: on either side of the line center,
vp 20, and in the outward and inward beams, u = +4,,.

From the construction of the criterion (22) in terms of the optical
distance across layers it is clear that if photons at the three-dimensional grid
point (7i, ¥n, fim) are core photons, those at (Tk+1)—Vn, —pm) are also. This
property can be exploited for reducing the work in 2 numerical solution.

For the treatment of shocks the criterion (22) is used in modified
form: Recall that the typical spacing of depth points in an atmosphere is
logarithmic. But when a shock is present, the distance between the shock point
and a regular grid point can be very small. If the test (22) were applied to
the optical distance between the shoeck point and this close grid point, there
would be an influence on the computed intensity not only from the changed
structure of the shocked medium but also from the change in the treatment
of the core-wing separation. This is undesirable. In order to avoid favoring the
shock point one wants to maintain the core-wing separation in the interval as
though the additional shock point were not present. For the calculation of the
intensity at the shock front we therefore scale the optical distance Ar, between
the shock point and an adjacent grid point by the corresponding geometrical
distance Az, and the geometrical thickness of the interval in which the shock
is located, Az. Thus (22) becomes Ar, - Az[Az, > ~. Note that this procedure
concerns only the definition of the line wings in an interval containing a shock
point; the calculation of the intensity uses the appropriate optical distances.

2.3 The Intensity in the Line Wings.

For photons satisfying the inequality (22) the intensity is given by
the assumption (12) of the saturated line core; for photons in a ray whose
pathlength across the corresponding adjacent layer does not satisfy relation
(22), the intensity is obtained from the transfer equation, either approximately
or by means of an integration along the 3y (Vn, thm)-

A simple approximation for the intensity is based on the assump-
tions that the source function depends linearly on monochromatic optical depth
and that the distance to the boundaries is large. The specific intensity may then
be determined from the values of the source function and its derivative. A con-
venient way of stating the relation between the source function and the specific
intensity is to say that the intensity at 7 is equal to the source function at unit

optical distance from 7. Expressed in terms of the reference optical depth r,
this relation is

I(re,v, 1) = S[m + p/¥(me, v, )] . (23)

This equation is the generalization of the well-known Eddington-Barbier rela-
tion (cf. Kourganoff 1963) for an interior point of the atmosphere.

Since the source points 7 = 7, & o/ 0(Tk, £, +#tm) do not, in
general, coincide with any spatial grid point, it is necessary to interpolate the
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value of the source function in equation (23). For this purpose we use ?hhe
monochromatic optical depth, which is available fl'ODEI. the test (22), and whie

yields a better interpolation value for the source pOll‘lt. than the argument of
the source function (23), for which the profile function at the depth n. was
taken. With the notation 6{; for the optical distance along the rays (lefm)
and (—Vp, —Hm) between the spatial grid points r; and 7 the interpolation

formula is
I (7%, Vny o) = WS +(1—-W)S;41 (24)

ith , :
i w = (s - 1)+, (28),

where (7,7 + 1) is the depth interval in which the source point for the outward
intensity at 7 is located; and for the inward intensity:

I_—(Tk, —Vg, _)u‘m) = WS‘ a5 (1 i ms'-_l 2 (26)

! _
i W — (b, - Dfhy (27)

where (i,% — 1) is the depth interval containing the source point for I. t The
intervals (5, 5 + 1) and (¢,7— 1) are to be chos_en such that the source p?li 5 ar:
at unit optical distance along the corredspondmg rays from the field point 7, a

i i ity is to be determined.
e mlifr:igiyons of the atmosphere in which the source function depe.nds
linearly on depth, the Eddington-Barbier relation (23), or (24) to (27), gltYES
the correct value for the intensity. In a time-dependent medmm,. however, the
source function will rarely have this simple form. These expressions can thei
lead to a behavior that can be even qualitatively wrong. Nea; a saw t.'ooth shi;
front, for example, the intensity from the Eddingt.on-Ba.rb.[exi relation forhj ;:
radiation on the low temperature side of the front, dt_le to emlssmt?f rom the _tg.
temperature side, will exhibit an u_nphysica.! blehavmr'as the p(.nnt w?]]:;zz-e it is
computed approaches the front. The high emission from the ‘hot S.lde will have :?;;
effect on the intensity until the optical distance to t-]lff fmnt.‘ls UII:lty‘, when it v:h
jump suddenly to a high value, and from then on the 1nter'151ty will decreasel wi
decreasing distance to the front since the single source point, where thg em_I?S:‘i];
is measured, moves to layers ol lower tem[.)erat}n-e. The correct bek}aﬂT o i
intensity is a gradual increase with decreasing d.ls.tance 130 the shoc%c r;n : w.d :
the intensity reaches its maximal value. Thes.e dtfﬁcultjles can easily be a:’ont;e
by a proper integration of the transfer equa_tmn; the simpler e:vc131;1e35101ii oze i
intensity should be used only when a sufficiently smooth depth dependen:

etion permits it.

