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Summary. We present a computational code that allows the
nonlinear equations of motion for a compressible fluid to be
solved. Earlier work on one-dimensional problems using the
method of characteristics is here generalised to two dimensions
employing cylindrical geometry. The scheme is described in detail
and its effectiveness is demonstrated using analytic examples of
small-amplitude motion in an isothermal, stably stratified, at-
mosphere. The code is designed specifically to handle the problem
of the overshoot and decay of convective motion in stellar
atmospheres and their coupling to acoustic and internal wave
fields.
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1. Introduction

In the last decade there has been a rapidly growing awareness that
stellar atmospheres are not static spherically symmetric layers
characterized by just two quantities, an effective temperature and a
gravitational acceleration. The current undertaking by
NASA/CNRS (e.g. Jordan, 1982) to produce a series of volumes
devoted to dynamical phenomena in the atmospheres of stars of all
conceivable types is sufficient evidence for the importance now
attached to the understanding of the non-static properties of stars.
This requires first of all the identification of the modes of motion —
whether wave-like or convective, for example. This may be treated
in a linearized approach. But we also require a knowledge of the
energetics, the excitation, damping and conversion of the various
storage modes. The latter problem necessitates full non-linear
treatment to describe the interplay which governs the detailed
structure of stellar atmospheres.

This has long been recognized in solar physics where much
attention has been given to convective motions as evidenced by the
solar granulation. Of particular interest are the development and
ultimate decay of these motions immediately below and within the
solar photosphere whereby acoustic and gravity waves are
generated (Stein, 1968; Mihalas and Toomre, 1981). These waves
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can propagate through the atmosphere and dissipate at higher
levels. Much work has been devoted to the subject in connexion
with the heating of the chromosphere, and some restricted aspects,
such as the nonlinear propagation of the waves, have been
thoroughly explored (Ulmschneider et al., 1978). But a fully
convincing demonstration of the processes of wave generation
coupled with a realistic description of the dissipation is still lacking
since it requires an accurate treatment of the nonlinear dynamics
in a compressible stratified medium in which most of the energy is
transported by nonlocal photon exchange.

We present here a two-dimensional computational code that is
designed specifically to explore such nonlinear interactions. This
aim differs substantially from that of describing stellar convection
per se, which has been recently reviewed by Zahn (1979). There, the
main interest lies in the relationship between the superadiabatic
gradient and the convective energy flux (Weiss, 1977), and, so far,
all investigations resort either to the quasi-incompressible Bous-
sinesq approximation (Spiegel and Veronis, 1960) or to the
anelastic approximation (Gough, 1969). Both require that the
motion does not extend vertically over too many scale heights and
that the speeds developed remain small compared to the local
sound speed. Acoustic waves are thereby filtered out. It is doubtful
whether these conditions are met in the solar photosphere, so the
fully compressible hydrodynamic equations are strictly necessary.

In Sects. 2 and 3 we present the basic equations and the
numerical scheme by which they may be solved. Some test
examples are given in Sect. 4 of the propagation of disturbances in
a stably stratified atmosphere. Section 5 summarizes the advan-
tages and disadvantages of this approach.

2. Basic equations

In general we are interested in unsteady, compressible flows in
which there is either heat addition or heat loss by radiation from a
fluid element to its surroundings. For the time being we neglect the
effects of magnetic fields, viscous dissipation, and heat conduction.
Since we want to model granulation flows we assume axialsymme-
try where z is the vertical and r is the radial space coordinate. In
cylindrical coordinates the equation expressing the conservation
of mass is

6Q+ 6Q+ 6@+ [6u+6v+u] 0 O
P— u— U— _— —_— —_ = s

ot or 0z e or 0z r

where u(r, z, t) is the radial and v(r, z, t) is the vertical component of
the velocity, respectively, and g(r, z, t) is the density. For a perfect
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gas, we have the thermodynamic relation
dS=c,dlnp—c,dlng, 2)

where c, and c, are the specific heats, S(r, z, t) is the specific entropy
and p(r, z,t) is the gas pressure. For simplicity we assume that c,
and c, are constant and given by ¢,=R/[u(y—1)] and ¢,=yc,,
where R=8.314E7erg K~ ! mol ! is the universal gas constant, y
is the ratio of specific heats and u is the mean molecular weight. We
take u=13gmol™! and y=5/3, appropriate for the solar
photosphere.
From Egs. (1) and (2) we obtain

0 0 0 ds u dv u
P v-p—vp~+(yp)[—+—+—:| =0, 3)
ot ar 0z ¢, dt or 0z r
d 0 0 . . o
where — = — +u— +v— is the Eulerian derivative along the

dt ot o 0z
particle path.
The equations of conservation for the radial and the vertical
momentum are given by

ou Ou Ou 10p

—4u—+v—+-—=0 (€]
ot ar 0z o or

and

8v+ 61)+ 6v+16p+ 0 )
—tu—+v—+-—+4+g=0.

ot or 0z 0z g

For the purpose of this work, we take a constant gravitational
acceleration with g=2.736E4cms~2 appropriate for the outer
portions of the Sun.

