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ABSTRACT

We present a computational code for solving two-dimensional, time-dependent magnetohydrodynamic
(MHD) equations by the method of characteristics. Earlier computational work on two-dimensional hydrody-
namic equations by the method of characteristics is generalized to include the presence of magnetic fields. The
physical system under consideration is axisymmetric, with v, =0 and B, =0. The numerical scheme is
described in detail, and the results of calculations are compared with two analytic solutions of the MHD
equations: (a) linearized, standing MHD wave motions in a magnetized cylindrical plasma; (b) nonlinear self-
similar expansion of a magnetized plasma ball. In addition, we have studied the nonlinear development of
standing MHD wave solutions in a cylindrical plasma. Our results show that the method of characteristics,
although complex to implement, can be successfully applied to solve the MHD equations, and that highly
accurate, stable results can be obtained. These properties take on especial importance in light of the fact that
the method developed here can be naturally embedded in the computational architecture of massively parallel

processors.
Subject headings: hydromagnetics — plasmas

I. INTRODUCTION

Because of advances in computational power, and ready
access to such power, it is now feasible to carry out direct
numerical simulations of astrophysical magnetohydrodynamic
(MHD) problems which have received only analytic treatment
to date. One such problem deals with the nonlinear evolution
of propagating and standing waves in an inhomogeneous
gravitationally stratified conducting fluid. In particular, our
interest centers on the generation and possible propagation of
such waves in the presence of the intense magnetic flux tubes
observed to be embedded in the solar atmosphere, a problem
which has received much recent attention (see Spruit 1981;
Spruit and Roberts 1983; Herbold et al. 1985). The purpose of
this paper is to present the initial results of a new numerical
code for solving such problems, namely one based on the
method of characteristics implemented for a two-dimensional
magnetofluid.

There are four basically different methods of numerical inte-
gration for hyperbolic partial differential equations developed
to date: (i) the direct finite-difference method (Roache 1976), (ii)
the finite-element method (Mitchell 1972; Deinzer et al. 1984),
(iii) the pseudo-spectral method (Gottlieb and Orszag 1977;
Fletcher 1984), and (iv) the method of characteristics
(Richardson 1964). The method of characteristics has particu-
lar appeal for numerical integration of equations describing
physical phenomena because it relates to conditions on loci of
points along which physical disturbances travel. However, the
programming logic is generally quite complex and hence
involves an extensive programming effort. This complexity,
however, is potentially offset by the fact that, whereas the
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method of characteristics can be embedded only awkwardly on
a serial processor, it embeds naturally on a parallel processor
because the iterations for physical variables at each grid point
along the associated characteristic cone proceed indepen-
dently.

Our strategy is as follows: in the present paper, we discuss
the basic algorithm and demonstrate explicitly that an accu-
rate numerical code can be implemented. In order to test our
code, we have compared the results of our code with analytic
solutions to the MHD equations for two distinct problems.
The first is for linearized, standing MHD wave motions in a
magnetized cylindrical plasma with prescribed boundary con-
ditions on top, bottom, and wall of the cylinder. The second is
for nonlinear, self-similar expansion of a magnetized plasma
ball (Low 1982). In addition, we study the nonlinear develop-
ment of large-amplitude standing MHD wave solutions; this
study includes tests of the conservation laws of energy, mass,
and magnetic flux. At the present stage of development of the
code, the treatment of shocks is incomplete, and the implemen-
tation of shock finding and following is the task of ongoing
development.

The outline of the paper is as follows. In § II, the basic MHD
equations are given, while the theory of characteristics in two-
dimensional MHD is briefly discussed in § III. In § IV, the
MHD equations are cast into characteristic form on the fast
cone and along the fluid line; the numerical procedure is
described in detail in the following section. The treatment of
the boundary conditions is an important subject in its own
right, and § VI is devoted to this problem. The tests of our code
are carried out in § VII. Our discussions and conclusions are
given in § VIIIL

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1987ApJ...315..349L&amp;db_key=AST

T T T315. 234910

72D

[

350 LOU, ROSNER, AND ULMSCHNEIDER

II. BASIC MAGNETOHYDRODYNAMIC EQUATIONS

We generalize the previous computational work on two-
dimensional hydrodynamic equations by the method of char-
acteristics (Richardson 1964; Stefanik et al. 1984) to include the
effects of magnetic fields. In the one-dimensional case, the
partial differential equations can be reduced to ordinary differ-
ential equations along the characteristics, where the derivatives
normal to the characteristics disappear. For nonlinear equa-
tions, the characteristic lines are functions of the solution to be
obtained and cannot be determined a priori. For the two-
dimensional case, further complications arise. In general, by
appropriate cordinate transformation, the original differential
equations can be reduced to partial differential equations with
one independent variable less on the characteristic surfaces
where the derivatives normal to the characteristic surfaces dis-
appear. However, it is usually difficult to express explicitly the
partial differential equations thus obtained in terms of the
independent coordinate variables on the characteristic surface.
As in the one-dimensional case for nonlinear equations, the
determination of the characteristic cone (Fig. 1), which is the
envelope of the characteristic surfaces, depends on the solution
of the equations to be obtained.

For a given spatial grid, the time step for integration is
chosen with the following concerns in mind: (i) the local char-
acteristic cone must be accurately constructed from the infor-
mation at the previous time step, and the MHD equations
must be expressed on this cone (this is essentially the Courant
condition); (ii) for convergence and stability of a specific
numerical scheme, experience and theoretical analysis using
the Von Neumann condition in the linear regime of the equa-
tions (Richtmyer 1957; Shin and Kot 1978) show that the time
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step must be less than the Courant time step (the precise defini-
tion of the Courant time step in the MHD case will be given
later). A further constraint on the size of the time step follows
from the fact that the set of MHD equations dealt with here
can be expanded in a power series in time when the initial
spatial dependence of a wave perturbation is given. From the
Cauchy-Kowalewski theorem (Garabedian 1964), this expan-
sion must converge to a unique solution in some neighborhood
of the initial time; that is, we do not expect that the con-
vergence domain of the expansion is infinite, so that depending
on the parameter regime, a finite convergence domain can be
found in principle. Since any numerical scheme for the MHD
equations is in essence a kind of expansion in time, the finite
convergence domain in time sets up another intrinsic upper
bound for the time step in the numerical integration.

In general, we cast the MHD equations into characteristic
form on the characteristic cones and along the fluid line, and
then write down their corresponding finite difference forms. In
the present scheme, the physical variables are advanced in
time, and the coefficients of the time derivatives of the physical
variables and the “source terms” involving the spatial deriv-
atives in the equations are approximated by the arithmetic
means of their values at the new and the old time steps. This is
an implicit scheme, through which the values of the physical
variables at the new time step are obtained by numerical iter-
ation. With the numerical scheme described above, the deriv-
atives of the unknown variables at the new time step are
introduced, and different directions along the characteristic
cones are chosen to obtain enough equations to solve for these
unknowns. We have used the fast cone and the fluid line to
express all of these equations.