e f}:‘zr the (I:Jalc ulation of the intensity in the line w_ings we may chogse
from several formulations. If we take the Feautrier equation, a second-order
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finite difference equation, we obtain the intensity mean along a ray. Now, near
a shock front, for example, the properties of the atmosphere change abruptly.
Optical path lengths then change similarly, and a photon in the 13y (Un, fm)
might be a wing photon whereas a photon in the corresponding ray (—vp, —fim)
might be a core photon. With the Feautrier equation these photons would
be treated jointly as though both were in the line wing. With the first~order
equation (1), which yields the specific intensity, the core photon would be
regarded as trapped and, hence, the core saturation approximation would be
made, and the transfer equation would be solved only for the wing photon.

For short optical path lengths between neighboring grid points both
equations give equally accurate results since the Feautrier equation has second-
order accuracy and the first-order equation does so for half-implicit differencing.
But for path.lengths exceeding unity the first-order equation yields inferior
results and for § > 2 the solution can become unstable unless the differencing
is modified. The advantage of the first-order equation for our present purposes,
however, is that it lends itself more readily to a formulation in which the transfer
problem described by the integral equation (15) for the source function ean be
solved in one step by means of 2 matrix inversion; this is also true for the formal
integral of the transfer equation.

We will give the weights for the integration of the first-order
difference equation and for the discretized formal integral assuming piecewise
linear segments of the source function (for the integration over quadratic seg-
ments, see Kalkofen 1974).

We write the transfer equation (1) in terms of the optical distance
7 along the rays (v, i) a0d (—vp, —fim):

! i R
Tk = ;'/(). dt‘lﬂ(t, Vn,-ﬂ-m) . (28)
At the spatial grid point 7; the intensity IT in the outward ray (Vs ) 8

obtained from the discretized transfer equation (1). Integrating along the ray
across the layer (¢,2 + 1) we obtain

I} = al} +08;i+e8Suy , (29)

where the coefficients a, b, and ¢ depend on the optical path length across the
layer (1,4 + 1),
0 = Tip1 -7 . (30)

Similarly, for' the inward intensity I; along the Ty (—Vn, —im) We integrate
across the layer (i — 1,1) to find

ID = alz, +b68+cSiy (31)

e T
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with a, b, and ¢ depending on 6:
(32)

§ = Ti—Ti

if the optical path ¢ is small, half-implicit differencing gives for the

NOW’ and (33) of the intensity:

coefficients in the expressions (31)

- &
£ 20 set e
3_2——61 b__.c_2 5

&, (33)

g : 1
For a wider mesh we choose a differencing weight that guarantees a stable

colution. The coefficients are then given by:

1 26 —1

L e, i L (34)
26 + 1 2 +

o = ¢t =

i _imvlicit differencing remain positive for
flicients (33) for half-implicit
ENO? ;hz‘té:flﬁlzovealue 6 :f 1 the integration constants (33) and (34) have the

ring a smooth transition between them.

i e v formal integral of the tramsfer

The integration weights from the
equation are obtained from:

IT = fﬂ+1 dt e_(“-"i‘.-] S(t) + 1:‘:»1 8"(?‘!-&-1_*"} % (35)

hat the source function is a linear function of I'nonochromatlc
i,% + 1) we readily obtain an expression of the form
;:y where the coefficients are given by

If we assume
optical depth in the layer [
(29) for the outward intensi

§_1
1—‘8_6 R e __1) ’ {35)
o = ¢?, b= 1— 5 ; e = ¢ ( 5

finition (30) for the path length 6. For short path length where

e stead the expansions

rounding errors can affect the result we use in

5 6 5 )
=2 P i e
b“‘2@ 3( 4

gl 8 § )
ﬂ=€6§(1+§(1+4... i

§ <1

(37)

inward intensity I; from the formal integral has the

e e 31); the coefficients a, b, and. ¢ are also given by the
1

same form as equation (
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relations (36) ‘or (37), in terms of the optical distance § defined by equation
(32).