Since radiation is the only mechanism of heat transfer the
energy conservation equation becomes

as oS oS oS dS

—=—4u—+tv—=— , (6)
dt ot or 0z  dtlgaa

where dS/dt|p.q (7, 2z, t) is the radiative damping function which is
discussed e.g. by Kalkofen and Ulmschneider (1977). The increase
in the entropy of an element of the fluid is caused by a decrease of
the radiative flux. The derivative of the radiative flux, and hence
dS/dt|.4, 1s obtained from a numerical solution of the equation of
radiative transfer. This will be discussed in a subsequent paper. It
suffices at this point to mention that similarly as our one-
dimensional method (Ulmschneider et al., 1977, 1978; Kalkofen
and Ulmschneider, 1977) the present approach splits the set of
equations into a hyperbolic part and a parabolic-like part. The
hyperbolic part as described below is solved using the method of
bicharacteristics while the parabolic-like part describing the
radiative damping is solved iteratively. This approach is similar to
methods used by other workers (e.g. Finkleman, 1969; Finkleman
and Baron, 1970; McCormack, 1976a, b). For the present, how-
ever, dS/dt|z,q may be presumed equal to zero.

The equation of state

RT
p=0—, @)
u

and Eq. (2) relate the four thermodynamic variables ¢, p, S and
temperature T. Equations (3)}+6) together with initial conditions at
time ¢ and boundary conditions form a Cauchy initial-value
problem of four partial differential equations in four dependent
variables (u, v and any two thermodynamic variables).

3. The hydrodynamic code
a) Evaluation of numerical methods

In general, for the solution of Egs. (3)~(6) a numerical method is
required. The two most commonly employed numerical tech-
niques are the finite difference method (FDM) and the method of
characteristics (MC), both of which have been employed rather
successfully in a variety of astronomical problems. The principal
advantage of the FDM is that one does not need to handle shock
discontinuities explicitly. This is accomplished by introducing
pseudo-viscous terms into the equations of momentum and energy
(von Neumann and Richtmyer, 1950), by using specially chosen
differencing schemes which effectively introduce an artifical viscos-
ity into the flow (Lax, 1954), or by introducing artifical heat
conduction terms into the energy equation (Sachdev and Prasad,
1966). The dissipative effects of these artifical terms act to
irreversibly convert the kinetic energy of a shock wave into
internal energy of the flow. The shock front is “smeared” out into
a region of rapidly but continuously varying properties and there
is no need to specify conditions at moving internal shock wave
boundaries.

Artifical dissipative terms (such as pseudo-viscosity), however,
represent the introduction of a special kind of error into the flow
calculations. It is now recognized (Richtmyer, 1973; Moretti, 1975)
that shock-fitting procedures, which are essentially the application
of the method of characteristics to the shock point calculations, are
a desirable alternative to pseudo-viscosity methods both for
reasons of accuracy and resolution. This is particularly true in
multi-dimensional problems where there is generally a loss of
resolution due to the increase in coarseness of the calculation grid
necessitated by increased computing time, and where intricate
shock wave configurations are possible and require greater
resolution for definition. Furthermore, in the presence of radi-
ation, shock-fitting procedures greatly improve the results of
FDM calculations (Falle, 1976).

From this brief discussion we see that shock-fitting is a
powerful alternative to artifical viscosity in FDM calculations
particularly when applied to multi-dimensional problems. Since
shock-fitting is simply the application of the method of character-
istics to special regions of the flow it is only a trivial extension to
perform a full MC calculation for the entire flow field. Fur-
thermore, the MC is a very accurate method (cf. Hammer and
Ulmschneider, 1978), since it is based on a rigorous mathematical
approach, and the mathematical properties and the numerical
structure of the MC can be directly related to the physical
processes occurring in the flow: the network of characteristics and
the dependent quantities evaluated along this network represent a
detailed accounting of the generation, propagation and interac-
tion of disturbances that carry the information which defines the
flow field. The MC, therefore, has the important advantage that
shock waves as well as other flow discontinuities of lower order,
such as those associated with compression and rarefaction waves,
are treated naturally and explicitly. For these reasons we have
chosen the method of characteristics for the numerical solution of
the hydrodynamic equations. This approach is similar to that
taken in our work on one-dimensional problems (Stefanik, 1973;
Ulmschneider et al., 1977).

b) The method of bicharacteristics

The theory of characteristics for hyperbolic equations is described
in standard references (Courant and Friedrichs, 1948; Courant
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Particle Path
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Characteristic Conoid

