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Fully Dynamic Calculations of (Magneto-) Hydrodynamic
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Abstract We review calculations of time-dependent (magneto—) hydredynamic
wave propagation in stellar atmospheres in which the fully dynamic coupling
between the (magneto-) hydrodynamics, the thermodynamics and the radiation
are consistently treated. The methods employed to handle the non—planar
geometry, the time-dependent particle conservation equations, the departures
from LTE and the radiation field are outlined. We discuss the various
possible approximations in photospheric, chromospheric and coronal loop

applications in late-type stars as well as the radiation pressure treatment

in early-type stars.

1. Introduction

The atmospheres of stars where acoustic or magnetoacoustic waves propagate
are characterized by large changes in gas density. This is due to the
comparatively low stellar surface temperatures which determine the scale
heights and e.g. in the sun lead to a density drop of eight orders of
magnitude from the bottom of the photosphere to the top of the chromosphere,
a distance of only 2500 lm. This density drop has important consequences for
the thermodynamic and radiative properties of the gas and thus for the wave
propagation.

At the base of the photosphere the density is so large that the optical
depth at all frequencies is greater than one and thus radiation (in the
diffusion limit) escapes into space only with difficulty. Here particles
collide frequently enough that the energy levels are populated as in local
thermodynamic equilibrium (LTE); the Saha equation governs the stages of
ionization, the Boltzmann distribution describes the population of the
energy levels and the radiative source function is the Planck function.
Since the thermodynamic and radiation properties here can be described by
~ local quantities the wave computation is comparatively simple.

In the inner corona on the other hand, the gas density is so low that the
gas is optically thin and each photon escapes. At these heights there are so
few collisions that both the ionization and the level populations are
determined by the individual surviving transitions {(non—-LTE). Owing to
different heating processes the electron and ion temperatures defined by the
Maxwell velocity distributions begin to show different values. The non-LTE
excitation and ionization can be computed here using the thin plasma
approximation which again is dependent only on local quantities. The main
difficulty in the coronal situation is that due to the low gas density the
degree of ionization and the population of energy levels often cannot follow
instantaneously the time-dependence of the wave. The fewer the number of
collisions per wave period the more the dynamical state attained by the
atmosphere differs from the static situation. Thus in the coronal situation




192 P. Ulmschneider, D. Muchmore

the particle conservation equations must be solved explicitly. As this can
be done by using local quantities in the thin plasma approximation the wave
computation in the corona is still relatively uncomplicated.

The treatment of the acoustic wave propagation is most difficult in the
intermediate chromospheric region where the simplifying assumptions of

LTE and of the thin plasma approximation break down. Here the thermodynamic
and radiative properties of the gas depend not only on the density and
temperature but also very much on the nonlocal radiation field. In strong
chromospheric resonance lines the radiation field can be trapped, leading to
LTE conditions for this element, while for other elements non-LTE conditions
already prevail. This situation is complicated even further by the

large inhomogeneities in the stellar atmospheres where e.g. in magnetic flux
tubes the gas pressure can be smaller by as much as an erder of magnitude
compared to the outside medium.

The discussion soc far dealt primarily with the situation in late-type stars.
Intense radiation fields in early-type stars lead to entirely new situation=*
for the acoustic wave propagation. The radiative relaxation times in the
photospheres of early-type stars are so small that deviations from
isothermality are damped in a matter of seconds. This leads to the formation
of extensive radiation damping zones arcund these stars., After the waves
have propagated through these zones, radiation pressure rapidly amplifies
the waves and strong shocks are generated. Here the radiation pressure can
no longer be computed using the Sobolev approximation which has been
employed in time-independent radiation—-driven wind theories and which is
valid when large persistent velocity gradients occur. In the photosphere and
chremosphere of early-type stars the wind velocities and the velocity
gradients are small and determined by the acoustic waves. Thus radiation
pressure must be handled differently.

From this overview it is clear that time-dependent dynamic wave calculations
which can satisfactorily deal with all of the above menticned situations are
quite difficult. It therefore becomes important to make approximations and
to outline regions of the atmosphere where simplifications can be made which
make the problem tractable without losing the essential physics. In the
following sections we review time—dependent dynamic (magneto—) acoustic wave
calculations where both the radiation field and the thermodynamics are
consistently treated grouping them into classes according to the
approximations typically made. These classes are defined by the way
radiation is treated. Adiabatic wave calculations are omitted. For lack of
space we also have omitted a discussion of the time—dependent radiation ﬁ
hydrodynamic calculations of granulation flows, of accretion flows onto
stars or protostellar objects, of gas jets from protostellar nebulae and
shocked gas flows from novae or supernovae. Even for atmospheric wave
calculations we do not attempt completeness. Time-dependent nonlinear
calculations of magnetoacoustic wave propagation which consistently treat
radiation are so far available only for the acoustic—like longitudinal tube
waves. All present acoustic wave calculations are one—dimensional.

Vernazza, Avrett and Loeser (1981) have shown that the main chromospheric
emitters are the H- continuum, the principal lines of CaIl and MgIl, the
Lyman continuum and the Lyman « line. H- contributes mainly in the

low chromosphere and in the photosphere while Lyman emission occurs only
in the high chromosphere. Deeper in the photosphere there is in addition a
multitude of metal line and continuum emitters. These contributions can be
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computed using Kurucz’'s (1979) opacity table. Wave calculations which use
photespheric opacity tables or formulae and assume LTE are termed

the coronal loop calculations where the optically thin radiation can be
treated comparatively simply but where the time-dependent particle
conservation equations must be considered. Computations where the non—grey
radiation field is taken fully into account and where the time-dependent
particle conservation equations are consistently treated but where only
Lyman emission and plane geometry are considered have been termed high
chromosphere calculations and are discussed in Section 4. Section 5
describes low and middle chromosphere calculations. Here non—grey H- as well
as MgII and Call line emission are taken into account, the particle
conservation equation is solved and flux tube geometry effects are
considered. Acoustic wave calculations in early type stars where radiation
pressure is important and an intense energy exchange with the photospheric
radiation field occurs is discussed in Section 6. Section 7 gives a summary
and a discussion.

2. Photospheric calculations

A simple type of radiation treatment is possible in work which we call
photospheric calculations. Typical examples of such work are that of Hasan
and Schilssler (1585), Herbold et al. (1985), leibacher, Gouttebroze and
Stein (1982), Stein and Schwartz (1972) as well as Ulmschneider et al.
(1978). Here one assumes either a neutral or an ionizing gas of mean
molecular weight p where the thermodynamic state and the radiative source
function can be computed assuming LTE. The thermodynamic state of the gas is
described by the ideal gas equation

RT
P = 3_ 1] {1)
2

where p is the gas pressure, § the density, R the universal gas constant and
T the temperature.

a. hydrodynamic equations

- The (magneto—) acoustic wave propagation in one dimension is governed by the
following set of hydrodynamic equations (c.f. Hirschfelder, Curtiss, Bird
1954, pp. 462, 701, Landau, Lifshitz 1959, p. 2ff) :

the continuity equation

g (8A) + 2 (Qua) 0 (2)
ot dx

the Euler equaticn

u
5‘(—+u—)+—-—+3g=0 ] {3)
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the energy equation

38 38 dr
T(e— + U =} = — — ' (4)
ot ax g

where t is the time and x is the height in the atmosphere. If tube
geometries are considered x is the length along the tube axis. A is the
cross sectional area of the tube, u the gas velocity, S the entropy per
gram, g is the gravitational acceleration which usually is a censtant. g is
the component parallel to the tube axis in cases where tubes are considered
which are inclined with respect to the vertical. For extended atmospheres,
g = goxo?/(x+x0)? where subscript O indicates values at the inner

shell radius. ¢r is the net radiative cooling rate in erg cm3s-1, Effects
due to molecular diffusion are neglected.