The expressions (29) and (31) for the specific intensity I; at the
depth 7, require the specification of boundary conditions. If these are chosen at
an optical distance of at least §7 = 5 in the upstream direction, the emission
further upstream contributes less than 1% - unless the source function increases
sharply; then a larger value should be taken for 67. At this “boundary” point,
we set I; = S, say, which is equivalent to assuming that the atmosphere is
isothermal and semi-infinite beyond r;, with the intensity emerging at r; equal
to 5.

The above description of the integration of the transfer equation
has considered the specific intensity only at the grid peint 7. If the neighboring
points in the downstream direction are closer than §7 = 4, the integration does
not have to be started again sufficiently far upstream but needs to be carried
only over the intervening layers.

2.4 The Net Radiative Cocling Rate.

With the specific intensity computed by means of equations (29)
and (31), or the estimates (24) and (26), we can now determine the wing integral
(13) of the intensity and hence the line source function by selving equation (15),
either directly via a matrix inversion or iteratively according to the prescription
(16). The knowledge of the line source function allows us then to calculate the
local radiative cooling rate of the line without a further integration.

In order to define the cooling rate we write the transfer equation in
terms of geometrical height as

d hug n2 fwe
iz LV nle( ny [wy gl =s) (38)
where the positive x-axis points along g = 1,B;2 is the Einstein coefficient

for absorption in the transition from level 1 to level 2, and n and w are the
densities and weights of these levels. We wish to determine the flux, given by
the intensity integral over solid angle and over the whole line profile,

F = fdﬂ_/d.vul : (39)

The net radiative cooling rate, &, is then defined by the divergence of the
radiative flux,

dF
T=9, (40)
and is given by
5= hyunlBlg(l = "2—/“‘3&)(5 gl (41)
ny fwy
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We cast the expression into a more convenient form by eliminating
reference to the population ny in the upper level with the aid of the source
function, written in terms of the particle densities of the two combining states,

3 —1
& o 2hvo(ﬂ1/W1 _1) ! (42)

c2 nz/wz

and we eliminate reference to the mean integrated intensity with the help of
the equation (7) of statistical equilibrium. We obtain

B-8§

— h i e et
- uﬂnlB]EEl%—S/(Qhu%/cz)

(43)

Thus the local radiative cooling rate can be conveniently expressed in terms of
the source function and the prescribed Planck function.

The solution method that we have described assumes that the strue-
ture of the underlying atmosphere is given in terms of the optical depth in the
line. For the hydrodynamical calculations, however, the resulting cooling rate
must be expressed in terms of geometrical or Lagrangian depth. The cooling
rate must therefore be transformed into that space. If our procedure is to be
useful, this transformation must not depend strongly on the source function.
Fortunately this condition is often satisfied since the dominant radiative losses
are typically due to radiative transfer in resonance lines of dominant ions. For
weak sonic disturbances the ground state density is then insensitive to the solu-
tion for the source function so that our procedure can be used. Otherwise a
further calculation is necessary to determine the transformation between the
depth variables.

3. NUMERICAL TESTS

‘We have tested our method of solving the transfer problem with
a static, isothermal medium and with a time-dependent model chromosphere
traversed by multiple shocks using the quasi:static approximation for the equa-
tions of statistical equilibrium. Qur 2im was to study accuracy, convergence,
and speed, and their dependence on the free parameter separating the line core
from the wings.

The accuracy of the method is easiest to judge in a semi-finite,
isothermal atmosphere with constant collision parameter and depth-independent,
normalized absorption profile, where the surface value of the source func-
tion is given by §(0) = +/eB, independent of the values of the Doppler
and damping widths and of the number of angle points. Since the source
function approaches the Planck function at large depth the error of the
solution will tend to be maximal near the surface; we will characterize the
accuracy of the method by the surface value.
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3.1 "IA‘;:Le Isothermal Atmosphere.