The reason for using the fast cone alone, but not the slow

P

slow cones

FiG. 1.—Basic geometric structures of the MHD fast and slow wave cones for a uniform and homogeneous background magnetic field; dashed line represents the
cones for the fast and slow phase velocities, and solid line represents the cones for the fast and the group velocities.
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cone (see Fig. 1), is the following. Although it is common to
think of the fast and slow cones as separate entities, the fact is
that they are uniquely related; i.e., for a locally homogeneous
background, the shape of the slow cone is entirely determined
by the shape of the fast cone, and vice versa. The crucial point
here is that the fast cone contains as much background infor-
mation as the slow cone does. Thus, choosing the
bicharacteristics along the fast cone is not essentially different
from choosing those along the slow cones. However, several
benefits accrue by using the fast cone. First, the fast cone
resembles the Mach cone in the hydrodynamic case, and the
MHD treatment of the finite difference equations is similar to
that for the hydrodynamic case. Second, the fast cone covers a
larger area than the slow cone does, so that the numerical error
introduced by subtraction of values at different points on the
fast cone is less than that on the slow cone. Third, when the
magnetic field is reduced to zero, the fast cone reduces to the
Mach cone and the slow cone vanishes. If some of the finite
difference equations were expressed along the slow cone, it
would be difficult to handle situations where the magnetic field
is small or zero. In other words, to express the finite difference
equations along the fast cone is more general.

We use the ideal MHD equations to describe the adiabatic
motions of a nonviscous, infinitely conducting, magnetized
fluid. The basic equations are the following:

1. The momentum equation:

ov 1
p|:5+(v-V)v]=—Vp+E(VxB)xB. 2.1)

2. The equation of continuity:

op
6t+v (pv)=0.

3. The induction equation:
0B
e Vx(@xB).

4. The condition for adiabatic flow:

22)

(2.3)

0
PP )t Vpp™)=0. 24

5. The divergence-free condition for the magnetic field:
V:B=0. 2.5

The quantities p, p, v, and B are the gas pressure, density,
velocity, and magnetic field, respectively. The constant 7y is the
ratio of the specific heats.

In cylindrical coordinates (r, ¢, z) for an axisymmetric
physical system, with v, = 0 and B, = 0 (see below), equations
(2.1)+2.4) can be written explicitly as follows:

ou ou Ou 10p B, 0B, B, 0B,
a tatly; por 4mp 0z ' 4mp 6r—0’ @6)
ov ov ov 10p B, 0B, B, 0B, _
at'at’% p oz  d4mp 0z 4mp 6r_0’ @7
dp 10 0
FrL (rpw) + % (pv) =0, (2.8)
app™")

29)
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0B, 0B, 0B, v ou uB,

E-H‘ o +v 2 +B’52_B’52+ » =0, (2.10)
0B, 0B, 0B, _ v ou uB,
o 4% az-B'0r+Bzar+ r =0, @1
10 0B,
-;5;(7‘3,)'*' %z =0, (2.12)

where equation (2.12) has been used in equations (2.10) and
(2.11). Combining equations (2.8) and (2.9), we have

20 S S A
LS P =0, (213

where a® = yp/p, u is the r-component velocity, and v is the
z-component velocity.

The main reason for setting both v, and B, to zero is simpli-
city. One obvious consequence of this assumption for an
axisymmetric system is the exclusion of the transverse (Alfvén)
mode. In principle, v, and B, can be included for axisymmetric
systems by adding two more equations for the time evolution
of v, and By, and there do exist corresponding linear analytical
solutions which can be used for testing. This complication will
be considered in a separate publication.

The set of equations (2.1}2.5) is of hyperbolic nature and
can be cast into characteristic form on the fast cone. The same
is true for the set of equations (2.6)+2.13). We shall describe the
theory of characteristics in the next section.

III. THE THEORY OF CHARACTERISTICS IN
TWO-DIMENSIONAL MHD

In this section, the theory of characteristics in its basic form
is illustrated by the propagation of linearized MHD wave
motions in a homogeneous medium, and its application to the
numerical procedure for general nonlinear MHD motions in
an inhomogeneous medium is outlined. To clarify matters, we
first consider a uniform, stationary background, ie., in the
absence of background flow, the background gas pressure p,
density p,, and magnetic field B, are constants independent of
time and space. The equations of motion given by equations
(2.1)2.5) are of hyperbolic nature. When the physical system
is perturbed at a point, the linearized version of equations
(2.1)2.5) shows that three distinct wave modes are excited,
whose characteristic phase velocities are

Cp = (3a® + b7 + /(@ + b))’ — 4a’h? cos? O1}'2, (3.1)
C,= {3a* + b — /(@® + b)) — 4a’b? cos” 61}'7, (32)
C,=b|cos 6], (3.3)

where a® = ypo/p, is the square of the sound speed, b? =
| By |?/4mp,, is the square of the Alfvén speed, and 6 is the angle
between the wave vector and the magnetic field. The phase
velocities C, C, and C, are those of fast, slow, and transverse
modes, respectively. Since the physical system is axisymmetric
about the direction of the background magnetic field B, the
expressions (3.1)+3.3) for C, C;, and C, are valid for any plane
containing the magnetic field B,. The propagation behavior of
the modes is usually displayed by means of polar diagrams
(Friedrichs diagrams; see Jeffrey and Taniuti 1964), in which
the radial distance represents the magnitude of the phase
velocity and the direction of the radial vector is that of the
wave vector.
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Expressions (3.1)}+3.3) describe anisotropic phase propaga-
tion of MHD waves. Physically, the more pertinent representa-
tion of these waves in an anisotropic medium are the
corresponding group velocities with which disturbance pat-
terns propagate (see Fig. 1). The physical interpretation, the
geometrical construction, and the mathematical formulae of
the MHD group velocities are discussed by Courant and
Hilbert (1962, p. 551), Jeffrey and Taniuti (1964), and Stix
(1962). To be specific, the expressions for the MHD group
velocities are

(a®b? sin B)(cos ) sin (6 + &)

A¥ =cos (0 + 6)C, + C.C (3.4)
and
A* = sin (0 + 8)C, — (a®b? sin 0)(0285(?) cos (0 + 9) (3.5)
for the slow mode;
4, = cos (0 + 6)C, — (a®b? sin 9)(cco:, CH) sin (6 + J) (3.6)
and
4, =sin 0+ O)C, + (a2b? sin 9)((2){3 g) cos (0 + 9) 3.7
for the fast mode; and
AL = +bcos d (3.8)
and
A; = tbsind (3.9)
for the transverse mode, where
C = [(a® + b*?* — 4a®b? cos? 61112, (3.10)

0 is the angle between the wave vector & and the ambient
magnetic field B (see Fig. 1), and (generalizing slightly) J is the
angle between B and the z-axis.

The general characteristic theory is presented by Courant
and Hilbert (1962). The key property of the two-dimensional
second-order partial differential equations (pde’s) of the type
(2.6)2.13) is that there exists a set of special coordinates (the
characteristic coordinates) which allows one to reduce the
number of independent variables of the equations by express-
ing them on a set of special surfaces called the characteristic
surfaces. The analog of this in one-dimensional flow is that the
pde’s reduce to ordinary differential equations along character-
istic lines. In contrast to the two characteristic lines in the
one-dimensional flow case, there is an infinite number of char-
acteristic surfaces in two-dimensional flow. The envelope of the
family of the characteristic surfaces forms the characteristic
cone in (t, r, z)-space (see Fig. 1).

Physically, the characteristic cone can be obtained from the
linearized equations for small-amplitude perturbations. The
tangent line between the characteristic surface and the charac-
teristic cone is called the bicharacteristic. For a stationary,
homogeneous background, the characteristic cones have a
regular shape in (¢, r, z)-space, and are determined by the
unperturbed background state. In this simple case, the speeds
with which the wavefront of the characteristic cones evolves in
time are given by expressions (3.4)~3.9). For a static, inhomo-
geneous background, the characteristic cones have an irregular
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shape in (¢, r, z)-space, and are constructed according to the
local properties of the background state. In this case, the
speeds with which the wavefront of the characteristic cones
evolves in time are given by expressions (3.4)(3.9) as deter-
mined by the local properties. In the presence of a background
flow, the characteristic cones are superposed onto the back-
ground flow. Thus, in addition to modifying the background
properties, the background flow distorts the wavefront of the
characteristic cones, and the shapes of the characteristic cones
will depend on the solution to pde’s (2.6)2.12).