In some calculations viscosity is taken into account with corresponding
additional terms in the momentum and energy equations, as we will discuss ]
in the next section. Viscosity and thermal conductivity are important for

the hydrodynamic sheck structure which extends over distances of a

molecular mean free path. In acoustic wave calculations the molecular mean
free path is usually much smaller than the wavelength. The hydrodynamic

shock can therefore be well described by a discontinuity at which the pre-—

and postshock states are connected via the Hugoniot relations. The

radiative shock structure is usually much larger and must be explicitly
treated. In photospheric and chromospheric wave calculations it is found

that outside the hydrodynamic shock structure regions both viscosity and
thermal conductivity are unimportant and can be neglected (Stein and

Leibacher 1974).

The hydrodynamic equations must be augmented by an equation which relates
the entropy to the other thermodynamic variables. For neutral or fully
ionized gases cne has

1 R -5
§ = S¢ + — =1ni{pg ) s (5)
-1 p

where So is an arbitrary constant and ¥ = 5/3 is the ratio of specific

heats. In cases where an ionizing gas is considered the entropy is a more
complicated function (c.f. Wolf 1983, 1985a, Baschek and Scholz 1982, p.122)
and it becomes cumbersome to use the energy equation in the form (d). Here‘l
suitable form of Eq. (23) is used.

b. numerical methods

Several numerical methods were employed to solve the above system of partial
differential equations. A most commonly used scheme is the leapfrog type
finite difference method using a fixed monotonic grid spacing and using
pseudo—viscosity (von Neumann and Richtmyer 1950 see also Richtmyer and
Morton 1967). The methed treats shocks by the application of pseudo—
viscosity so that the jumps of the physical variables occur continuously

over about four grid points. The thermodynamic variables in this staggered
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mesh method are defined at cell centers and the radiative transfer equation
can be solved as soon as these variables are known at the new time steps.
Here the scheme can be solved explicitly or implicitly.

One improvement on this scheme is the finite difference method with an
adaptive mesh (Tscharnuter and Winkler 1979, Winkler, Norman and Newman
1984, Dorfi and Drury 1986). Here an additional equation is used to
continuously modify the grid spacing such that regions with large changes in
the physical variables are automatically well resolved in space. In this
scheme the solution is obtained implicitly employing Newton-Raphson
techniques and resolutions of 10-8 have been claimed. Adaptive mesh
techniques show great promise for one-dimensional problems but have not yet
been applied to wave calculations in stellar atmospheres.

Another improvement of the fixed grid finite difference method is the flux
corrected transport method developed by Boris and Bock (1976, see also Book
1981). This method solves the hydrodynamic equations in the conservation

~— form and is especially designed to conserve transporting physical guantities

across the spatial grid by correcting numerical diffusion errors nonlinearly
at every time step. The method is well suited to treating steep gradients
such as shocks because it avoids the use of artificial viscosity.

The fourth method used in stellar atmospheric wave calculations is the
modified method of characteristics developed by Hartree (1952, see also
Lister 1960 and Hoskin 1964). Here the hyperbolic system of hydrodynamic
differential eguations is transformed into a system of ordinary differential
equations along the characteristic directions. In this scheme shocks can be
treated as discontinuities where the Hugoniot relations comnecting the
physical variables of the pre- and postshock regions are explicitly solved.
With minor modifications the pre- and postshock regions can be arbitrarily
spatially resclved without decreasing the time step and the shock path is
explicitly followed. The radiative transfer equation at the new time step is
solved by implicit iteration.

Hammer and Ulmschneider (1978) have made a comparison of the finite
difference method and the characteristics method for the case of acoustic
wave propagation. They find that the characteristics method with natural
spline interpolation is more efficient as defined by the amount of numerical
(computational) labour necessary for a given accuracy. Naturally this
depends somewhat on the application at hand.

c. geometry

There are various ways in which the cross section A can be chosen:

A = const. 3 (6)
A = (xt+tx0)2/x0?2 s (7
A = A(x) , (8)
A = ¢m/(Bu(pex(x)-p(x,t))t” % . (9)

If A is constant one has ordinary acoustic waves in a plane-parallel
atmosphere. Using Eq. (7) one has acoustic_tube waves in a spherically
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symmetric and with Eq. (8) in an arbitrarily varying medium. Eq. (9)
describes the cross sectional variation for longitudinal magnetchydrodynamic
tube waves in the thin tube approximation (see e.g. Herbold et al. 1985).
Here ¢tu = BA = constant is the magnetic flux along the tube, B being the
magnetic field strength, and pex{x) is a specified time-independent external
pressure. It is seen that Eq. (9) represents the horizontal pressure

balance equation

o
+
a:hm
3 |'w

= pex(x) . (10)

d. radiation

In the photospheric calculations the following expressions for the net
radiative cooling rate have usually been used:

¢r = —4m(J-B) (11) -
$r = —4mk(oTex*(x)/7-B) s (12)
$r = —1BKkoT3AT (13)
¢r = —4ﬂni-d23 (14)
3 dv?

where K is the grey opacity without scattering. k as function of T and p is
usually taken from tables given by Kurucz (1979). As the main contribution
to the photospheric opacity is H, approximate formulae like

K = 1.376 10-23p0.73875¢g ) (15)

by Ulmschneider et al. (1978) or a similar formula by Stein (1966) can often
be used.

B = oT4/w : (16)

is the frequency integrated Planck function. J in Eq. (11) is the frequency
integrated mean intensity and is usually obtained as solution of the grey
LTE radiative transfer equation,

-

dI

i = I-—B ’ (17}
de

where I is the fregquency integrated specific intensity. m is the angle
cosine, T with

dt = —Kdx , (183

is the grey optical depth which now includes scattering and
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+1

J = 5 f Idp . (19)

=

In cases where waves along thin intense magnetic flux tubes are considered
the gas pressure inside the tube is substantially less than the outside
pressure. Here the tube can be considered as optically thin with the mean
intensity J in the tube originating entirely from the outside medium. Thus
in Eq. (12) J can be determined from the external temperature Tex(x). In
cases where in an optically thin medium the mean intensity does not deviate
much from the Planck function, Egs. (12) and (16) may be expanded and one
obtains Eq. (13). This so called Newton’s law of cooling is only applicable
for waves of small asmplitude. For optically thick cases, expanding the
Planck function with respect to t and using Eqs. (17} and (19) one obtains
the diffusion approximation Eq. {14). This approximation is only valid in
regions of optical depth larger than one. A good radiative transfer
calculation using Eq. (11) not only reproduces the optically thin
approximation but also the diffusion approximation at great depth.

e. results

Photospheric wave calculations have been made to study four types of
problems: the solar five minute oscillations, the heating mechanism and the
emission of chromospheres, the structure of the temperature minimum region
and the secular mass motion in downflows. The sclar five minute oscillations
discovered by Leighton (c.f. Noyes and Leighton 1963) are now recognized as
nonradial pulsations of high angular degree 1 by the solar envelope.
Observations show that these waves exhibit 90 degree phase shifts between
the velocity and temperature fluctuations and thus demonstrate a standing
wave behaviour.