e have solved the integral equati i
for ‘r',he is?t.hermal medium with i O.E? anl(;maogutze];?;ptl';in;:‘i;limf:fnm
the 1teratlor.: procedure indicated by equation (18). We discuss solution’s wit]ﬁ
34' depth points, covering the 7-range 0,0.1,. . ., 1000, with one angle point d
with 21 frequency points in the half-profile. j Chiin s

The accuracy of the converged solution (cf. Table i

on th(_e pz'u'ameter 7 (cf. eq. 22) defining the separgtion of 02;1 ‘;Pne; c::i:lﬂalfl:g
quencies in terms of the optical distance § between adjacent grid points a;snd it
depends only weakly on the method by which the intensity is calcu!ateé Thus
the source functions obtained by solving the transfer equation in diifel-entia!
equation form or from the formal integral have practically the same accuracy;
for the solut'irczn emplo;}ring the Eddington-Barbier relation it is lower 4

e rate of convergence to the solution obtai ;
numb'er of iterations was independent of the metho?a;;eiifgir ti:e:;‘fa:;’ii
equation was integrated and depended on the wing parameter - the larger the
value of vy, the more iterations were needed - and on the initial estimate of th
source fl}nction, for which we took either S(r) = B or $(r) = ¢B; the latte?
assumption saved two iterations. Table 2 lists the number of iteratio;m required

tO l‘eaC]l the ﬁﬂal SOll]tlon 50 Wltvhln. a S[)EClﬁed p ecls10n (1n ; 81 att i]{l
T 18]
1 ( O), ].D.g I

Table 1.' Accuracy as a function of the monochromatic step length
7 defining the separation of core and wing frequencies. The er-
ror, (§(0)/0.1) — 1, for the solution of the transfer equation with

the differential equation (DE), the formal inte
! 5 ral (IE
Eddington Barbier relation (EB) CARRI it

o IE DE EB
0.8 2.0 2.5 3.6
1.0 -0.6 -0.2
1.5 -2.8 -2.1
2.0 -3.9 -3.4
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Table 2. Convergence rate for vy = 0.8: the number of itera-
tions (IT) for reaching the converged solution to within a specified

tolerance (E).

s
10% 14
5% 17
2% 21
1% 24

The computing time necessary to determine the source function
iteratively within 2% of the converged solution, which is comparable to the
accuracy of the method for this value of v, was longer than it would have
taken solving the matrix equation directly. When the number of depth points
was increased by 509, the time per iteration increased linearly with the num-
ber of grid points, as did the number of iterations necessary to approach the
final solution within specified bounds. Thus the increase in computing effort
depended on the square of the number N of grid points. If we assume that this
relation between accuracy and depth grid holds over a sufficiently wide range
we may conclude that the iterative method of solution becomes comparable in
efficiency with the solution by matrix inversion, which scales as N®, when N is
large enough. Since this value of N appears to be in excess of 102, the iterative
solution would require less computing time only for grids as large as those often
used in time-dependent hydrodynamical problems, but in the present problem
the direct matrix inversion would have yielded the solution faster.

The calculation of the source function using the formal integral of
the transfer equation takes 30% longer than using the differential equation.
Since both solutions give nearly the same accuracy, the differential equation
solution is preferable. The Eddington-Barbier solution of the tramsfer equa-
tion takes slightly less time but gives lower accuracy. Because of the expected
difficulties near shock fronts (see also the discussion below) the time saved rela-
tive to the differential equation solution is not sufficient to compensate for its
weaknesses except, perhaps, in problems with monotonic source function varia-
tion.

It is interesting that the differential and integral equations of trans-
fer yield a source function solution of nearly the same accuracy. Since the
monochromatic optical depth steps & in the line wings are at most equal to
~ one would expect higher, and different, accuracy from the two methods. A
plausible explanation for the observed behavior would be that the error in the
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source function is due mainly to the assumption of core saturation and that

the' inte?;ra‘r',ion of the transfer equation contributes only an insignificant error
This point is worth investigating further. '

1 log P
(x103K) |ldyn/em?)

T 1 T T T T
800 700 800 900 1000 1100 1200
height (km}

Frig. 1 Sm%pshot of the temperature, T, velocity, V, and pressure, P, as func-
tions of height above 75000 = 1 for an acoustic wave in the solar chromosphere.
The mean temperature, T, time-averaged over a wave period is shown dotted.