We now apply the characteristic method to solve the pde’s
for nonlinear MHD motions in an inhomogeneous medium in
the presence of a background flow. There are two important
aspects involved. First, at each time step, the construction of
characteristic cones has meaning only locally and differentially.
Second, the pde’s must be expressed along the characteristic
cones so that the physical variables at the new time step are
related to those at the old time step along the bicharacteristics.
The basic idea here is that, for sufficiently small time steps,
local characteristic cones can be constructed for nonlinear
MHD motions in an inhomogeneous medium from the finite
difference form of the equations along the bicharacteristics.
The values of the physical variables at the new time step can
then be obtained by numerical iteration. We see immediately
that because of nonlinear motions and the inhomogeneous
background, the maximum allowable time step for con-
vergence is different at different spatial points and at different
times. We must choose the minimum step size at each time to
advance the calculation to the next time step so that con-
vergence and stability can be guaranteed.

The local bicharacteristics along the characteristic cones for
the various modes are defined by the local tangent vector
t = (dr, dz, dt), where dr and dz are given by

dr = (u + A¥)dt (3.11)
and

dz = (v + A¥)dt (3.12)
for the slow mode;

dr =(u + A,)dt (3.13)
and

dz = (u+ A,)dt (3.19)
for the fast mode;

dr = (u + A)dt (3.15)
and

dz = (v + Ab)dt (3.16)

for the transverse Alfvén mode. The quantities u and v are the
r- and z-component background flow velocities, respectively,
A¥, A¥, A,, A,, A, and A! are defined by equations (3.4)-3.9),
and

dr = udt (3.17)

and
dz = vdt (3.18)

define the orientation of the axis of the characteristic cone [i.e.,
the local tangent vector to the fluid line in (¢, r, z)-space.

The macroscopic disturbance patterns are distorted by the
flows and by the inhomogeneity of the background variables.
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Hence, after some time, it may be hard to distinguish pre-
viously distinct modes. However, in principle, if the macro-
scopic disturbance patterns are known at one time, they can be
constructed for later times by using equations (3.11)+3.16).

We are now in a position to express the MHD equations
(2.6)+2.13) on the characteristic cone. This will be done in the
next section.

IV. METHOD OF BICHARACTERISTICS

We want to express equations (2.6)—2.13) along the fast cone
and the fluid line for an axisymmetric system, with v, = 0 and
B, = 0. In a frame moving with the speed of disturbance of the
fast mode, the time rate of change of any physical variable h is

dh Oh oh oh
Et———+( +A)5+(D+A‘)E
In a frame moving with the fluid line, the time rate of change of
any physical variable h is
Dh Bh + oh + @
Dt o Ve

Thus, along the fast cone, the MHD equations (2.6), (2.7),
(2.10), (2.11), and (2.13) can be written as

4.1)

42)

du ldp B OB, B OB, o, du_,
dt por 4mp 0z A4mp Or " or 0z
4.3)
do 1op B, 2B, B, OB, _ a_
dt pdz 4mp 0z 4mp Or or 0
4.4)
dB, uB ov ou OB 0B
i ot f_pl_ r_ r_ 4.
dt+r+ " 0z B’az " or A’az 0, @5
dB, uB ov Ou 0B 0B
27 :_g <& & _ z_ 4 Pz 4.
@ Ty B'6r+ Zor Ar or A’é’z 0. (46)
dp ou Ov u ap op
dt+p <6r+6z+r>_A’6_Aza =0. 47
Along the fluid line, equation (2.9) is
D(pp™")
=0. 4.
Di 0 (4.8)
Combining equations (4.3), (4.4), and (4.7), we obtain
dp du do  (4.B,— A,B) _ 9B,
a4 dt+pA’ it az or
+ pla® — AZ) + pla® — A’) =
ou Ov pa’u
—=0. 49
—pAA <6 0r> + r “9)
Combining equations (4.3}(4.6), we obtain
dB, dB, du dv (B?+ B? 5
pA G~ PA T Bep G+ B dt<47r Sl

0B, B? + B? ,\( 0B, op ap)
<6z>—< 4n _pA'><6 >+B<0z ~ B or
" (A,B,— A,B)=0. (410)

0B, OB pu
A et 3 B Gt
—P A(ﬁ 6z)+
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Along the fluid line, equation (4.7) is

Dp ou oOv u
oo+ ) =0

We approximate the differential equations (4.9), (4.10), and
(4.11) by the following finite difference scheme. The time deriv-
ative of any physical variable along the fast characteristic cone
dh/dt or along the fluid line, Dh/Dt, is approximated by
(ho — h,)/At, where h represents any physical variable, sub-
script zero indicates that the variable h is evaluated at the point
P, at the new time surface (see Fig. 2), and subscript n indicates
that the variable h is evaluated at the points P, at the old time
surface, corresponding to different directions of the
bicharacteristics along the characteristic cone or correspond-
ing to the direction of the fluid line. The coefficients of the time
derivatives of the physical variables and the terms not involv-
ing the time derivatives d/dt are approximated by the arith-
metic means of their values at the new and old time surfaces. In
so doing, the spatial derivatives of the unknown physical vari-
ables at the new time surface are needed. We then choose
bicharacteristics in different directions along the characteristic
cone to obtain enough equations so that these unknown
spatial derivatives at the new time surface can be eliminated by
appropriate linear combinations of the equations along the
different bicharacteristics. Physical variables and their spatial
derivatives at the old time surface are interpolated by a two-
dimensional cubic spline scheme (Stefanik et al. 1984; Spith
1973). The detailed numerical procedure is described in the
next section.

@.11)

V. NUMERICAL PROCEDURE

Following the basic idea of the method of bicharacteristics
described in § IV and retaining the notation developed there,
equation (4.9) can be written as

W At
— Bl ug + BLvg — TS = —LZ— (5.1)
where
B{n = _(pO ArO,n + Pn Am)/2 s (5'2)
Brn = (pO AzO.n + pn Azn)/2 E) (5'3)
Wf — (AzO,nBrO — ArO,n BzO) _q& _ _a_Bg
on = 4n 0z )o or o
du ov
+ polas — Ar20,n)<5>o + polad — Afo,;.)(g)()
ou ov 0o as ug
- - -— —_— 4
Po ArO,nAzO,nI:(az>0 + <ar>0:| + ro ) (5 )

Wf — (Azn Brn — Am an) % _ @
" 4rn 0z ), or
ou ov
2 42y ¥ _
+ palaz — A4z, ( 0r> + play — AL, ( 62),,
ou ov p.atu,
— pn Arn Azn[<az>n + <ar>n] + rn ) 5.5)

(5.6)

—_

and

At
T}{ = _Bfnun + B{;lvn - Wn

2+Pn
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t 4
P0 (i,j)
fluid path bicharacteristics
zj_1 : j z
7 ] 7 >
r./_ L | 4
i-1 - _! 7‘
/
// | / s
/ R
/ Py
/
h - -
//
/ 5 P(i,j)
r / LYy

F1G. 2—Thelocal fast cone and the fluid path in the neighborhood of a grid point P(j, j). P(i, j)is the same spatial point at the next time step