With a plane nonlinear time-dependent wave calculation taking ionization
into account and a radiation loss similar to Eq. (13) Leibacher (1971)
investigated the propagation, the phase relationships, and the resonance
behaviour of the five minute oscillations. The numerical method used to
solve the hydrodynamic equations was a finite difference method with
monotonic grid spacing. He found that in the solar interior these waves
propagate in a cavity which is bounded at great depth by reflection from
the steep temperature increase and at the photosphere by the reflection at
the point where the acoustic cut-off frequency rises to equal the wave
frequency. Fig. 1 shows a similar investigation by Leibacher, Gouttebroze
and Stein (1982) in which with a piston motion of five cycles of five minute
period the chromospheric three minute oscillations were excited. This
oscillation ariszes in a cavity bounded below by the peak of the cut-off
frequency near the temperature minimum and above by the high chromospheric
temperature rise.

The second type of investigation aims to identify the solar chromospheric
heating mechanism and to explain the chromospheric emission. Here short-—
period acoustic waves with periods below about one minute are found to be
very promising. These waves have essentially no phase shifts and thus unlike
the five minute oscillations can easily propagate and carry energy through
the temperature minimum. First exploratory wave calculations for a wide
range of acoustic pulses with periods ranging from 25 to 400 sec were made
by Stein and Schwartz (1972, 1973) using a finite difference method with
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Fig.l Simulation of the chromospheric three minute oscillations after
Leibacher, Gouttebroze and Stein (1982). Shown is the square root
of the kinetic energy density.

fixed grid spacing. Ionization was included and radiation was taken into
account in an optically thin approximation as in Eg. {41). As an unbalanced
cooling law like Eq. (41) leads to a secular change of the initial
atmosphere a heating term had to be added to make the initial model time-
independent. The calculations of Stein and Schwartz showed that the weak
shock theory is valid for pulse periods less than 50 s and is invalid for
periods greater than 100 s.

Using a numerical method and a radiation treatment like that of Stein and
Schwartz, Cram {1976) made a similar calculation to investigate the time-
dependent formation of the Call K and infrared triplet »8542 lines. An -
acoustic wave with a period of 200s was computed. Using the time sequence of
the temperature, pressure and velocity distributions obtained from this
calculation, the Call line profiles were subsequently computed assuming
complete redistribution. For this the electron density from the hydrogen
jonization was calculated taking a time-independent departure coefficient bi
as function of height. These computations were used to explain the K-grain,
small bright CaIl K-line emission features observed within the
supergranulation cells.

In the short-period wave calculations of Ulmschneider et al. (1977,1978) a
modified characteristics method was used tc solve the hydrodynamic equations
and to treat the shock discontinuities. Ionization effects were mot taken
into account. The radiative transfer equation in the grey approximation
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{Kalkofen and Ulmschneider 1977) was solved simultaneously and the radiative
cooling rate computed using Eq. (11). These authors found that the
temperature minimum occurs close to the point of shock formation and is
strongly dependent on the wave energy. The higher the wave energy flux is,
the lower the height of the temperature minimm. It was demonstrated that
shock formation readily explains the magnitude and sudden onset of the
chromospheric radiation loss above the temperature minimum as inferred from
empirical solar models. For longer period waves less shock dissipation and
more mass motion was found. These calculations were extended to other late
type stars (summarized by Ulmschneider 1979). Observations showed however
that acoustic wave calculations which do not take into account the presence
and geometrical shape of the magnetic fields only very poorly explain the
chromospheric heating.

In the work of Bohn and Stein (1985) the interaction of short—period acoustic
waves and five minute oscillations was investigated. These authors used a
hydrodynamic code similar to that of Leibacher, Gouttebroze and Stein

- {1982). At the base of the solar photosphere they introduced a series of
monochromatic wavetrains of different period and random duration with random
phase changes together with a 300 s type oscillation. It was found that the
frequency power spectrum, which at the base of the photosphere is

essentially a multiple delta function, became flat and continuous at great
height. In addition the calculations suggested that the acoustic heating by
a spectrum of waves is more efficient than by a monochromatic wave.

A third type of time—-dependent photospheric calculations aims to clarify the
structure of the solar temperature minimum region. Muchmore and Ulmschneider
(1985), Muchmore, Kurucz and Ulmschneider (1986) as well as Muchmore (1986)
have investigated the influence of CO molecules on the time-dependent
formation of radiative equilibrium atmospheres. These authors used the same
numerical method as Ulmschneider et al. (1978), treating CO in LTE and
solving a two—frequency radiative transfer problem. In the more recent
calculations both H- and CO were treated non—grey, the latter with opacity
distribution functions. Fig. 2 shows that stars with an effective
temperature Terr less than about 5800 K have radiative equilibrium
atmospheres with cool outer layers. Acoustic shock heating can limit these
cold regions from above. In the range of Ters between 5800 and 5900 K,
depending on the previcus history of the atmosphere, two types of radiative
equilibrium atmosphere can actually occur, a cold one dominated by CO
cooling or a hot one.

* The structure of the temperature minimum area is dominated on the one hand
by extensive cold regions and on'the other by intensely heated magnetic flux
tubes which penetrate the cold regions. In their wave calculations along
flux tubes Herbold et al. (1985) solved the hydrodynamic equations and the
modified Hugoniot relations using the characteristics method. They took
various geometries (Egs. 6,8,9) and radiation loss after Eq. (12) to
compute ordinary acoustic waves, acoustic tube waves and longitudinal
magnetohydrodynamic tube waves. The method of characteristics was taken and
ionization was neglected. It was found that acoustic tube waves and
longitudinal waves are very similar due to the dominant influence of the
tube spreading.

A fourth type of photospheric calculation is represented in the work of
Hasan and Schilssler (1985). These authors computed the time development of
a downward gas flow in a solar flux tube. Here hydrogen ionization was taken
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Fig.2 Temperature structure in radiative equilibrium models for various
effective temperatures Ters obtained in a time-dependent
calculation after Muchmore and Ulmschneider (1985). Models with
acoustic heating are shown dashed. The acoustic flux Fu is given in
erg cm-2s-1,

into account and radiation after Eq. (13). The hydrodynamic equations were
solved using the flux corrected transport algorithm. The initial model
assumed a small downflow. The heating phase was initiated by an enhanced
downflow entering at the top of the tube. It was found that the enthalpy
energy flux strongly heats the tube. Good agreement with empirical flux tube
models could be obtained.