3.2 The Moving Medium.

_ The aim of the calculation is to demonstrate the use of the method
with the study of the formation of the & line of Mg II in the solar atmosphere
The model, shown in Figure 1, is a section of the solar chromosphere extendin :
from t'he temperature minimum region to the middle chromosphere, taken a%
a particular time in the propagation of an acoustic wave (cf. Ulmsci’meider et
al. 1978): v, p, and T are the instantaneous velocity, gas pressure, and kinetic
temperature, respectively, and T is the time- averaged temperat.ure’ intended to
match the temperature profile of static models of the quiet sun. ’Thjs section
of the atmosphere covers the optical depth range at the undisplaced line center

from 75 = 3.5 X 102 at the top of the at I
mosph ! 5
boundary. X phere to 7.0 X 10° at the lower
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The parameters describing the Mg ion are: the abundance, A =
3.9 % 1073; the rate coefficient for superelastic collisions, {ls; = 3.8 X 1077,
the radiative damping width, I'yes = Ag; = 2.7 X 108; and the elastic collision
width,
I, = 1.0 X 1078(T/5000)"° ngy ,

where the hydrogen density, ng, is obtained from the mass demsity, p, of the
model,
ng = P/[I‘lmﬂ) ’

with mz the mass of the hydrogen atom. Electrons are assumed to be con-
tributed by singly ionized metals, giving the fixed proportion for the electron
density of n, = 10~ X ng.

In the atmosphere the collision parameter ¢ varies from 8.4 X 10-7
at the upper boundary to 2.8 X 10~* at the lower, and the damping parameter
in the Voigt profile, a = (I'e + I'kea)/47 Av,, is approximately equal to 3 X
10~2. The velocity amplitude of the wave implies a frequency shift of about one
thermal Doppler width.

The frequency grid consisted of 28 points distributed logarithmi-
cally and symmetrically about [AX| = 0.03B4, corresponding to two thermal
Doppler widths (~ 24Xp) on either side of the line center, out to |[AN| =

D.SOA(N 27AXp). At the outermost frequency points there was a contribution
to the line wings even at the bottom boundary. The angle grid consisted of
either one or three division points, which were chosen according to the require-
ments of Gaussian quadrature.

3.3 Comparison with the Standard Core Saturation Method.

For the static, time-averaged atmosphere (v = 0,T) we have com-
pared our version of core saturation, where the separation of the line profile
into core and wings is defined in terms of the monochromatic optical distance
along a ray between adjacent grid points, with the standard core saturation
method (Rybicki 1972, Stenholm 1977, Scharmer 1981), where wing frequencies
are defined in terms of monochromatic optical depth, i.e., normal (g4 = 1) opti-
cal distance to the surface. Figure 2 shows the core-wing diagram for the value
n = 0.7 of our parameter for the core-wing separation, and for 7, = 1.0 and
2.7, typical values for the parameter in the standard method (Stenholm, private
communication). The figure shows that the boundaries of the core for v = 0.7
coincide with those for 7, = 2.7 in the interior of the slab and for 7, = 1.0
near the upper boundary. The source function for the time-averaged, static
atmosphere is shown in Figure 3. The calculation is carried out for 4 = 0.7
and with the initial estimates for the source function of § = B and § = ¢B.
As before, convergence to within 10% of the final solution occurs in about 14
iterations.
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Fig. 2. Core-wing diagram for the mean atmosphere of Figure 1 with one angle
point, 28 freguency points, and v = 0.7. The core-wing diagrams of the standard
core-saturation method for 7., = 1.0 and 2.7 are shown dashed

log S terg/cm?‘s sr Hz)
-6.50 ~-5.00 -5.50 -5.00

-7.00

-7.50

EB

T T 1 T T T
600 700 800 900 1000 1100 !ZIOD
A : height {(km)
a1;;'.l .218t<;'ra1;10n of thf: source function S for the mean atmosphere with one
ngle, requency points, and 7 = 0.7, Iteration numbers are indicated.
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3.4 Variation of Angle and Frequency Grids.
For the moving atmosphere depicted in Figure 1 the temperature

and velocity variations of the gas lead to an asymmetric core-wing diagram,
shown in Figure 4 for the outward radiation at one angle point; the map for
the inward radiation is essentially the mirror image. Note that the line center
(vo) does not contribute wing photons even at the top of the atmosphere since
the upper boundary is at the relatively large optical depth of 350. Note also
that there are wing parts at intermediate depths that receive radiation from
deeper and from shallower layers but do not lose radiation to the surface. The
standard core saturation method would have treated them as core points, in
which the intensity is equal to the source function, and thus would have failed
to account properly for their energy exchange with the surrounding medium.
The source function for the moving atmosphere is shown in Figure
5, with the iterations starting again from § = Bor § = eB. As before,
convergence (cf. Table 3) is faster with the initial solution § = ¢B; and the
converged solution is reached earlier than inm the isothermal atmosphere.