The directions n = 1, 2, 3, and 4 are chosen corresponding to
0 =0, n/2, n, and 3n/2 (see Fig. 2). We use n to label the corre-
sponding bicharacteristics. From the four equations (5.1) (for
n=1,2,3,and 4), we obtain

—(B{,; — Bl3)uy + (Bf; — BLy)v, — (T{ — T%)
— (Azo,lBrO - ArO,lBZO) % _ % 2 , (5.7)
2n 0z /, or Jo] 2
and
—(B{, — Bluo + (B, — Blvo — (T5 — T%)

_ _(AZO,ZBI'O_AP'O,ZBZO) % _ aBz _A_t (5 8)
B 21 0z ) \or)o]2 7

Here we have used that A,O 3= —A0.1 Az0,3= —Az0,1
Aoa= —A,,5,and A,y 4 = — A, ,. Equations (5 7) and (5. )
contam (0B, /62) and (6B ./0Mo» which are unknowns intro-
duced by our approximation scheme. Differencing equation
(4.5) along the four bicharacteristics and subtracting, one
obtains

0B,\ At 0B,\ At
(Aro,1 — Ao, 3)( or )0 5 + (40,1 — 4z0, 3)< %z )0 5

At
= —(B,; — B,3) + 5 Y, —-Y), (59
and
0B,\ At 0B,\ At
(40,2 — Aro,4)<‘5;>o St (Azo,2 — Azo,4)<3z‘>o 5
At

where

u, B ov ou
=2nZm  p [} _ hdad
n=tln(3) -nlZ),
0B, 0B,
— A,,,( p» >n - A,,,( . )" . (5.1
Solving equations (5.9) and (5.10), one obtains
0B,\ At At
< %z >0 5= {Ar0,2|:_(Br1 — B3) + 5 (Y, — Ys)]

A
- A,o,l[—(B,z ~B)+5 (%- n)]} /

2[Ar0,2 Az0,1 — Az0,24r01] - (5.12)

Similarly, differencing equation (4.6) along the four
bicharacteristics and subtracting, one obtains

0B,\ At 0B.\ At
(ArO,l r0 3)( ar >0 (Azo 1 zO 3)( 62) 2

At
= —(B;; — B;3) + 5 X, —X3), (513
and
0B,\ At 0B,\ At
(40,2 — 40 4)( ar >0 = + (40,2 — 40 4)( %z >0 5
At
= —(B;; — B,y + 5 X2 —X4), (514)
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where

Uy Bey _ (00 ou
x,=ep (%) 15 (%)

0B, 0B,
- A,,,(F)' - Az,,< 2 ),, . (5.15)

From equations (5.13) and (5.14), one obtains

A A
(63,) & {Azo.l[_(BzZ —B,)+ —it- X, — X4)]

or /o 2
At
- Azo,z[_(le — B3+ 5 X, — Xs)]}/

2[4,0,2 Az0,1 — Az0,2 4011 - (5.16)

Combining equations (5.12) and (5.16), we have
(63, 0B,\ | At
0z /o ar Jo] 2

= {ArO,ZI:_(Brl — B,3) + % (Y, — Ya)]

At
- ArO,l[_(BrZ —B,)+ B} (v, — Y4):|

At
+ AzO.Z[_(le - Bz3) + 7 (Xl - X3)]

- Azo,l[—(Bzz —B,)+ % (X, — X4)]}/

2[Ar0,2 AzO,l - AzO,Z ArO,l] . (5'17)

Substituting equation (5.17) into equations (5.7) and (5.8), u,
and v, can be solved for by numerical iteration.

With the same numerical approximations, the finite differ-
ence form of equation (4.10) can be written along the four
bicharacteristics as

At

B'r"; BrO + B'.{nBzO + UnuO + I/nvO - R{ = -G{)‘,n 7 s (5'18)
where

U,= —(B.opo + Bunpi)/2, (5.19)

Vo= (Byopo + Bmpi)/2, (520

GJ

B, + B, 2 \(9B. B, + B, 2
< 4n — Pn Azn)( oz )n - < 4n — Pn Arn
B, p () _p (2
(7 ) ¥ B’"(@z)n 53,
B\ (0B,
— Pn Azn Arn[(E_)" - < oz )n:l

n Un
+ pr (Aanm - Arn an) » (521)
;= pf s s At
Rn = BrnBrn + anan + Un u, + ann - Gn ey (522)

2 >
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and

B2, + B: 0B
f —(=2r0 T 720 2 r
GO,n = ( 4n Po AzO.n)( oz )0
B2, + B2, , \[(9B, op
- < 4n - pOArO,n or o + BrO oz o
ap 0B, 0B,
- B’°(ar>o o AA[( ), ( oz )]

Pol
(:_ 0 (AzO,n BrO - ArO,n BzO) .
0

+

(5.23)

From the four equations (5.18), corresponding to n =1, 2, 3,
and 4, one obtains

(Bf, — BL3)B, + (Bf; — B{3)B,o = (R{ — R§) — (U, — U3)u,

At
— (Vi — V3)oo — (66,1 - G{),s) 7 , (5.24)

and
(Bf, — BL)B,o + (B, — B{)B,o = (R{ — R}) — (Uy — Uy)u,

A
= (V2 = Voo — (Gg.z - G{;A) Et .
From equations (5.24) and (5.25) with u, and v, given by equa-
tions (5.7) and (5.8), B,, and B, can be solved for by numerical
iteration.
In similar fashion, the finite difference form of equation
(4.11) is written as

ou ov ug | At
. ashad hidt 2o (=
Po TS/{l * y[( 6r>0 * <52>0 * ro] 2 } ., 526)
u o u At
[ = _ 2l { = - hid -
Ts=ps=s 5“5[<ar>5 " <az>s i (r)] 2

Subscript “5” indicates that the quantities are those at the
point P, corresponding to the intersection of the fluid line and
the old time surface (see Fig. 2).

In equation (5.26), (0u/dr), and (0v/0z), are two unknowns.
Differencing equation (4.3) along the four bicharacteristics, we
write

(5.25)

where

(5.27)

L () - Be () e () |4
po \Or)o 4mpo\ 0z /o 4mpo \ Or /o] 2

ou\ At ou\ At
= ArO,n(g’:)o ? + AzO,n(é;)o '2_ 5 (528)
where
1 [(op B 0B B 0B
7 =— (22} - Zm [ Dan (Y22
" pa r>,. 4rp, ( 0z > " 4np, < or >
ou ou
—Al=) —a.l=) . .
m< ar>,, Azn< az>,, (5.29)
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From the four equations (5.28) (for n =1, 2, 3, and 4), one
obtains

ou\ At ou\ At
2Ar0,1<5;>0 5 + 2AzO,1<5;> 5
0

At
= -y —uy))+—+(Z, - 2Z,),

> (5.30)
and
ou\ At ou\ At
24 - = - =
'0’2<6r>0 2t 2A’°'2<az>0 2
At
= —(u; —uy) + e} (Z,—2y). (53))
Solving equations (5.30) and (5.31), one obtains
ou\ At At
<_5r->0 5= {Azo,z[—(ul —u3) + 5 Zz, - Zs)J
At
- AzO,l[_(uZ —ug) + 5 z, - Z4)]}/
2(14r0,1‘420,2 - AzO,lAr0,2) . (5'32)
Similarly, differencing equation (4.4) along the four
bicharacteristics, we have
At
vo— U, + S, )
+ lii (@) + BrO (aBr _ BrO aBz E
Po\0z/)y 4mpy\ 0z ), 4mpy\ Or /o] 2
v\ At v\ At
=A -] = — ] = .
rO,n(ar>o 2 + AzO,n< z)o 2 ) (5 33)

where

o _L(®) , B (B B, (o5,
" p,\0z), 4np,\0z), 4mp,\ or),

ov ov
- A"’(E),, - A’”(a?),, . (5.34)