Domain of Dependence of R

Fig. 1. Characteristic conoid in r, z, t space. The characteristic surface is tangent
to the conoid along the bicharacteristic P,P,P

and Hilbert, 1962). For one-dimensional problems the numerical
solution of a set of hyperbolic partial differential equations is
well known (Lister, 1960; Hoskin, 1964; Chow, 1973; Kot, 1973;
Stefanik, 1973; Ulmschneider et al., 1977). There are many
applications of the method of characteristics to multi-dimensional
hydrodynamic flow problems, where the method is known as the
method of bicharacteristics (MBC). For our purpose interesting
contributions have been made by Butler (1960), Elliot (1962),
Richardson (1964), Sauerwein (1964, 1966, 1967), Strom (1965),
Chu (1967), Ranson (1970), Cline and Hoffman (1972, 1973), and
Shin and Valentin (1976). Equations (3)}+6) will, in general, even
with smooth, analytic initial and boundary conditions, develop
discontinuities in the higher-order derivatives of the dependent
variables along certain surfaces, the characteristic surfaces, if the
solution is carried beyond a certain time. In addition discontinu-
ities of the variables themselves, that is shock waves, will develop
after some time if the solution is required to be single-valued.

In multi-dimensional flows there are an infinite number of
characteristic surfaces in contrast to the one-dimensional case
where there are only three characteristics. The multiplicity of
characteristics gives rise to many possible numerical schemes. We
will use the method proposed by Butler (1960) as this method
seems the most natural generalization of the one-dimensional
characteristics method which we have used in our previous work
(Stefanik, 1973; Ulmschneider et al., 1977).

The characteristic equations are obtained by combining the
four partial differential equations (3}-6) such that differentiation
occurs only along the characteristic surfaces. The advantage of
writing the hydrodynamic equations in characteristic form is that
there is no differentiation across the direction of integration.

Figure 1 shows the geometry of the problem in (r, z, t)-space.
The particle path or streamline characteristic and an infinite

number of characteristic surfaces pass through an arbitrary point
P,. The envelope of these characteristic surfaces forms a twisted
conical surface called the characteristic conoid. The characteristic
conoid is interpreted as the surface of the space influenced by a
disturbance initiated at the vertex of the conoid and whose wave
front is spreading with the local sound speed a relative to the fluid.
In turn, the physical state at point P, is influenced only by the
conditions within the domain of dependence.

The tangent line of a given characteristic surface to the conoid
is called a bicharacteristic. Bicharacteristics are interpreted as
paths along which disturbances travel to P,. A specific bi-
characteristic, as seen in Fig. 1 can be identified by the angle ¢
(measured counter clockwise both from the positive r-axis in the
upper cone and from the negative r-axis in the lower cone). The
angle d, at point P, uniquely defines the bicharacteristic. The
variation of J as a function of time is called the bicharacteristic
winding. From Fig. 1 it is readily seen that the equations
describing a bicharacteristic are given by

dr=(u+acosé)dt}’ ®

dz=(v+asind)dt
Considering the line element (Fig. 1) dl=adtdd,= —dr/siné

=dz/cosd, the requirement that bicharacteristics cannot leave the
characteristic conoid is expressed by

—coséﬁ=sinéa—z, )
00, 96,
with initial conditions
r=ry, z=zy, 0=0, at t=t,. (10)
Here a, defined by
L ()
U

is the adiabatic sound velocity. For small time steps At =t —t, the
bicharacteristic winding as a function of time is given by (Ri-
chardson, 1964)

. ou Ov
0=200+ | sind, cosd, e

r 0z

25 6u+ 26 ov
—C08°0y— +sin*dy—
° oz ©or

. QOa 0
+sméoa——cos<50— (t—to). (12)
r

a

0z
Physically, Eq. (12) describes the refraction of an acoustic ray in a
medium where the propagation speed varies perpendicular to the
ray direction. This can simply be derived from Snell’s law.

In the method of bicharacteristics we replace the partial space-
like derivatives in Egs. (3)~(5) by derivatives along the bicharacter-
istic directions. The rate of change of an arbitrary function F
(r,z,t) along a specific bicharacteristic is then given by

dF OF e 5 oF tasi 5)6F 13
i u+acos )6_r+(v asin % (13)
Multiplying Eq. (4) with acosd and (5) with asind and adding Egs.
(31+5) we find, using (13),

dp+gacosédu+gasinddv+oa?Fdt=0, (14)
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where

F=sin26% +coszéa—v —sinécosé<% + 6_0)
0 0

r Z z Or
u 1dS gsind
- . (15)
roc,dtlgag a

In Eq. (14) the derivatives are along the direction of the
bicharacteristic.

Equations (14) and (15) represent a generalization of the
characteristic equations of the one-dimensional problem
[Ulmschneider et al., 1977; Egs. (15) and (17)] as can be readily
seen by collapsing the r-axis and taking §=n/2 for the C* and
0=3rn/2 for the C~ characteristics. Contrary to the one-
dimensional case however is the fact that in Egs.(14) and (15) one
does not succeed in replacing all space-like derivatives by deriva-
tives along the bicharacteristic directions. These remaining space-
like derivatives in Eq. (15) are an inherent complication in the two-
dimensional case and prevent a straight-forward generalization of
the one-dimensional method of characteristics to two dimensions.