3. Coronal loop _calculations

Another type of calculation where the radiation treatment is comparatively
simple is that along coronal loops. Typical examples of such work are
Nagai(1980), Mariska and Boris (1983) and McClymont and Canfield (1983).
These authors assume a fully or nearly fully ionized medium. In some work a
difference between the heavy particle temperature T (the energy exchange
by ion—neutral collisions appears rapid enough) and the electron temperature
Te is allowed for.

a. hydrodynamic equations
The continuity (2) and Euler equation (3) are not modified although the

latter is often written as a momentum conservation equation (Landau, Lifshitz
1959, p. 13)

e'(gm+ a(gZA)+Abp+ gA AF (20)
-—(8u —(%u —_— = s
>t 3% B £ Ui
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where the total pressure p is the sum of the electron and heavy particle
pressures, gr is the gravitational acceleration parallel to the loop

axis, and Fyvis is the viscous force, i.e. the tensor divergence of the viscous
stress tensor. Cox and Everson (1983) gave the form for the viscous force in
general coordinate systems and Hasan and Schilssler (1985) discussed it in
detail for circular cylindrical coordinates. For the tube geometry

4 2
Fvie = [ E—k grad(div(u)) - ?;(grada){div(g))

+ 2 grad(x)-grad(u) ]x , (21)

where u is the velocity vector and A is the coefficient of viscosity. This
is, to good approximation,

4 o 1 3 2 du u du
Fvis = — A =— [—=—(uA)] +— —[ 2 — - — — : (223
3 ax A ax 3 ax ox A dx

_ Note that for dilute monatomic gases the coefficient of bulk viscosity is
zero (Hirschfelder, Curtiss, Bird 1954, pp. 503, 521) and it has been
omitted here. In cases where hydrogen ionization or recombination occurs teo
slowly to keep pace with variations in T and p, the bulk viscesity is non-
zero (Landau and Lifshitz 1959, p.304ff). In such cases the preferred
treatment, however, is to augment the hydrodynamical equations with the
particle conservation equations for the individual species of particles
rather than to handle these effects by means of a bulk viscosity.

The value adopted for the viscosity coefficient may be the molecular
viscosity (e.g. Spitzer 1962, Brezing 1965), or a turbulent viscosity (as
used by Hasan and Schillssler 1985) or a pseudecviscosity (Richtmyer and Morton
1967). No matter which value is used for the viscosity, anytime its effects
become significant, as for instance in shocks or for T above 2 107K
(McClymont and Canfield 1983), then it must be included consistently in both
the momentum and energy equations, since physically the viscosity represents
the transformation of kinetic energy into heat. Exactly the same energy lost
from the velocity field must end up in the thermal energy (Cox and Everson
1983). We give the viscosity an emphasis cut of proportion to its physical
importance here because this consistency has frequently not been enforced in
the calculations we are reviewing.

Because the proton-electron energy exchange time in the inner corona
becomes appreciable compared to a wave pericd of a few seconds one now has
- two energy equations (Cannon 1974, Landau, Lifshitz 1959, p. 185,
Hirschfelder, Curtiss, Bird 1954, p. 463),

the total energy conservation equation

 CGEAY + pom & S [(sBpYuk ~ A (AL A il
ot P P "o %

- SuAge = A(dv - $r + Ou) R (23)
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and the electron energy conservation equation

i (SEeA) + s + 3 [(SEe+pE YuA AKEBTE]

— Lppm— s— u s — =

R PESe B o or %

+ ABra(Tu-Te) — AX(H)R(H) — Ax(He)R(He) - Ax(He*)R(He*)

+ A(dve — dr + ¢m) . (24)

The right hand sides of the above two equations are the energies gained by
inelastic processes. ki and Keg are the thermal conductivities for the heavy
particles and electrons, respectively (k1 is only 4 percent of ke c.f.
Ulmschneider 1970, Nowak and Ulmschneider 1977). To take into account that
the thermal conductive flux can not be made arbitrarily large Fisher,
Canfield and McClymont (1985) have modified this coefficient. Note that due
to the steep temperature gradient and the strongly reduced radiation loss,
thermal conductivity becomes important in the transition layer and the
corona. Viscosity is important only when steep velocity gradients are
produced by localized flare heating events. ¢v is the net viscous heating
rate (Landau and Lifshitz 1959, p.1B84) and ¢ve is the corresponding rate
for electrons. ¢ is a net heating rate by external processes. ¥t is a
heavy particle-electron equilibration rate. x(H), X(He), x(He') are
respectively the H, Hel and Hell ionization energies. The total energy E per
gram is the sum of the kinetic, heavy particle thermal, electron thermal and
ionizational energies,

1 1 3 nukTx 3 nekTe
E = —u?2 + Eryr = —u2 + - ————-— + = ————— + [n{H*})x(H)
2 2 2 8 2 g
+ n(He*)x({He) + n(He**)(x(He) + x(He*)]/% , (25)

where Eint is the internmal energy per gram, k the Boltzmann constant and
nt = n{H) + n(H*) + n(He) + n(He*)} + n(He**) , (26)
nge = n(H*) + n(He*) + Zn(He**) ; {27)

where nu, ne, n(H), n(H*), n(He), n(He*), n(He**) are the heavy particle,
electron, neutral hydrogen, proton, neutral helium, ionized helium and
doubly ionized helium densities, respectively. The electron energy is given

by o
3 nekTe

Ee = — . (28)
2 g

The density is

g8 = HHEA[D{H) + n(H*}] + MHeIla [n{HE)

+ n(Het) + n(He**)] . (29)
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where py and pye are the mean molecular weights of hydrogen and helium and
ma is the mass of the atomic unit. R(H)}, R(He), R(He*) are the net creation
rates of H, He, He', respectively in their ground state, obtained from Eq.
(32). The terms involving these rates in Eq. (24) represent the electron
energies lost by ionizing H, He, and He*, while the term involving Zee
describes the electron energy gained from electron-heavy particle
collisions. Eq. (23) except for the viscosity and thermal conduction terms
can be derived from Eq. (4) by using the thermodynamic relation

g e LR (30)

The left hand side of Eq. (30) is the external heat input. Elements other
than hydrogen and helium only negligibly contribute to the thermodynamics and
hydrodynamics but are important for the radiation. The work terms poA/et and
pe dA/dt vanish when the geometry is held rigid and have not been included in

_ the calculations described below.