From the four equations (5.33) (for n =1, 2, 3, and 4), one
obtains

ov\ At ov\ At
2Aro,1<5)o -t 2AzO,1<E) 5
0

At
= —(vyy —v3) + > (S, —S3), (539)
and
v\ At v\ At
24 — ] = —] =
'0’2(0r>0 2t 2A’°'2(az>0 2
At
= —(v; —vy) + 5 (S2 —S4). (536)
Solving equations (5.35) and (5.36), one obtains
v\ At At
<-6—z)0 3= {Aro,ll:_(UZ —vy) + 5 S, — 54)]
At
- ArO,z[_(vl —v3) + 5 (e Ss)]}/
2("41-0,1"420,2 - AzO,lArO,Z) . (537)

Vol. 315

The quantity p, is then obtained by substituting equations
(5.32) and (5.37) into equation (5.26).
From equation (4.8) along the fluid line, the density is given

by
1fy
Po = Ps('pI) .
Ds

In summary, we use equations (5.7), (5.8), (5.17), (5.24), (5.26),
(5.32), (5.37), and (5.38) to solve for uy, vy, B,o, B.o, Po, and p,
in terms of the variables at points P,, corresponding to n = 1,
2, 3, 4, and 5, by numerical iteration. The expressions relating
the coordinates of P, to those at P, are obtained from equa-
tions (3.13), (3.14), (3.17), and (3.18) for the bicharacteristics and
the fluid path. In finite difference form, we write

(5.38)

At
r, =Ty — 7 (uO +u, + ArO,n + Am) s (539)

and
At
Zy, =1Zo— 7 (vO +v, + AzO,n + Azn) s (540)

where n =1, 2, 3, and 4 for the bicharacteristics on the fast
cone and

At
r5 - ro - 7 (uo + us) (5.41)
and
At
Zs =29 — ? (vo + vs) (5.42)

for the fluid path. At present, we neglect the winding of the
bicharacteristics along the fast cone due to the flows. In the
MHD case, the Courant time step is defined by the grid size
divided by C (6 = m/2) according to equation (3.1).

The numerical iteration procedure to solve for the physical
variables at point P(i, j) is as follows (see Fig. 2). We first use
the initial data at the grid point P(i, j) to find rough estimates
of the positions r, and z, (n = 1, 2, 3, 4, and 5) by equations
(5.39)(5.42) without arithmetic averages. With a two-
dimensional cubic spline interpolation in space (Stefanik et al.
1984), the physical variables and their derivatives are inter-
polated at the points P, from the known data at the grid points
P(i, j). Using equations (5.7), (5.8), (5.17), (5.24)~(5.26), (5.32),
(5.37), and (5.38), the new physical variables uy, vy, B,g, B0, Do,
and p, are then computed for the point Py(i, j). We then con-
tinue this iteration until the results converge.

In general, we do not have theoretical guidance as to the
convergence of the numerical iteration scheme for nonlinear
equations such as those discussed here. The problem is that the
domain of convergence in the function space defined by the
dependent variables is highly sensitive to both the initial esti-
mates of the dependent variables and the numerical iteration
scheme, and that the domains of convergence vary at different
points due to the nonlinearity of the equations. We do know
that reducing the time step will, in general, increase the
domains of convergence, and that by linearizing the nonlinear
equations, we may in principle use the Von Neumann condi-
tion (Richtmyer 1957; Shin and Kot 1978) to find the
maximum time step for convergence for a given grid size.
However, because we use a complicated cubic spline inter-
polation scheme at each iterative step, such an explicit analyti-
cal analysis is formidable even in linear regime, and we have
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instead checked for convergence by considering the numerical
results themselves. For our test examples, the numerical iter-
ation scheme described above in fact converges well, and
highly accurate results are obtained for the given time step,
spatial grid size, and the physical parameters; for example, we
typically converged within 3-4 cycles for the magnetized
expanding ball problem discussed below.

VL. THE TREATMENT OF BOUNDARY CONDITIONS

The calculation of the physical variables at the interior
points can be carried out by using the equations prescribed in
§ V. In this section, we focus on the treatment of axial and
boundary points because the treatment of the boundary points
depends on the specific boundary conditions. The following
treatment of the boundary points is pertinent to the problem of
the standing MHD waves described in §§ VIIa, c; the problem
of the nonlinear, self-similar expansion of a magnetized plasma
ball described in § VIIb has no physical boundary. :

a) The Axial Points

Our coordinate system is chosen such that the background
magnetic field B, is parallel to the axis of symmetry. On the
axis of symmetry, bicharacteristic number 2 is missing (see
Fig. 3). Two physical variables are known from the geometric
symmetry condition,

u=0, 6.1)
and
B,=0; 6.2)

that is, the magnetic field B is always parallel to the axis of
symmetry. With the conditions (6.1) and (6.2) on the axis, it

TWO-DIMENSIONAL UNSTEADY MHD
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follows that
du
P 0, (6.3)
and
0B,
ik 0. (6.4)
On the axis, equation (2.6) reduces to
0 B?
5;(p+§>—0, (6.5)

and u/r reduces to ou/dr. Along the fluid line, the density is

given by
1/y
p
Po = P5<_0> . (6.6)
Ds
From equation (5.7), one obtains
Vo = (T{ - Tg)/(B{I - Brfa > 6.7

where we have used the fact that the cross product of the group
velocity in the direction of the magnetic field and the magnetic
field is equal to zero.

With n =4 in equation (5.28) and using equations (6.1),
(6.3)(6.5), one obtains

ou\ At At
(E>o 5= ("“4 + 5 Z4>/Ar0,4 s

(6.8)

cylinder
wall

FIG. 3—Geometry of the fast cones at the boundaries and at the corner points
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and with 4,4 ; = 0, equation (5.35) gives

0 A A
(52‘)0 jt = [ —(v, —v3) + —Z—t (S, — s_,,)] / 24,0, . (6.9)

We then substitute equations (6.8) and (6.9) into equation (5.26)
and use u,/ro = (0u/0r), to solve for the pressure p,. Along the
fluid line, equation (2.11) is

. (g2, %)

Dt " 8r o (610

Using u/r = 0u/0r and the fact that the fluid path remains on
the axis of symmetry, the finite difference form of equation
(6.10) can be written as

9 9
B, = 3,5[1 - (a—'r‘>5 At]/[l + (;) At] . (6.11)

In summary, equations (6.7)6.9), (5.26), and (6.11) are used to
solve for vy, B,4, po, and p, on the axis by numerical iteration.

b) The Points on the Wall
With rigid boundary conditions on the wall of the cylinder,
the boundary treatment is similar to that for points on the axis
except (i) u/ro =0, and (ii) the bicharacteristic number 4 is
missing (see Fig. 3). Thus equation (6.8) is modified by setting
n = 2 in equation (5.28),

ou\ At At
(3),5 (5 2) a0,

and using the fact that the fluid path remains on the wall, we
have from equation (6.10)

ou\ At ou\ At
&f&¥“@lﬂﬁ”6%il“”

In summary, equations (5.26), (6.6), (6.7), (6.9), (6.12), and (6.13)
are used to solve for vy, B, Py, and p, on the wall by numeri-
cal iteration.