Finally from Eq. (6) we have along the streamline characteristic

ds
dS=—| dt, (16)
dt lgag
ds
where for the moment we assume —| =0.
T lRaa

The streamline or particle path characteristic C° is defined by

dr=udt

17
dz=vdt (an
with initial conditions
r=ro,, z=2z, at t=t,. (18)

t
/
80,2 /
— A Riit=to
z

Fig. 2. Bicharacteristics geometry for the computation of the solution at grid
point Py(i, j) at time t,,. In the rz plane at time t =t,— At the solution is presumed
known at grid points P(i, j). The bicharacteristics with §, ,=(n—1)5,n=1,2,3,4
intersect the rz plane at points P,, the particle path at point Ps. Note that the
angles J, and ¢, , are measured counterclockwise from the —r direction

In Fig. 2 we assume that the solution is given at time t =t,— At at
the points P(i,j) of the (r,z)-plane. We wish to compute the
solution at the specified grid points Py(i, j) at alater time t=t,. Itis
assumed that P, is sufficiently close to the (r,z)-plane that the
differential Eqs. (8) and (14) to (17) may be replaced by their
difference approximations. Through the point P, pass four
bicharacteristics which intersect the (r, z)-plane at time ¢ at points
P(t 2, 1), n=1, 2, 3, 4. The particle path intersects at Ps. At P,
the bicharacteristic direction is 6=4, , at P,, 6=4,. For conve-
nience the bicharacteristics are shown as straight lines in Fig. 2.

Along the bicharacteristic P, P, we write the characteristic Egs.
(14) and (15) in finite difference form by replacing other quantities
by their arithmetic mean to obtain, correct to 0(4¢?),

(pot+uoUn+voV,) — Ry = —1/2ypoF o 441, 19)
where
U;:1/2<y€3cos5¢n+-y31cosa>, 20)
ag an
V,,=1/2<yp—osin60‘,,+y&sin5,,>, (21
aq a,
Rn=pn+unUn+UnVn_ l/zgnar%FnAt& (22)
. ou v
F,=sin%5,| — | +cos?5,| —
or/, 0z/,
. ou v
—sind, cosd, [(E),, + <§>"]
u 1dS g .
+\-) - + —siné,, (23)
T/ n cp dt Rad,n Gy
and
. ou ov
Fo,n=sm250,n<5>0 +008250,,,(5;>0
. ou v
—sindy ,€0800 | | — | +| —
’ “L\oz/, \or/,
u 1dS g .
i e + —sindg ,- (24)
r/o €, dtlgaa0 do

The difficulty in applying this relation is that the term F, ,

L ou Ou ov
derivatives B

contains the - -
or 0z or

velocity

ov
and P at P,. Following Butler (1960) we eliminate these deri-
z

T
vatives by taking the four bicharacteristics with 50,,,=(n—1)5,

where n=1, 2, 3, and 4. From Eq. (24) we find that

ov u, 1dS
Fo1=Fo3=\—) +———— s (25)
0z/g To Cpdtigaao
Ou g u, 14dS
Foo==) + =+ 2=l (26)
07‘ 0 ag To Cp dt Rad, 0
and
ou u 1dS
FM=Q)—1+2——— : 27)
or/g ag ro Cpdtigaao
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If we denote Eq. (19) by the symbol E, we eliminate the unwanted

derivatives by forming the linear combinations E, —E; and
E,—E, to obtain
p
(U—Uy) <R4—R2—|—y—0gAt> +(R,—R3)(U,—U,)
do
Vo= (28)
M=V) (U =U)—(U,—Us) (V- Vo)
and
Ri—R3)—vo(Vi—V-
Ug= ( 1 3) 0( 1 3) ) (29)

(U,-Uy)

For the system to be complete we need two additional equations.
One is obtained by forming the linear combination of Eq. (19) for
4

n=1,2,3,4, 3 E,, and then subtracting from it Eq. (3), written in

n=1
difference form along the streamline characteristics, to obtain
equation Ej,
P
Rad, O

4
PR (30)

u, 14dS
0—1/22R —Rs—1/2ypg\ — — ——
ne1 ro ¢pdt

up & Vo
2 EUTS
where

Rs=ps—1/2ypsAt

[(611) +<6v> N us 1dS :I
Or/s \0z/s5s 15 Cpdtlgags ’

The final relation is obtained from Eq. (16) applied along the
particle path,
Rad, Sjl.

Equations (28)30) and (32) form a system of four equations for v,
Ug, Do and S, in terms of conditions at P,, n=1, 2, 3, 4. To these we
must add expressions relating the coordinates of P, to those at P,,.
These are obtained from the Egs. (8) and (17) for the characteristics
directions, which when written in finite difference form, correct to
second order in At, are

€2))

N ds
Rad,0 Al

(32)

ds
=S5+ 124t —
dt

r,=ro—1/2(uo+u,+aycosé, ,+a,cosd,) At (33)
and

2,=29—1/2 (vo+v,+0ay5ind, ,+a,sind,)At, (34)
where n=1, 2, 3, 4 for the bicharacteristics and
rs=ro—1/2(ug+us) At @35)
and

z5=2¢—1/2(vo+vs) At 36)

for the streamline characteristics. The formulation is completed
with Eq. (12) which relates 6, at time t =t, — At with J, , at time ¢,,.