The viscous heating rates in the tube geometry can be approximated as

1 2
v = — — [4/3 A A2/2 u —(uA-1/2)] (31)
A dx dx

and a corresponding term for ¢éve with 2z replacing A.

b. particle comservation equations

The particle conservation equations can be written (Mihalas and Mihalas
1984, p.389)

énygs ) 2
Ry = = —(nsA) + —(nsup) =
6t at dx

A[nu{Rus + Cus) + nL{RLs + CLs) + ns*(Rks + Cix)

- nr(Rsu +Rsu+ Rsx + Cou + Cyo + Crr)] ’ (32)

for every level J. The right hand side must be summed over all upper U and
lower L states including the continuum K. Here ns* is the LTE number density

wof level J
ngni g he
ns¥ = ( 1372 exp(Bs/kTe) s (33)
ur 2mme kTe

where m: is the number density of the next higher state of ionization, w:
the partition function of this state, gs; the statistical weight of level J,
and mg the mass of the electron. The radiative and collisional rates are
given by (Mihalas 1970, p.137ff):
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o Awly
Rux = fou (v) dy ) (34)
L hy
] 4y 2hy® hy
Rkr = fou (v)—(Jyv + —— ) exp(-— )dy , (35)
VL v c? kTe
RLu = BuufeeJvdy , (36)
Rur = BuL fevJvdy + AuL , (37)
Cuk = ngflLu ) (38)
Cur = nefvL . (39)
Cuv = nefbu . (40)

Here y is the frequency, Jv the monochromatic mean intensity, on (v) the
bound-free absorption cross section for level L, vy the line absorption
profile, Bru, BuL, Aun. are the Einstein transition probabilities, the Q's
are functions of Te, ¢ is the wvelocity of light and h Planck’s constant.

For the highly ionized coronal medium the radiation fields relevant for the
widely separated energetically important atomic levels are in the far UV
spectral region where the intensity emitted from the much cooler stellar
surface is negligibly small. The so called thin plasma approximation assumes
therefore that in Egs. (34) to (37) the intensities Jy can be neglected.

The spontaneous radiative recombination rates are then balanced by the
collisional excitation rates and the particle conservation equations can be
solved directly using only local values of the temperature and density. This
approach has been taken e.g. by Nagai (1980), Mariska and Boris (1983) as
well as by McClymont and Canfield (1983). For hydrogen where the thin plasma
approximation is not very good McClymont and Canfield have used another
approach. They calculate Jv approximately with an escape preobability method
which corresponds to a one—frequency-point treatment and obtain a more
realistic solution of Egq. {32).

c. radiation

Similar to the treatment of the particle conservation equations, there are -
two types of radiation treatment used in coronal loop calculations. Using

the thin plasma approximation the net radiative cooling rate is only a
function of Tg and density and can be written as

¢r = ne n1 Prap{(Te) : (41)

where Prap is a tabulated function of temperature Te given by various
authors (Cox and Tucker 1969, McWhirter et al. 1975, Rosner et al. 1978,
Peres et al. 1982, Raymond 1979). This approach has been used by all workers
in the field.

To improve their radiation treatment of hydrogen McClymont and Canfield
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(1983) have removed the contribution of this element from Eq. (41} and have
computed the mean intensity J. and the source function 5. with an escape
probability method. The net radiative cocling rate for the hydrogen
contribution is then given by grey formulae (c.f. Eq. 11) of the type

op = —4ma (JL—5L) ¢ (42)

where K. is a line center or continuum head opacity.

d. results

Nagai (1980), Craig and McClymont (1981), Wu et al. (1981), Mariska et al.
(1982), Peres et al. (1982), Chung-Chieh Cheng et al. (1983, 1984), Mariska
and Boris (1983) as well as Pallavicini et al. (1983) investigate steady and
unsteady flows along coronal loops of constant or varying cross sectional

area. They assume a primarily fully ionized gas and in the energy equations a
“Cox and Tucker type radiation loss after Eq. (41).

For their initial static models Chung-Chieh Cheng et al. (1883) and
Pallavicini et al. (1983) took constant cross section loops of between 13800
and 40000 km length with base pressures between 2.9 and 6 dyn am? as well
as coronal temperatures between 10% and 3 10% K respectively. The model of
the former authors assumed constant—, that of the latter authors slowly
rising chromospheric temperatures. A constant height-independent mechanical
heating rate ¢m produced by an unknown heating mechanism was adjusted such
that the initial model attained a steady state. To simulate flares
additional spiked pulses of mechanical heating of between 60 and 100s
duration were applied to a wide region around the top of each loop. The
numerical method used by Chung—Chieh Cheng et al. was the flux corrected
transport method while Pallavicini et al. used the finite difference method
with fixed grid spacing. Neither work explicitly solved the particle rate
equations. Fig. 3 shows the resulting time development in the loop of Chung-
Chieh Cheng et al., that of Pallavicini et al. showed similar time
behaviour. It is seen that the pressure and the coronal temperature greatly
increase. Chromospheric gas is strongly ablated and the transition layer
moves from 1900 km height downward deep into the chromosphere. This leads to
greatly increased radiation loss. The UV and X-ray line spectra produced by
these simulations were subsequently compared with Solar Maximum Mission and
P78-1 satellite observations and good overall agreement was found (Doschek
et al. 1983).

The reaction of a loop model to additional steady heating or cocling and to
asymmetric heating in loops of different cross sections with various
spreading was investigated by Mariska et al. (1982) and by Mariska and Boris
(1983). Here for the diagnostic of the oxygen lines the time-dependent
particle conservation equations for this element in the thin plasma
approximation were solved with the hydrodynamics. It was found that the
time—dependent relative ionic abundances differed substantially from the
initial equilibrium values. The loop gecmetry influences significantly the
velocity of the induced flows. Heating may be responsible for the observed
downflows.

The investigation of the flare-induced solar wind is the aim of a s?ries of
papers by Nagai (1984a,1984b) as well as Nagai and Emslie {1984) using plane,
radial and nonradial tube geometries. These authors assume that the heavy
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Fig.3 Time development of the gas flow in a coronal loop initiated by a
flare after Chung-Chieh Cheng et al. (1983). The temperatures
T: =Ty, Te, pressure p, and density § for the initial model and -
several subsequent phases are shown.

ion and electron temperatures are equal and that the radiation loss is given
by a Cox and Tucker type formula (41). Their model extends from the base of
the photosphere up to 8 solar radii, well past the temperature maximum of
the corona. An empirical solar atmosphere and wind model is taken as initial
model. To prevent secular changes of the initial model a height-dependent
heating rate ¢m (x) was applied to balance the radiative and wind losses.
The flare event was simulated by a peaked additional heating rate ¢u of 480
sec duration and a width of 4000 km at 30000 km height. Fig. 4 shows the
time development of the model where the individual phases are labelled by
the time in minutes. As in the calculation of Chung-Chieh Cheng the
transition layer moves deeply into the chromosphere from where it returned
to its former position in about 22 min. After about 13 min a maximum flow
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~~. Fig.4 Time development of the gas flow in an open solar coronal flux tube
initiated by a flare after Nagai (1984b). The temperature,
pressure, density and velocity of various phases of the wave are
shown. The parameter is the time in minutes.

velocity of 1000 km/s developed which decreased to 600 km/s after 60 min.

In the work of McClymont and Canfield (1983), An et al. (1983) as well as
Fisher, Canfield and McClymont (1985) the radiation fields of the Lyman &
line and the Lyman and Balmer continuum of hydrogen were explicitly treated
by computation of a frequency integrated mean intensity Ju and source
function S. using an escape probability method. In the latter paper the MgII
and Call losses were improved (short of actually calculating Ju) by taking
into account optical depth effects using a modified coronal approximation
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which gives these losses in a form similar to Eq. (41). The authors used a
finite difference method with adaptive regridding for the solution of the
radiation-hydrodynamic equations.