(6.12)

¢) The Points on the Top

With the boundary conditions on the top of the cylinder
z = L described in § VIIa, we have the rigid wall condition

v=0, (6.14)

and the condition

B,=0. (6.15)
From the boundary conditions (6.14) and (6.15), it follows that

v

—= 6.16

~-0, (6.16)
and

%8, =0. (6.17)

or

From the divergence-free condition of the magnetic field, we
must require

Z=_

— (6.18)

Vol. 315

at the top of the cylinder. At the top, equation (2.7) reduces to
9P _
oz

Since the bicharacteristic number 3 is missing (see Fig. 3), we
set n = 1 in equation (5.33) and obtain

v\ At At
(52), 5= (e 3) s

Since A4,,,, = 0 at the top, equation (5.31) reduces to

0 A A
(;)O t [ —(uy — uy) + 7: 2, - z4)] / 24,0, . (6.21)

Along the fluid line, the density is given by

1/y
P0>

Po = Ps\ — .
0 5(1’5

Substituting equations (6.20) and (6.21) into equation (5.26), the
pressure is given by

_ M) () 4 He|At
Po= Tg/{l * y[(ar)o * <62>o * "o:l 2 } - 623

At the top, differencing equation (6.10), we have

(6.19)

(6.20)

(6.22)

_ us B, s _ ov At
pa= {2 0.(3) +2.(5) ] 3}/
oL o
From equation (2.10) at the top, we have
du
P (6.25)

since B, # 0. By choosing n = 1, the finite difference form of
equation (4.5) gives

0B,\ At At
(), 5o n ) o

where Y; is defined by equation (5.11). Since A4,,, =0 and
A,o.4 = 0 on the top, equation (5.14) reduces to

0B\ A A
(ar ) 3= [—(3,2 — Bu)+ (X2 = X,) 7‘]/

(Ao, — A 6.27)
Substituting equations (6.26) and (6.27) into equation (5.8), we

have
Ar0.2 Bro [(aB,> (aB,) ]g} /
T oz )y \or /o] 2
[—(Bf, — BL)]. (6.28)

In summary, equations (6.20)(6.24) and (6.26)6.28) are used
to solve for pg, py, B,o, and u, by numerical iteration.

(6.26)

r0,4) .

d) The Points at the Bottom

With the boundary conditions at the bottom of the cylinder
z = 0 described in § VIIa, the treatment is similar to that on
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the top, except equation (6.20) is modified to read

ov\ At At
(E)o 7 = (—1)3 + S3 7)/A20,3 > (6.29)
and equation (6.26) is modified to read
0B,\ At At
<az )0 7 = (_Br3 + Y3 7)/1420,3 (6.30)

by using the bicharacteristic number 3. Then equations (6.21)-
(6.24) and (6.27)6.30) are used to solve for p,, po, B,o, and u,
by numerical iteration.

e) Points at Corners

The coordinates of the four corner points are (I) (r =0,
z=L); ) (r=0, z=0); () (r=ro, z=L); (IV) (r =r,,
z=0).

For corner point (I), the bicharacteristics number 2 and 3 are
missing (see Fig. 3). We know from the rigid wall condition
that

v=0, (6.31)
and from the geometric symmetry condition that
u=0, (6.32)
and
B,=0. (6.33)
It then follows that
du
P 0, (6.34)
0B,
e 0, (6.35)
ov
= 0, (6.36)
0B,
pole 0, (6.37)

where the last condition (6.37) is derived from the condition
B, = 0 on the top of the cylinder. Now u/r should be replaced
by 0u/or. From equation (2.6), we have

0 B?
5<p+g)—0.

From equation (2.7), we have

(6.38)

op
= =0.

(6.39)
From the divergence-free condition, we have
0B,
oz
Along the fluid line, the density is given by

1/y
Po
p - p <_> '
0 5 Ps

With n =4 in equation (5.28) and n =1 in equation (5.33),

0. (6.40)

(6.41)
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respectively, we have

ou\ At At
(3),5 = (- ze3) e
ov\ At At
(3), 5= (-0 5) s

Substituting equations (6.42) and (6.43) into equation (5.26), we

have
ou ov At
- Tf o it 2
o= miffe45),+ (2), )51

Thus, with equations (6.11) and (6.41)6.44), B,,, po, and p,
are solved for by numerical iteration.

Similarly, for corner point (II), the bicharacteristics number
1 and 2 are missing (see Fig. 3). With n = 3 in equation (5.33),

we have
v\ At At
(3),5 - (-o+5:5) 0s-

Thus, from equations (6.11), (6.41), (6.42), (6.44), and (6.45), B,,,
Po, and p, are solved for by numerical iteration.

For corner point (III), the bicharacteristics number 3 and 4
are missing (see Fig. 3). Now (u/r), = 0. With n = 2 in equation
(5.28), we have

(6.42)
and

(6.43)

(6.44)

(6.45)

ou\ At At
(5)0 7 = <—u2 + Zz -2->/A,.0,2 . (6.46)
Equation (5.26) reduces to
ou ou At
=T = o)1=
=riffi(5),+ ()15} oo

Thus from equations (6.13), (6.41), (6.43), (6.46), and (6.47), B,,,
Do, and p, are solved for by numerical iteration.

Similarly, for corner point (IV), the bicharacteristics number
1 and 4 are missing (see Fig. 3). Thus from equations (6.13),
(6.41), and (6.45)16.47), B,y, Po, and p, are solved for by
numerical iteration.

The accuracy of the results at the axis and boundary are
compatible with that at the interior points.

VII. TEST CALCULATIONS AND NONLINEAR SIMULATIONS

The aim of our MHD code is to solve, for given initial data
and boundary conditions, nonlinear two-dimensional wave
propagation problems numerically. However, to test the valid-
ity of the code, we must compare the results of numerical
calculations with those of known analytic solutions. Here we
consider (a) linearized standing MHD wave motions in a mag-
netized cylindrical plasma; (b) nonlinear, self-similar expansion
of a magnetized plasma ball; and (c) nonlinear evolution of
large-amplitude standing MHD wave solutions.

a) Linearized, Standing MHD W ave Motions in a Magnetized
Cylindrical Plasma

Consider a cylinder containing a magnetized plasma in a
cylindrical coordinate system, with the z-axis the axis of the
cylinder. In equilibrium, the constant background magnetic
field B, is parallel to the axis of the cylinder. Small pertur-
bations with b, = 0 and v, = 0 are superposed on the back-

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1987ApJ...315..349L&amp;db_key=AST

T T C315. 234910

IBTAD.

rt

360 LOU, ROSNER, AND ULMSCHNEIDER

ground equilibrium. The boundary conditions are the
following:
i) The normal perturbing velocities on the top, at the
bottom, and on the side wall of the cylinder vanish;
ii) The normal perturbing magnetic fields on the side wall
vanish;
iii) The tangential perturbing magnetic fields on the top
and at the bottom of the cylinder vanish.
We have adopted condition (iii) because the corresponding
eigenfunctions are of relatively simple form.