The procedure to solve for the physical variables at point P is
as follows. With rough estimates of the physical variables at points
P,(n=0,1,2,3,4,5)improved positions r,, z, (n=1, 2, 3, 4, 5) for
the points P, are calculated with Egs. (12) and (33)~(36). With an
interpolation scheme described below physical variables and their
derivatives are then evaluated at the new points P, from the known

solution at the grid points P(i,j). Using Egs. (12), (20)+23), and-

81

(28)+32) new physical variables u, v, Po, S are then computed
for point P, etc. This procedure, called hydrodynamic iteration,
converges rapidly and eight digit accuracy is usually achieved in
no more then four iterations.

¢) Boundary conditions, boundary points

For the astrophysical application to granulation flows we consider
a cylindrical volume where the axis of symmetry is the z-axis which
points in the outward vertical direction. The cylinder is assumed to
have a flat top and a flat bottom. We consider two types of
boundary conditions. In case 1 the cylinder has rigid boundaries
everywhere. That is, at the top and bottom boundaries the vertical
velocity component v vanishes and at the radial cylindrical
boundary the horizontal velocity u vanishes. In case 2 we have
rigid boundaries everywhere except at the top where we now
assume a transmitting boundary. This type of boundary condition
has been used in our one-dimensional work (Ulmschneider et al.,
1977) and has recently also been discusssed by Hedstrom (1979).
For a transmitting boundary we assume that along the bi-
characteristic number 2 we have

@GN

We performed several tests of this transmitting boundary con-
dition and like in our one-dimensional work found excellent
transmission for sound waves.

The method of computation of boundary points is illustrated
in Fig. 3. Due to the confinement of the fluid some of the
bicharacteristics used for interior points are not available for the
computation of boundary points. At normal boundary points (see
Fig. 3) one of the four bicharacteristics is missing and at corner
points two are missing. On the lower boundary for example we
have v, =0 from the boundary condition. Equation (29) provides
uy. The winding of bicharacteristics number 1 and 3 (see Fig. 3) is

da+
@ty <0

y4

Vo="0,.

computed as for an interior point in the case where

Ola+u
(+ for 1 and — for 3). In the case
Z

here information travels along the boundary. S, is given by Eq.
(32). The remaining unknown, p,, is computed by forming the
linear combination E, + E; +2E,—2E; of the Egs. (19) and (30).

=0 no winding occurs as

p0=I/Z[Rl+R3+2R4—2R5—u0(U1+U3+2U4)

—vo(M1+V3+2V))
u 1dS

—ypOAt(—o———— —i)]. (38)
ro  Cpdtlgao o

For case 1 the normal points on the top boundary are computed
similarly as those at the bottom boundary. For case 2 the points
P, P;, P5 do not necessarily liec on the boundary. Here slight
extrapolations of the solution at the old time level might be
necessary. This acts to restrict the time step and is discussed below.
The normal points on the axis of symmetry and on the radial
cylindrical boundary are computed similarly to the bottom
boundary.

For the corner points the procedure likewise is straightfor-
ward. For the corner at the top boundary and the axis of symmetry
in case 1, for instance, u, = v, =0 while S is found from Eq. (32). p,
is computed by forming the linear combination E;+E,—E5 of
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r \ world surface of

cylinder boundary
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P P top boundary
2 P,
i
| 5
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Fig. 3. Bicharacteristics at boundary points. At normal boundary points one and at corners two of the four bicharacteristics used for interior points are missing

Egs. (19) and (30) from which one finds
Po=Ry+R3—Rs—vo(V,+V3)

At(uo 1dS
7Po 2 \ry cpdt

+ 1) . (39)

Rad,0 o

u
Note that here as well as at other points on the axis of symmetry =
To

u ou
or — must be replaced by the derivatives % as r=0 for these
rs r
points. For the winding similar considerations exist as for the edge
points.

d) Interpolation, boundary behaviour, time step

To compute the solution at grid point Py(i, j) at time t =t the five
physical variables x (u, v, p, S, dS/dtg,q) have to be known at the
grid points P (i, j) at time t=t,— 4t (see Fig. 2). As the method
requires the solution and its derivatives at the foot points P,
(n=1,...,5) an interpolation scheme is necessary to evaluate the
desired quantities from the known solution at P(i, j). Such an
interpolation scheme, as has been found by Hammer and Ulm-
schneider (1978)for one-dimensional cases, is crucial for the accura-
cy of the modified method of bicharacteristics. Following Hammer
and Ulmschneider in order to optimize the efficiency of the code,
we have chosen a two-dimensional cubic spline interpolation as
described by Spath (1973). In this method, any variable x is
represented by a smooth surface which for each grid cell