An et al. (1983) have investigated the dynamic evolution of unstable
semiempirical loop models. As the Cox and Tucker type radiation formulae
{41) have a maximum of Prap around the temperature 5 10° K, hotter loops
will be thermally unstable because a cooling perturbation will result in
more emission and thus even more cooling etc. In linear stability analyses
cooling times of only a few minutes were found which do not agree with the
observed long—lived nature of coronal loops. In their dynamic non-linear
computation An et al. found that the linear instability saturates rapidly
and subsequent evolution of the loop is determined by chromospheric
evaporation or condensation following the much larger coronal conductive
time scale on the order of half an hour.

In the work of Fisher, Canfield and McClymont (1985) the response of coronal
loops to flares with various mechanical heating rates of 5 sec duration was ™
investigated. Fig. 5 shows the resulting time development for flares with a
total mechanical energy deposition of 10° and 10*! erg cm 2 s~ !. The low
energy Tlare produces a gentle evaporation of the chromosphere while the

high energy flare produces an explosive evaporation. Here the upper
chromosphere is unable to radiate the flare energy deposited and is thus
rapidly heated to coronal temperatures. Interesting is also the formation of
coronal condensations seen in Fig. 5.

4. High chromosphere, transition layer transients

Pure hydrogen atmospheres in plane geometry are an important regime where
time—dependent soclutions of the particle conservation equations and the
radiative transfer equations together with the hydrodynamic equations were
obtained. These applications are valid for the high chromosphere where the
Lyman continuum and the Lyman & line are the most important emitters and for
A-star atmospheres. As the optical depth in the vertical direction for these
emitters is usually much smaller than in the horizontal direction the
assumption of plane geometry is justified. In the calculations of Klein,
Stein and Kalkofen (1976,1978, see alsc Klein 1974) and of Kneer and
Nakagawa (1978) the time-dependent particle conservation equations are
solved with the mean intensities Jv taken from a radiative transfer
calculation using many frequency points. The ion temperature Tw was assumed -~
equal to the electron temperature Tg.

Klein, Stein and Kalkofen (1976) have assumed a one level plus continuum
atomic model and treat the Lyman continuum explicitly. Kneer and Nakagawa
{1976) have taken a two bound level plus continuum model and have treated
both the Lyman continuum and the Lyman « line explicitly. The radiation
field in the Balmer continuum is treated using a specified radiation tem—
perature. For the numerical method both works use the complete linearization
method and the finite difference method with fixed grid spacing.
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a. radiative transfer equation

For non-grey situations the radiative transfer equation is given by (Athay
~~. 1972, ch.2, Mihalas 1970, ch.12,13)

alvuy

&x

where Iyu is the specific frequency and angle dependent intensity. The
continuum emission coefficient is given by

= nv + neoedJv — KvIvu y (43)

B

£ 1) 2hy? ( hy ) (44)
n = n o b e — — i
v 1¥o (v g exp =

with m* given by Eq. (33) where ni=nz. The line emission coefficient is
given by
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hy z

nv = nz Az1

¥y 2 (45)

The continuum absorption coefficient is obtained from

h
kv = o1 (v)(m - n1*exp(—1fi)) + nedE ‘ (46)

where o is the Thomson scattering cross section and

hy 2 g1
Ky = Biz (n1 — mz2— )¥v + nDgoE ; (47)
13,4 gz

is the line absorption coefficient. In these formulae complete
redistribution has been assumed. Using

Jou = [Tew + Te-u)iB® 4 (48) -
the transfer equation can be written in Feautrier form

a2 jvu nw  nEoE
»e = Jvu — — -~
dzv 2 Ky Ky

Jy : (49)

where the optical depth at frequency v is given by
dtv = —Kvdx : {50)

This equation can be simplified using the Eddington approximation which
consists of a one point angle integration:

1 d2Jv v ne o

- Jv . (51)
3 duw? Kv Kv

In addition to Eq. (51) suitable first order differential equations as
boundary conditions at the surface and the bottom of the atmosphere must
be employed.

b. radiation

-
The net radiative cooling rate in a medium emitting the Lyman continuum and
the Lyman ®« line is given by
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2hy3
r

o hy
ni¥dwfer (v) {Jv + ) exp{- — )dv
V1 kT

nidrfoa (v)Jvdy + hviz(nzAza
V1

nzBzi fewJvdy = niBiz fevJvdy) . (b2)

1

+

c. results

In the work of Klein et al. an atmospheric slab of 20000 km extent similar
to the situation in an A0 main-sequence star was considered with a surface
gravity of g=1.0 104 g cm 2 and a Lyman continuum flux of 10% erg cm 2s-!
entering at the bottom. The initial radiative equilibrium atmosphere is
shown in Fig. 6a. The interesting feature is the outward temperature rise
caused by the Cayrel effect (Cayrel 1963, 1964) which is a familiar feature
in non-1TE radiative equilibrium calculations of early type stars (e.g. Auer
and Mihalas 1969). This effect is caused here by the inefficiency of the
radiative emission produced by the overpopulation (shown by the departure
coefficient b1) of the ground state of hydrogen. Departures from LTE start
at an optical depth of tg12=100. In the thin outer layers the kinetic
temperature of the gas is forced to higher values to increase the emission
to balance the radiative absorption and satisfy radiative equilibrium. The
degree of ionization X follows the temperature behaviour. The mean intensity
J. at the lLyman limit decreases and at t912=0.1 attains a constant surface
value,

The time-dependent acoustic wave calculation is initiated with a constant
velocity piston and Fig. 6b shows the situation when the shock generated by
the piston has reached the height 1s12=360. It is seen that X, b1 and the
temperature are strongly correlated. That b1 is strongly correlated with the
temperature is explained by Eq. (32) where roughly

ni Rkr + Cirx
bl = — = . (53)
ni* Rig + Cix

When collisional rates become small, bi depends mainly on the ratio of the
temperature dependent rate Rx: and the temperature independent rate Rix. It
should be noted that in Fig. 6b the shock is still so deep in the atmosphere

“that the outer layers are not affected.

In Fig. 6c where the shock is at t9:12:=83 a precursor ionization front is
generated which in subsequent times rapidly runs through the entire outer
atmosphere. At a later stage Fig. 6d shows the strongly spiked shock at
t012=0.034 leaving a highly ionized gas region in its wake. In their
subsequent paper, Klein, Stein and Kalkofen (1978) have extended their 1976
work by including the Balmer and other hydrogen continua. The lines were not
considered. They find that shock radiation emerging from deep layers in the
much less optically deep Balmer continuum drives an acoustic precursor wave
and that the shock strength is weakened by the radiative cooling.

The work of Kneer and Nakagawa was more ambitious in that the Lyman & line
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Fig.7 Time development of an acoustic pulse in the solar atmosphere after
Kneer and Nakagawa (1976). The velocity, relative temperature and
pressure amplitudes are shown.

was also consistently treated. In additien they took into account H- losses
in a grey optically thin, and Hx losses in a collisional approximation.
Their calculation applied to the solar chromosphere. As initial model these
authors took the temperature distribution of an empirical solar atmosphere
model, covering the entire 2500 km from the base of the photosphere to the
transition layer. For the time-dependent computation a thermal pulse of 250
K amplitude and 25 s duration was introduced at the bottom. The time
development of this pulse is seen in Fig. 7. The pulse grows to large
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amplitude and moves considerable mass into the higher layers. Behind the
first pulse an adiabatic cooling region develops and other pulses are
generated. Although the pulse propagation is clearly seen in the Lyman «
line profile the Lyman continuum showed little variation.