From the linearized MHD equations, with appropriate com-
binations (Lighthill 1960), it is straightforward to obtain the
following propagating wave solutions for the axisymmetric
case:

iot+ikz

4 (c? + a¥)w? — c2k?)

v, = (@ — k) mJo(mr)e (7.1)
c? I
v, = —idk s Jo(mr)ei@r iz (7.2)
c? S
p=Ai o PoJo(mr)e’ ik (7.3)
p= AT J iz, (7.4)
A (c? + a¥)(w? — 2 k?) S
b = — =B,k ’ iot+ikz 75
r w ° m oH0? — a?k?) o(mr)e , (1.5
B 2k2? I
b,=iA EO ( 1— %)T)Jo(mr)e“‘"*"‘z , (7.6)
with the dispersion relation
w* — (@% + cA)m? + kKHw? + a’c2k*(m? + k*) =0 (7.7)
(Roberts and Webb 1978 ; Wilson 1979), where
2 =P (1.8)
Po
BZ
2=—2 7.9
rt (19)
2.2
o2 7.10
TTET D (-1

(note the different notation used here for the sound speed and
the Alfvén speed), Jy(mr) is the zeroth-order Bessel function of
the first kind, Ju(r) = dJo(r)/dr, A is a constant specifying the
amplitude of the wave, and y is the ratio of specific heats. The
quantities with subscript zero are those of equilibrium; quan-
tities without subscript zero are those related to the pertur-
bations. An important property of dispersion relation (7.7) is
that there always exist two positive roots for w?.
We consider standing wave solutions in a cylinder of height
L and radius r satisfying the boundary conditions (i), (ii), and
(iii). In mathematical form, the boundary conditions (i), (ii), and
(iii) are expressed as follows:
i) v,=0whenz=0andz=L;v, =0whenr =r,.
ii) b, =0whenr =ry;
iii) b, =0whenz=0andz = L.
A standing wave solution satisfying the boundary conditions

Vol. 315

(i), (ii), and (iii) is thus given by
b= M(w? — c%k?)

, Jy(mr) sin (ot) cos (kz),  (7.11)
cmk
v, = McJo(mr) sin (wt) sin (kz) , (7.12)
_Mp z @ Jomr) cos (i) cos (kz) , (7.13)
= Mf]? 27 o(mr) cos (wt) cos (kz) , (7.14)
2 212
p, = MBoJutmrleo” = k) oy sin k2, (1.15)
mcw
2 212
b, = MBo J°(mc’£(;)’ KD cos (@t) cos (kz), (7.16)

where J,(r) is the Bessel functions of first order. In equations
(7.11)H7.16), k = In/L and m = B,/r,, where [ is an integer and
B.(n=1,2,..)are zeros of J,(r).

To illustrate the results of the test calculation for standing
wave solutions of equations (7.11)~(7.16), we choose param-
eters as follows: ro=10"cm, L=10"cm, I=1, B, =
3.8317059702, p, = 10* dyne cm~2, B, = 103 gauss, p, =
1077 gem ™3, M = 1079, and y = 5/3. For this set of param-
eters, dispersion relation (7.7) gives two characteristic periods
of wave motions; the longer period is 52.2 s, and the shorter
period is 13.3 s, corresponding to the slow and fast mode,
respectively. Since the physical system is axisymmetric, the cal-
culation is carried out over a spatial region 0 <r <r,,
0 < z < L, where the 20 x 20 grid points are equally spaced in
each dimension. The Courant time step ~0.5s. The calcu-
lation for the wave motion of shorter period (fast mode) is
carried out for three periods, with the computational time step
At ~ 0.155 x 0.5 s = 0.077 s. Similarly, the calculation for the
wave motion of longer period (slow mode) is carried out for
four periods, with the computational time step At =~ 0.082 s. In
addition, the code has been run for two other cases:

i) Mixing the fundamental modes of long and short
periods;

ii) Mixing modes of short period with different wave-
lengths along z: ky = n/L and k, = 2n/L.

The computational time step for these latter two calcu-
lations is also At ~ 0.077 s, with a vertical Mach number
M = 1075, The background physical variables are the same as
before.

Some examples of comparing simulation results with analy-
tic results are shown in Figures 4, 5 and 6. The principal con-
clusions are the following:

1. The time step necessary for convergent results is approx-
imately one-sixth that of the Courant time step for the present
parameter regime.

2. In all cases, once a sufficiently small time step to achieve
convergence is chosen, we find agreement between the simula-
tion and the analytic results to at least two significant digits in
all physical variables.

b) The Nonlinear Self-Similar Expansion of a Magnetized Ball
The general nonlinear self-similar solution of the ideal MHD
equations with axisymmetry for y = 4/3 has been obtained by
Low (1982). Although the treatment of Low (1982) includes
gravitational stratification due to a point mass, the basic tech-
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B, = 10° gauss, p, =107 gem ™3, M = 1075, and y = 5/3.

nique to obtain self-similar solutions applies in the absence of
gravity. We are interested in the expansion of a magnetized
plasma ball whose toroidal magnetic field and gravity vanish.
The relevant MHD equations are given by equations (2.1)-
2.5).

In a spherical coordinate system (r, 6, ¢), we define a self-
similar radial variable

{=r/®, (7.17)

where @ is a function of time t. It is assumed that the flows
occurs only in the radial direction; i.e.,

v=u,r, 0, )P . (7.18)
Using the same reduction as in Low (1982), we obtain the

equation for &(t),
do\* n® — 2a
a) @

where n and « are two constants of integration. The radial
velocity, the gas pressure, the density, and the magnetic field

(7.19)

are given by
r dd
=—— 7.2

h=g T (720)
p=0*P(, 4), (7.21)
p=07°D({, A4), (7.22)

1 104, 04
=rsin0<;%r_ or é)’ (7.23)

where the functions P and D are quite arbitrary and the scalar
A is assumed to have the form

A=AC 0.

The 6-component of the momentum equation gives

P4 sin@ 0 [ 1 04 L, 0P, A)
wt e 60(sin069>+4m: sin 0 =5 =0-

(7.24)

(7.25)
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The r-component of the momentum equation gives

oP(, 4)
¢

To construct an exact self-similar solution for the given solu-
tion @ of equation (7.19), we first prescribe the function P({, 4)
and then solve equation (7.25) for A((, 6) subject to the appro-
priate boundary conditions. Thus the velocity, the gas pres-
sure, the density, and the magnetic field are obtained by using
equations (7.20)+7.23), and (7.26).

One particular self-similar solution is constructed as follows.
Assume P({, A)is of the form:

P A)=1(DA +4(0) . (7.27)

For D to be positive, we require g({) to be monotonically
decreasing. It is also required that dg({)/d{ = 0 at { = 0 so that
the gradient (in the direction perpendicular to the axis) of the
total pressure (gas plus magnetic) vanish on the axis of sym-
metry. Now equation (7.25) takes the form

0?4 sinf 0 1 04 5 2
e + 7 26 <sin 0 60) + 4nl? sin? 6f () =0. (7.28)

Furthermore, we assume A({, 6) is of the separable form
A, 6)=F()sin? 0. (7.29)

Equation (7.28) then reduces to an ordinary differential equa-
tion for F({):

+afD(, A)=0. (7.26)

d*F 2F 2
Fre +4nl* () =0. (7.30)
From equations (7.23) and (7.29), we must require
dF
F(¢,) = — =0 7.31
(o) a0 oo (7.31)

for B=0 at { = {,. On the other hand, geometric consider-
ation requires B, to be finite at r = 0, so that

F0)=0. (7.32)

Now we have freedom to choose F({) (satisfying conditions
[7.31] and [7.32]) and g({) so that the pressure and the density
are positive quantities.