(riSr<riiy, z;2z<zj,,) is of bicubic form,

4
x(, j;rz)= X cijkl(r_ri)k_l(z_zj)l_l'
ki=1

(40)

The interpolation coefficients c;j;; are determined such that the
resulting interpolation surface goes through the points
x;;=x(r; z;) and has two continuous derivatives. This can be done
only if at the boundaries certain derivatives of the variable x are
specified, namely 0x/0r at the axis of symmetry and at the radial
cylinder boundary, dx/0z at the top and bottom boundaries, and
0*x/0rdz at the corners. Some of these derivatives follow from

symmetry and mathematical arguments, others have to be approx-
imated numerically. At the axis of symmetry, the r derivatives of
all variables, except u, must vanish, and thus the same holds for the
mixed derivatives at the inner corners. This is because we do not
allow a discontinuous slope of the variables v, p, S, dS/dtg,q at the
axis of symmetry. At the bottom boundary and also in the case of a
rigid top boundary, the z-derivative of the pressure after Eq. (5) is
determined by the hydrostatic equation, dp/dz= —gg. Finally
from Eq. (4) follows that at the outer boundary dp/dr=0, and thus
0%p/oroz=0 at the outer corners. All of the other boundary
derivatives must be computed from numerical approximations.
Various tests showed that for this purpose the simple one-sided
difference formula was fully sufficient and led to very small
interpolation errors of the variables as well as of their derivatives.

Interpolation formulae for the derivatives dx/dr and 0x/0z
follow immediately from Eq. (40). The optimal way of evaluating
such formulae is the double Horner’s rule. Furthermore we
modified the Spdth (1973) algorithm such that the four-
dimensional coefficient arrays could be mapped onto one-
dimensional arrays during the evaluation of these formulae,
exploiting the specific way of storage of multi-dimensional arrays
in the computer. This modification reduced the computer time
spent for interpolation by a factor of almost 4.

4. Test calculations
a) Linearized standing wave solutions

The most stringent test of the performance of the code that we
could devise was to compare its results with analytic solutions. So
far as we know, these exist only in the linear regime for motions
with cylindrical symmetry; the classes of exact nonlinear solutions
in Cartesian geometry described by Chiu (1970) unfortunately
cannot be generalized.

The linearized forms of Egs. (1) and (4)«7), in the case of an
isothermal atmosphere with constant ratio of specific heats y, can
be combined to yield the well-known wave equation for the
velocity v=(u, v)

2

i =a’V(V-0)+(y—1)g(V-v)+V(g-v),

a “h
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whose solutions for the radial velocity are (cf. Stix, 1969)
Ji(ar)

Y, (ar) (42)

u=uqexp(iot) exp(ixz) {
J, and Y] are Bessel functions of the first order and the frequency w
and wave numbers k, a satisfy the dispersion relation (identical
to that of the Cartesian case)

w* —0?[a*(k* +a?) +ixyg]+(y—1)g?a? =0. (43)
The complete progressive wave solutions are then
. J1(ar)
u=u,exp(iot) exp(ygz/2a?) exp(ikz) , (44)
Y;(ar)
()2—1)g—ia*k
= exp(imt) ex 2a?
P 3 g PO XD/ 207)
Jolar
~exp(ikz){ ol ), 45)
Yo(ar)
igg 0> —(y—1)g*/a®
,_ 120 (y—Dg*/ . (46)
o (y2—1)g/a®—ik
i0p w*—y(y—1)g?2a®+i(y—1)gk
,_ lgo @"—y(y—D)g"/2a"+i(y—1)g v @

wa?® (y/2—1)g/a®>—ik
where the real vertical wave number k= x +iyg/2a® now satisfies

o*—w?[a®(k* + o2 +y%g?/4a* ]+ (y— 1) g?a? =0. (48)

For given o, k, this yields two solutions for the frequency, the
higher corresponding to the acoustic mode and the lower to the
internal gravity mode. Each can produce standing waves in a box
with rigid reflecting boundaries. It should be noted that besides
progressive waves Eq. (41) admits evanescent waves but these are
not allowed in a finite slab with our boundary conditions.

The standing wave solutions are simply

v=Masinwt exp(ygz/2a?) sinkzJ o(ar),
M ©?—a*k?—g*y2/4a?
7 aka T+ (12— eI
-[coskz+(y/2—1)g/a’ksinkz]J ;(ar)

. Moga o?—@y—1)g*/a®
T ok 140212
-[coskz+(p/2—1)g/a*ksinkz]J (o),

, Mo, o*—(y—1g*/d®
¢ hoa 1+G2—1) g% a2
o*—(y—1Da*k*/(y/2— 1) —g*y(y—1)/2a>

o*—(y—1)g*/a®

-(y/2— 1);1%:sinkz] Jo(ar),

(49)

sinwt exp(ygz/2a*)

(50)

cosmt exp(ygz/2a?)