5. Low and middle chromosphere calculations

The important emitters in the low and middle chromosphere are the H-
continuum and the principal lines of Call and MgII (Vernazza, Avrett and
Loeser 1981). To treat these emitters adequately both non—LTE effects and
resonance—line scattering effects must be taken into account. Thus, similar
to the case of the high chromesphere computations, both the particle
conservation equations and the radiative transfer equations must be
consistently solved together with the hydrodynamic equations. In addition,
for solar type stellar chromospheres the effects due to the flux tube
geometry are important. We discuss here the work of Ulmschneider and -
Muchmore (1986) and of Schmitz et al. (1985) who use the methed of
characteristics.

a. H- calculation

In the work of these authors H- in low pressure solar flux tubes is treated
in the optically thin approximation assuming a constant non—grey external
mean intensity Jv. This assumption is valid above a certain photospheric
height. The particle conservation equation (32) for the cone bound state of
H- was solved under the assumption that the time derivative on the left hand
side is zero. The departure coefficient from LTE in H- is then given by

Rgk1 + C
b- = — . (5H4)
Rig + C

where Rk: and Fik are the radiative emission and absorption rates similar to
Egs. (34) and (35) where & is the H- bound free absorption cross section
and

¢ = 2 10-%n(H) , (55)

is the neutral hydrogen collision rate. The radiative cooling rate for H- ia-\
then given by

Pr = dwf(owbPTf (SvPf—-Tv) + awfT(Byv~Jv})dy ’ (56)
s

where
Zhy? 1

5B , (57)

c? b-exp(hy/kT) - 1

is the bound free source function and
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2hy? 1
By = ” (58)
c2 exp(hy/kT) ~- 1

ijs the Planck function. ff indicates free free transitions.

b. calcium and magnesium calculations

The situation is more complicated when Call and MgIl lines are considered
{Ulmschneider 1985, Ulmschneider and Muchmore 1986). In typical solar flux
tubes one finds that the optical depth across the tube is much larger than
along the tube. Thus a plane parallel transfer calculation should be a good
approximation even for flux tubes. The authors treat only one line and
assume an atomic model of two bound levels. Line scattering was computed
making the assumption of complete redistribution. For the particle
conservation equations it was assumed that the time dependent term at the
left hand side of Eq. (32) is zero. The hydrogen ionization was not

" considered in the hydrodynamics but was included in LTE in the computation
of the electron density for the Call or MgIIl radiation treatment. The
jonization of e.g. Mgl to MgII and of MgII to MgIII was computed in LTE.

The net radiative cooling rate in a two level atom can be written

Bv12—-8i12
¢r = hvwizniBi=E . (59)
1 + c2812/2hy1 23

where Bviz is the Planck function and the photon destruction probability €
is given by

neflz1 hw 2
& (1 - exp(- }) ' (60)
Az kT
and the source function by
SovJydy + EBviz
S1z = . (61)

1: & B

The combined radiative transfer and particle conservation problem was solved
using a modified core-saturation method (Kalkofen and Ulmschneider 1984)

. where the source function of the previous time step served as an excellent

initial estimate for the new time step. To account for the neglected
chromospheric emitters (MgIlh and the CallH+K+IRT lines) the MgITk line
results were subsequently scaled by a factor seven. In order to compare this
calculation with more elaborate static computations, the chromospheric
emission of model C of Vernazza, Avrett and Loeser (1981) was recomputed.
The various simplifying assumptions made in the time-dependent calculation
resulted in too much emission by about a factor of ten. Subsequent scaling
was applied such that the Vernazza et al. results were reproduced.
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Fig.8 Types of flux tube geometry considered by Ulmschneider and Muchmore
{1986)

c. results

Fig. 8 shows the three different types of flux tubes which were taken in the
wave calculations. All tubes have at zero height a magnetic field strength
1500 G and a diameter 100 km. A constant cross section tube was taken. The
linear tube spreads first exponentially up to 500 km and thereafter
linearly. The exponential tube spreads exponentially throughout the
atmosphere. Fig.'s 9, 10, 11 show calculations along the tube of constant
cross section representing an ordinary acoustic wave, an acoustic wave along
a linear tube, and along an exponential tube, respectively. These
computations were all made with the same wave period 45 s and the same
energy flux Fyu = 2.5 107 erg cm2s-! which are typical values for a short-—
period acoustic wave.

It is seen that due to energy conservation the wave amplitudes depend
strongly on the spreading of the geometry. At about 570 km height the
constant case as compared to the linear and exponential cases has high
temperature and velocity amplitudes. The latter two have the same amplitudes
up to this height as they propagate in the same tube. At 1300 km the linear =&
case has much larger amplitudes than the exponential case. The radiative
damping function D which is related to the net radiative cocling rate by

D = —$r /8T shows that the different wave amplitudes produce large
differences in emission. This is due to the fact that according to Egq. (59)
both € (as function of ne) and Bviz depend strongly on temperature. The
source function 81z is small and a slowly varying function of height. The
emission is concentrated in intense radiation layers behind the shock. In
front of the shock € is many orders of magnitude smaller resulting in
negligible absorption.

At greater height, depending on pressure and temperature, MgII is icnized to
MgIII. This destruction of the only remaining emitter leads to unbalanced
shock dissipation which produces a rapid rise of the mean temperature
eventually resulting in a transition layer. The position of the transition
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Fig.9 Temperature T, velocity u, damping function D, Euler x and Lagrange
a heights for an acoustic wave in a tube of constant cross section
after Ulmschneider and Muchmore (1986). Tre indicates initial
radiative equilibrium temperature. The wave has a period of 45 s
and flux 2.5E7 erg cm 25! and is shown at time 1772 s

layer depends strongly on the tube geometry, occuring at greater height the
more rapidly the tube spreads. In all calculations, even those with MgII
emission neglected (Schmitz et al. 1985), we found transition layers. Note
that our usage of the term transition layer applies to a rapid temperature

rise. The observed transition layer is probably produced by the ionization
of hydrogen.

_As the dissipated energy cannot be radiated away it is deposited in mass
‘motion. Thus mass motion depends strongly on the tube geometry. This can be
seen in the Figures e.g. as displacement of the Eulerian height x from the
Lagrangian height a of the topmost mass point. Large mass motion is produced
in the constant tube; comparatively little in the exponential tube. Long

period waves put more energy into mass motion and less into chromospherie
heating.