%

v

T

Fig. 4. Core-wing diagram for the actual atmosphere of Figure 1 and outgoing
radiation with one angle point, 28 frequency points, and 4 = 0.7.
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-6.50 -6.00 -5.50 -5.00

log § {ergfcmzs srHz)

~7.00

-7.50
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height (km)

Fig. 5. Iteration of the source function § as function of height starting from
= B (top) and from § = ¢B (bottom) for the actual atmosphere of Figure

1 with one angle, 28 frequency points and v = 0.7, I ;
indi = 0.7. It
indicated. : i/ eration numbers are

iTa.ble_3. Convergence rate in the moving atmosphere: number of
iterations needed to reach the converged solution within specified

tolerance.
S=B S=¢B
7 10% 1% 10% 1%
0.5 12 17 8 14
0.7 14 20 8 16
1.0 18 24 11 19

Kalkofen & Ulmschneider: Core Saturation 151

As pointed out above, the assumption of core saturation is of no
consequence for the solution when the source function depends linearly on
monochromatic optical depth; but in regions where the source function depends
on higher powers of r the neglect of the curvature term degrades the solution.
This can be seen in the results for increasing values of the parameter «, with
which the wings of the line, where the transfer equation is solved in detail,
can be moved further towards the line center. Figure 6 shows the core-wing
diagram for y= 0.5, 0.7, and 1.0; the larger «, the narrower is the line core; and
the smaller is the error from the neglect of transfer in the core. The solutions
for the source function with the three values of « are given in Figure 7. The
difference in the source functions for 4y = 0.7 and 1.0 is quite small, except at
the temperature minimum and, to a lesser extent, at the shock fronts, where
the error from the neglect of the curvature term is noticeable. For the study of
the energy loss from the solar chromosphere these errors are not serious since
the cooling of the temperature minimum region is dominated by emission of
H~. In general, the remedy for low accuracy is a larger value of the core-wing
separation parameter 7, or a narrower spacing of depth points in critical areas,
which also has the effect of narrowing the line core.

Cf
y=0.5\rwy=oj
— i =,
B

L

Fig. 6. Core-wing diagram as in Figure 4, but for v = 0.5, 0.7, and 1.0.
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The accuracy of the calculation improves also when the number of
angle points in the moving medium is increased., Figure 8 shows the core-wing
diagram for three angle points: The velocity efects are the most pronounced
for the largest value of u, since the projected velocily is proportional to g, and
the core is the widest for the smallest value of p, since the optical path length is
proportional to 1/u. Figure 9 shows the source function for 28 frequency points
with one or three angles, and for 56 frequencies with three angles. The solution
for one angle point differs by about 5% from the two solutions with three angle
points, which practically coincide. Thus, the smaller number of frequency points
is sufficient for treating this problem; but in the angle discretization, three
points per hemisphere are required if the accuracy is to be better than that of the
core saturation approximation. At two angles, the errors are comparable, and
taking more than three is unnecessary here since the velocity dependence of the
profile in the damping wings, where almost all the frequency points are located,
is quite small, so that over a large part of the frequency range the transfer
is hardly different from that in a static atmosphere, where an increase in the
number of angle points beyond three changes the solution by an insignificant
amount.

-6.50 -6.00 -5.50

log S {erg."cmzs srHz)

-7.00

-7.50

T I I T T T
600 700 800 900 1000 1100 1200

height (km)