Q)

coswt exp(ygz/2a®)

. [cos kz+
(52)

where g,(2) is the density in the undisturbed atmosphere, ¢’, p’ are
the first-order perturbations in density and pressure and M is the
vertical Mach number evaluated at z=0 which we here take to be
the upper boundary of the box. The boundary conditions are now
fulfilled if we choose aR to be a zero of the first-order Bessel

function, R being the radius of the box, and kZ =nn where Z is the
depth of the box.

We illustrate the results of the test case in which Z=380km,
R=100km, T=5000K, y=5/3 and the pressure at the upper
boundary 10*dyncm~2. In the undisturbed atmosphere the
pressure increases 26-fold to the lower boundary. We modelled a
half wave in both vertical and horizontal directions (kZ=m,
oR =3.81371) which had 20 and 6 grid points respectively, spaced
20 km apart. The dispersion relation (48) predicts the periods of the
waves to be 21.95s (acoustic) and 210.1s (internal gravity).

The system was released from rest with the density and
pressure perturbations given by Egs. (51) and (52), setting t=0,
and the resulting motion was followed over at least one complete
cycle for Mach numbers of 0.1 and 0.01.

Despite the limited number of grid points, the use of single
precision (5 significant figures on an IBM 370—168) and the
neglect of winding, the numerical solution reproduced the analyt-
ical quite satisfactorily. With M =0.01, after 16 steps of 1.37 s each,
the error in the pressure along the axis due to the acoustic waves
was a maximum of 0.4% at the upper boundary and less than
0.01% below midpoint of the box, the errors being measured
relative to the total pressure. This case develops a maximum
temperature perturbation of 155K and vertical and horizontal
velocities of 37ms~! and 184ms~?. Since the horizontal wave
number is some four times the vertical, the acoustic waves
propagate almost horizontally, hence the horizontal velocities are
substantially larger than the vertical. Nevertheless, the amplitudes
are such that the solution remains in the linear regime. This is
demonstrated in Fig. 4a, which shows the most significant
thermodynamic variable, the pressure, on the central axis and on
the outer boundary at t=0, 10.9, 21.9 and 32.9s. At t=0, the
values are those of the analytic solution, which are smoothly and
accurately reproduced at each halfcycle (the sign of the fluctuation
has been changed at each odd value for better comparison). The
same is true of the vertical and horizontal velocities which are
shown in Fig. 4b as a function of height at the cut where the
maximum values are achieved, the axis of the cylinder and 40 km
from the axis, respectively.

When the Mach number is raised to 0.1, the initial temperature
perturbation reaches 30% of the temperature of the undisturbed
atmosphere, and this is quite sufficient to produce nonlinear
effects. Already after 11s the smooth pressure profile on the axis
shows distortion (Fig. 4a right-hand side). Before one period is
complete a harmonic appears in the vertical velocity profile (Fig.
4b right-hand side).

In the case of the internal gravity wave, the motion is primarily
vertical, so the relative amplitudes of the vertical and horizontal
velocities are interchanged. The imposed Mach number now
governs the size of the total velocity and the motion for both
M=0.1 and M=0.01 remains in the linear regime. Buoyancy
takes over from pressure as the major restoring force, so we show
the temperature fluctuations in Fig. 5a which mirrors the almost
equal and opposite relative density perturbations. The maximum
values are 21 and 212K for M=0.1 and 0.01. Note that the
pressure distribution in the acoustic wave is dominated by the
coskz term in Eq. (51) but the temperature perturbation in the
internal wave is dominated by the sinkz term. The velocity
profiles, taken on the same cuts as Fig. 4b, are quite stable in both
cases (Fig. 5b). The initial values are reproduced after 153 time
steps with an error of temperature of 0.03% at the upper
boundary and less than 0.001% in the lower half (M =0.01); the
maximum error increases to 0.1% for M=0.1.
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b) Brunt-Viisdld oscillations

Another test of the proposed code is the calculation of the Brunt-
Viiséld oscillation of an adiabatic gas bubble in an isothermal
gravitational atmosphere. Such an oscillation is stable and has
been discussed e.g. by Hines (1960). For our test an atmosphere
with a temperature of 5000 K and solar gravity was chosen. We
have adopted 20 vertical and 4 horizontal points with intervals of
20km in either direction. The gas bubble was centered on the axis
at depth point 10 and extended 3 grid points in every direction in
which the temperature perturbation was assumed to decrease to
zero from a maximum value of 250K. In applying the tempera-
ture perturbation to the initial atmosphere the pressure was
assumed to be unchanged (isopressure bubble). Figure 6 shows the
velocity field of the oscillating gas bubble at indicated time steps (of
1.37s each). The time steps displayed are phases of maximum
upward or downward vertical velocity. Since this imposed per-
turbation is not an eigenmode of the rigidly enclosed system, it is
seen that, through gravity wave action, the oscillatory motion of
the gas bubble spreads over the entire volume with an associated
reduction of the magnitude of the vertical velocity. A third upward
velocity maximum occurs at time step 350. From consecutive
maxima of the same phase we derive oscillation periods. For the
upward maxima we find periods decreasing from 226s to 208s
while the downward maxima give a period of 203s. This agrees

nicely with a Brunt-Véisdld period Pgy =2na/'|/ y—1g=205s for
the atmosphere. The computation time for 400 time steps on the
IBM 370-168 was 3.5 min.