6. Calculations in early-type stars

Wolf (1985) was the first to attempt a fully nonlinear time-dependent
atmospheric wave calculation in early-type stars. These stars are
characterized by ipntense photospheric radiation fields which on the one
hand are responsible for a very fast exchange of energy by radiation damping
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and on the other for important effects due to radiation pressure. Tec include
these effects the energy equation (4) does not need to be modified but at the

left hand side of the Euler equation (3) the radiative acceleration term

8gr =

0l

Skv Fody ; (62)
o

has to be added where Fvy is the monochromatic radiative flux. The net
radiative cooling rate in Egq. (4) is given by

br = —Awfky (Je~Sv)dy (63)
14

where the the frequency integrations extend over the entire photespheric
spectrum including lines.

a. method

To make the problem tractable Wolf (1985b) assumed LTE and rectangular line
profiles and showed that Egs. (62) and (63) can be approximated by

8¢r = Flkrn + (1-w)ka (T,p)f(u,x)

10
+ wkz (T,p) + (1-w) ¥ kKi(T,p)]/c ; (64)
i=3

¢br = -dmkn’(J-B) (65)

where krn and ks ' are the Rosseland opacities with and without scattering,
and F is the stellar radiative flux. K1 to Kio are line opacities, f(u,x) is
a function of velocity and height and w is a weighting function which
decreases with height. The Rosseland opacities describe the continuum
contributions. For the line contributions there are three different effects:
strong resonance lines with little flux in the line core can be Daoppler
shifted into the continuum radiation field, weak lines contribute because
there are so many of them, new ions which see an undiluted radiation field
can be created by ionization in the hot compression region behind the

#~.shocks. k1 is the contribution from the resonance lines, Kz from the

optically thin lines and ka to Kio from the strong lines of new ions. If
height x=0 is the stellar surface, let umax(x) be the maximum value of the
velocity of the wave in the height interval 0 to x, and umin(x) the
corresponding minimum of the velocity in the same height interval, then the
function f{u,x) is given by

0 , if umtn § u £ umax

L

flu,x) = (u—umax)/vin , if umax ¢ u uMaxtven {66)
(umiw-u)/venh , if umiw-ven € u £ umrw

where vin is the mean thermal speed of the line forming ions. It is seen
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that f{u,x) describes the Doppler shift of resonance lines into the
undiluted continuum. The contribution from the thin lines and new ions does
not depend on velocity. Consider a grid point at some height x where the
temperature and pressure are T and p, respectively, while at the next grid
point closer to the star one has T’ and p’. There are eight possibilities of
T,p being greater, equal or less than T',p’. If between T’,p’ and T,p a new
ion appears its opacity contribution is listed in the tables ks to kio. The
advantage of Wolf's approach is that the opacities K1 to Kio can be
pretabulated and summed over a large number of lines. Wolf took 271 lines
and showed that the important contributions came from the elements H, He, C,
N, O, Na, and Fe. For the numerical treatment of the hydrodynamics and the
shocks Wolf used the method of characteristics and included ionigation. The
grey transfer equation was solved with a Feautrier type method (Wolf,
Schmitz and Ulmschneider 1981) which allows for shocks.

b. results

Since the method of Wolf avoids the Scbolev approximation, it is well suited
for wave calculations. A large number of wave computations for stars of
spectral types 03V to A0V, BOIII to B5SIII and 051 to B5I were made using
initial acoustic fluxes corresponding to a Mach number 0.0l and periods of
0.4 the photospheric cut-off period. The calculations were started at a
continuum optical depth of between 3 and 10-3. It was found that there is a
radiative damping zone up to an optical depth of typically 10> where the
waves are essentially isothermal with a relative temperature fluctuatiocn
AT/T of around 10-". This also applied to the shocks formed in this zone.
After passing the upper limit of the damping zone the waves rapidly grew by
radiative acceleration to strong shocks with postshock temperatures of the
order 3 10° K. The generated stellar wind could not be followed because of
the limited width of the atmospheric slab which extended to continuum
optical depths of around 10-9. The magnitude of the radiative amplification
in the various stars was discussed in detail. Radiation pressure in lines
was found to be the dominant contribution.

7. Conclusions

In this review we have outlined the rapid development of the capability to

do nonlinear time-dependent atmospheric wave calculations in which the
(magneto-) hydrodynamics, the thermodynamics and the radiation treatment arA
consistently coupled. The rapid decrease of the density in the atmospheres

of stars introduces essentially four domains where typical wave calculations
are possible:

1. High density photospheric regions where wave calculations can be done
assuming LTE both for the thermodynamics and the radiation. 2. Intermediate
density low and middle chromospheric regions where non-LTE effects dominate.
Here the important radiation loss luckily comes from only a limited number
emitters which are minority species (H-, CalIl and MgII) but the atmosphere
is highly inhomogeneous and the particle conservation equations must be
solved explicitly. 3. Low density high chromospheric regions at the
transition layer to the fully ionized corona, where non-LTE hydrogen {Lyman
continuum and Lyman «) emission dominates the radiative exchange and where
the ionization of hydrogen profoundly alters the thermodynamic and radiative
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properties of the gas. Here the particle conservation equations must also be
solved in full detail. 4. The very low density corona where the excitation
and ionization of the matter, the particle conservation as well as the
radiation can be computed using the thin plasma approximation.

The great advance in storage space and speed of our present computers make
it likely that one-dimensional calculations covering the entire range
between the photosphere and the corona will soon be feasible. This is
possible by using very efficient numerical methods to do the hydrodynamics
and thermodynamics and to treat the radiation. For the treatment of
non-LTE radiation the core saturation method brought a vast increase in
speed as do the operator-perturbation methods of Kalkofen (1984), Scharmer
(1984) as well as Scharmer and Carlsson (1985) which are claimed to be
1000 times faster than the usual complete linearization method.

Acoustic wave calculations in early-type stars have to take the intense

_ radiative energy exchange and radiation pressure into account. Here the
"Sobolev approximation for the treatment of radiation pressure which is valid
in cases of steep velocity gradients is no longer applicable and must be
replaced by a methed which allows for the three principal effects,

Doppler shifting of resonance lines, weak line and new line contributions.
Numerical codes are now available which are capable of treating the
transition from the isothermal waves in the extensive radiation damping
zones of these stars to the nearly adiabatic waves with strong developing
shocks in the outer layers. Here great advances are possible if the
calculations could be carried to greater heights such that the formation of
the radiation—driven winds could be studied.

One-dimensional time-dependent computations of torsional and transverse
Alfvén waves along magnetic flux tubes including radiation are currently
under way which could help to clarify the so far elusive coronal heating
mechanism. Here the nonlinear coupling of the different MHD wave modes is
especially interesting as adiabatic calculations of Hollweg, Jackson and
Galloway (1982) have shown. Two-dimensional magnetohydrodynamic codes which
enable more realistic treatments of flux tubes have been developed by
Deinzer et al. (1984) and by Lou, Rosner and Ulmschneider (1986). It is
foreseeable that these codes will use more realistic thermodynamic and
radiation treatments and that they will serve as basic tools for the
investigation and clarification of the chromospheric and coronal activity of
stars. Another very promising area where time-dependent stellar atmospheric
. wave propagation will become important is the radial -or nonradial pulsation-
driven mass loss in late-type giant stars as adiabatic and isothermal
computations of Wood (1979) show. This problem is complicated because of the
great complexity of the thermodynamic and radiative treatment of molecules
and dust as well as their formation. Finally the time-dependent acoustic
wave computations in early-type stars are likely to play a leading rele in
the clarification of the radiation-driven winds from these stars.
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