Fig. 7. Converged source functions for 4 =10.5, 0.7, and 1.0.
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r T
Fig. 8. Core-wing diagrams as in Figure 4, but for three angle points.
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Fig. 9. Converged source functions for v = 0.7 and for cases A: 1 angle, 28
frequency points, B: 3 angle, 28 frequency points and C: 3 angle, 56 frequency

points.
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The source function in the moving atmosphere was calculated by
solving the transfer equation as a first-order finite-difference equation or by
evaluating the Eddington-Barbier relation. The latter method has a considerable
intrinsic advantage in speed, but the overall calculation gained only about 9%
in time. This must be weighed against an increase in the error, which amounts
to about 10% at the temperature minimum (cf. Figure 10), and a reduction of
the source function on both sides of the shock fronts, which implies an increase
in the computed net cooling rate (43) of the gas near the shocks. Thus, while the
error of the Eddington-Barbier relation may, perhaps, be tolerable for source
function calculations in which the temperature structure of the atmosphere is
monotonic and is prescribed, in calculations in which that structure is to be
determined it is much safer and not much more costly to solve the transfer
equation in the differential or integral equation form.
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Fig. 10. Converged source functions for 3 angle, 28 frequency points and N =
0.7. The solution labelled EB uses the Eddington-Barbier approximation for the
specific intensity.
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4. CONCLUSIONS

We have described a numerical method for solving the line trans-
fer equation of a two-level atom in statistical equilibrium, assuming complete
redistribution of emitted photons. The essence of the method is the assumption
of saturation in the line core, which is defined, locally, by the requirement that
the specific, monochromatic optical distance along a ray to the next spatial
grid point in the upstream direction be larger than some value of order unity.
If the condition is met, the specific, monochromatic intensity is set equal ta the
source function; otherwise the intensity is calculated from the generalization
of the Eddington-Barbier relation, or from the first-order differential equation
(ODE) for the'specific intensity, or from the integral equation of transfer (formal
integral), assuming piecewise linear segments of the source function.

‘We have studied speed and accuracy of the integration of the line
transfer equation in a semi-infinite atmosphere with constant Planck function
and constant eollision parameter ¢, and of a Mg Il resonance line in a model solar
atmosphere traversed by shocks. In the latter problem, the upper boundary
was at the relatively large line depth of 7y = 3.5 X 10%. The reason for the
neglect of the top layer of the atmosphere was that we were interested only
in the intensity in the line wings. The justification for the neglect is that the
top layer contributes negligibly to the wing intensity. The numerical work is
thereby reduced.

We have solved the matrix equation of the problem, which has the
same structure as the equation in the integral equation method, by means of
an iteration scheme. The calculation would have been faster with the direct
solution of the system of linear equations for the source function values. A
considerable further speed-up, useful for time-dependent problems, would have
resulted with a2 perturbation of the integral operator, as proposed by Cannon
(this volume) and implemented by Scharmer (this volume) (see also concluding
chapter).

For a medium with arbitrary temperature and velocity structure,
the best results were obtained with the calculation of the specific intensity from
the transfer equation as a first-order ODE.
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NON-LOCAL PERTURBATION TECHNIQUES IN RADIATIVE TRANSFER

C.J. Cannon
Department of Applied Mathematics, The University of Sydney,
N.S.W. 2006, Australia

The equation of radiative transfer reflects the direct coupl-
ing between the photon distribution at one point in the radiating gas and
the photon distributions at all other points within a distance less than
approximately a thermalisation path length. Any attempt at the numerical
solution of the transfer equation must therefore adequately represent
this non-local coupling, and this generally implies that a sufficient
number of frequency, angle and position grid points must be chosen if the
radiation field is to be satisfactorily described. More particularly,
the precise manner in which photons interact with the atoms and ions
constituting the plasma is contained in the redistribution function, and
this can exhibit sharply peaked components in both freguency and angle
space thus again necessitating care in constructing an appropriate
frequency and angle grid network. These are impeortant considerations not
just from the mathematical desire to compute an accurate solution to the
transfer equation, but from the more general point of view for which the
transfer eguation must, in turn, be coupled to the gas-dynamic conserva-
tion equations specifying the macroscopic guantities velocity, density
and temperature. An inadequate numerical representation of the angle,
frequency and position variables will lead to an inadegquate representa-
tion of the radiation field. This will generate errors in the above
velocities, densities and temperatures (these errors, of course, will
feed back onto the solution of the transfer eguation) and subseguently
affect our understanding of the energy balance within the radiating gas.

411 of the above discussion suggests that the number of
required grid points needed to solve the transfer equation could be
prohibitively large even when using very large computers. The thrust
behind the perturbation technique is to remove this difficulty by solving
a simpler reduced problem for which a smaller number of grid points,

along with the more manageable complete redistribution assumption, is