5. Discussion and conclusion

We have described above a formulation of the nonlinear dynamics
applicable in stellar atmospheres. This code has very distinct
advantages on both physical and numerical grounds.

Because of the highly accurate two-dimensional spline inter-
polation, the solution can be well represented with only few grid
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Fig. 6a—d. Velocity field of an oscillating gas
bubble. a Time step K =33, time t=45.2s. b
K=119, t=163.1s. ¢ K=198, t=271.2s.d

K =267, t=365.8s. The phases displayed show
maximum vertical velocity

points. This has already been found in our one-dimensional work
(cf. Hammer and Ulmschneider, 1978), and for the present two-
dimensional application contributes greatly to the reduction of
computation time.

Furthermore, if the boundaries are kept fixed, the grid points
can be readily adjusted from time step to time step in order to
improve resolution as required. In principle, this method, as all
characteristic methods, is not limited by the Courant condition
since the domain of dependence is sought explicitly by our
interpolation in the old time level. However, to greatly increase the
time step beyond the Courant results in significant loss of
accuracy.

At present the code does neither handle radiation nor allows
treatment of shocks. However, two-dimensional radiation trans-
port can be incorporated without great difficulty as a simple
generalization of our one-dimensional method. In many situ-
ations, e.g. in granular flow, it may even suffice to consider only
vertical transfer of radiation for which the one-dimensional
procedure can be adopted without change.

Considerable programming effort, however, is necessary for
the treatment of shocks, although it also is only a straightforward
extension of our one-dimensional procedure. In subsequent work
we will present applications of the present method in which both
radiation and shocks are handled.

In principle, the great advantage of our present method is that
it lends itself to an explicit treatment of shock discontinuities. The
shock structure can be resolved and one does not need to pay the
price of including many grid points and artificial viscosity as in
finite difference schemes. Our one-dimensional work clearly shows
that, once the programming logic has been successfully dealt with,
the shock points can be treated about as speedily as any regular
grid points.

Of course, the code has its limitations which require brief
discussion. The most obvious restriction is the inclusion of only
two spatial dimensions. The only three-dimensional numerical
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investigation of a stellar model is that of Nordlund (1982). The
price paid for the greater number of spatial dimensions is the
increased length of time required to compute each time step. In
three dimensions it is economic to treat only the anelastic problem
which filters out sound waves and makes a short time step
unnecessary. As yet, modelling with full compressibility effects are
necessarily two-dimensional. Cloutman (1979) justified this re-
striction in his implicit numerical formulation by appeal to the
success of two-dimensional models in predicting the time
behaviour of terrestrial fireballs. The mean flow in granules, as in
fireballs, is essentially axisymmetric. This property is preserved in
the code presented above, which is thus closer to the prototype
than that of Cloutman which employed Cartesian geometry.

The second obvious failing is the neglect of viscosity. Molec-
ular viscosity is dynamically unimportant in stellar atmospheres
where the Prandtl number is only 10 ~%, but it must be considered
in the global energy balance. The highly turbulent character of the
convective systems that result in stellar envelopes makes it
impossible to compute the motions down to the viscous scale.
Only the large-scale mean motion can be treated, and these feel the
effects of viscosity indirectly through the loss of kinetic energy into
a turbulent cascade that proceeds beyond the spatial resolution of
the simulation. This transfer is only possible in a truly three-
dimensional hydrodynamic treatment, so it must be modelled,
more or less satisfactorily, by the introduction of a turbulent
viscosity in some form in two-dimensional codes, or it must be
neglected entirely. We have adopted the second approach.

This procedure is doubtful if we were to attempt to model the
dynamics of the convection zone itself. It was adopted by Deupree
(1976) in a study of nonlinear convection in shallow stellar
envelopes. The energy balance is not correctly treated and
Deupree’s models failed to reach a steady-state.

But this is not critical for our purposes. Any convective motion
can be initiated by introducing a suitable perturbation into a layer
in unstable equilibrium with a superadiabatic stratification. We
can then expect that the dynamics will provide “at least semi-
quantitative agreement with granule observation”, to quote
Cloutman (1979). The rise of the bubble can be followed into a
stably stratified atmosphere. The fate of the sinking material
displaced by the rising bubble is decided somewhat arbitrarily by
imposing a rigid lower boundary condition. But this has little
influence on the region of primary interest. The atmospheric
dynamics are correctly treated and describe fully the coupling of
the convective field, which must at this stage be imposed, to the
acoustic and internal wave fields.
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