For our test calculations, we choose

F() = Fo (% - a®)?, (7.33)

F2
o0 =~ a@ — 1), (134

where F, and a are positive constants. Thus for { < a, from
equations (7.26), (7.27) and (7.29)(7.32), we obtain
r do

s (1.35)

v, =

2
p= o4 % [(5a2 _ 7szcz _ a2)2c2 sin? 0 + (16((12 — Cz)] »

(7.36)

-3 2F(z) 2(72 2\2 oin2 6
p=0 —a-;t—[7C(C — a*)?sin? 0 + a°], (7.37)
B, = ®~22F, cos 8({® — a?)?, (7.38)
By = —® 22F sin 8((* — a®)(3(* — a?) . (7.39)

© American Astronomical Society

In a cylindrical coordinate system (r, ¢, z), the equivalent
form of solutions (7.35)+7.39) is

B You HV7)
g, = (I)‘l[——-n(bq) 207, (7.40)
o — 11/2
v, = qu[’l—d—)ﬁ_ z, (71.41)
F2 2 VAN | ) 2 2
P=(I)‘47°{|:5a2—7(z q;r) @ d;r)—aZ]
2 2 2
x-(;?+ 6[ 2 _EHr )]} (7.42)
2F2 2 2+ 2 2
p=0"3 » 2 {7 % I:(Z q)zr )_ a{l + aé} » (743)
4F (2 +7?
B, = <T40 I:az o , (7.44)
2F, [ (22 + r? (z2 +3r9)
B,=(ITZ°[ 22 )_ g2 o @ |- 049

By solving equation (7.19) for « > 0 and # > 0, we have

t—t0=%1/d)(11<l)—2a)+2—\;_10g(\/11_¢5+«/11@—20( ,
0/

(7.46)

where t, is the constant of integration (Low 1982). We require
that when ¢t = 0, then ® = 2a/n; hence, the constant of integra-
tion t, is

to = —Llog 20) .
nv/n

Equation (7.46) can be used to express ® as a function of ¢
numerically. The self-similar evolution of the magnetized
plasma ball is therefore determined by equations (7.40)7.46)
for given parameters a, 1, Fy, and a.

For the test calculation, we choose the parameters:
a=2x10""7s% n5n=4x10""s% F,=3x 107'8 gauss
cm~ % and a = 5 x 10* cm. The spatial domain of the calcu-
lation is 100 x 100 cm?. For the given set of parameters, the
variable @ is of order 1; from equations (7.39)+7.46), we esti-
mate that the flow velocity v ~ 30 cm s~ !, the gas pressure
p ~ 100 dyne cm ~2, the density p ~ 0.1 g cm ™3, and the mag-
netic field B ~ 30 gauss. We start the calculation at ¢ = 2000 s.
The actual time step is At = 0.05 s, and the number of time
steps is 50. The actual expansion is quite slow: the analytic
solution shows that the values of the physical variables differ
between adjacent time steps only for digits after the first five to
six significant digits. This calculation is therefore an exacting
test of numerical stability for our code.

The results of the calculation at each time step have 10-11
digit agreement with the analytic solution. We have explored
the different parts of the spatial domain of the physical system
by moving the computing domain: the accuracy of the calcu-
lation in different parts of the physical system is always compa-
rable.

In this test example, we do not have physical boundary
conditions (because we consider a similarity solution). The
physical variables at each time step on the computational
boundary are therefore calculated by using the analytic solu-

(7.47)
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tion. The purpose of this test calculation is thus only to show
that the numerical procedure using the method of character-
istics yields highly accurate and stable results for the interior
points of the computing domain.

¢) Nonlinear Evolution of Large-Amplitude Standing MHD
Waves

In text example a, we have tested the linear behavior of the
code for both fast and slow modes; in test example b, we have
tested the nonlinear behavior of the code for very short periods
of time with high spatial resolution. To further test the quality

LOU, ROSNER, AND ULMSCHNEIDER

of our code, we have simulated the evolution of standing MHD
waves (see test example a), but with large initial amplitudes. It
is natural to expect that the numerical results will deviate from
the scaled linearized standing MHD wave solutions (which are
plotted in the Figs. 7, 8, 9 as reference) as time goes on because
nonlinear effects will make their presence felt.

We have run the nonlinear simulations for several cases with
the same background physical parameters as provided in test
example a. In all the following cases, the periods refer to those
for the linearized standing wave solutions.

1. Slow mode calculation for four periods, with M = 107!
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TWO-DIMENSIONAL UNSTEADY MHD 369

and k = n/L; ie., the initial perturbation is physically asym-
metric about the center of the cylinder in the longitudinal
sense; the computational time step is At = 0.079 s.

2. Fast mode calculation for four periods, with M = 107!
and k = n/L; the computational time step is At =~ 0.067 s.

3. Fast mode calculation for four periods, with M = 10!
and k = 2rn/L; ie., the initial perturbation is physically sym-
metric about the center of the cylinder in the longitudinal
sense; the computational time step is At = 0.067 s.

For all calculations, stably convergent results are obtained.
It is shown by the nonlinear simulations that initially sym-
metric perturbations retain their symmetry in time. By grad-
ually changing the initial amplitudes, we have traced out the
form of the deviations from linear behavior as nonlinear effects
come into play; as we will show below, our results agree with
order-of-magnitude estimates of the nonlinear effects and indi-
cate correct qualitative behavior. In addition, we have carefully
examined the conservation of energy, mass, and magnetic flux,
and find that the conservation laws are satisfied to the accu-
racy of the numerical differencing scheme.

In order to set the stage for analysis of the nonlinear calcu-
lation, we first focus on the linear results. In Fig. 4, we show a
two-dimensional standing flow pattern for a fast mode in the
linearized regime at a fixed time. For this specific example, the
flow pattern oscillates at period 13.3 s; when the flow speed
diminishes, the associated kinetic energy is transformed into
compressional and magnetic energies, and vice versa. It is
worth noting that for the fast mode, the gradients of gas pres-
sure and of magnetic pressure are roughly in the same direc-
tion, whereas for the slow mode, the two gradients point in the
approximately opposite direction. The general small-
amplitude flow pattern is, of course, a superposition of all
possible (linear) eigenmodes.

In Figure 5, we illustrate the extent of agreement between
the computational results and the analytical solution for a fast
mode in the linear regime near the symmetry axis. It is evident
that the code behaves very well in the linear domain for the fast
mode—which is a minimal necessary condition for a good
code.

In Figure 6, we similarly compare the computational results
and the analytical solution for a slow mode in the linear
regime, at a location roughly halfway between the symmetry
axis and the wall. The excellent linear behavior of the nonlin-
ear code for the slow mode should not be surprising—we have
already explained the reason for using the fast cone alone in
detail in § II; these numerical results substantiate this theoreti-
cal argument.

In Figure 7, we compare the computational results and the
analytical solution for the fast mode at a radius roughly
halfway between the symmetry axis and the wall for various
values of the initial perturbation amplitude. The perturbation
in this case is reflectionally symmetric (in z) about the center of
the cylinder. We only plot the z-component velocity for com-
parison; all other physical variables do not sensibly deviate
from the analytic solution after the first integration time step.

The first point to note is that there is significant disagree-
ment between the analytic and computational results for large
initial perturbation amplitudes (Fig. 7a), but that as the initial
amplitude is reduced (Figs. 7a, 7b), the disagreement gradually
disappears. Since the computational results are smooth and
show the proper symmetry, we may fairly ask whether the
discrepancies of large initial amplitudes are physically correct
and reflect the action of nonlinearities. Let us then consider the

z-component momentum equation (2.7) term by term at the
first computed time step for the case shown in Figure 7a. Since
we start the initial perturbation with zero velocity, the second
and the third terms in equation (2.7) are not important, the
fourth linear term (1/p)(dp/0z) ~ 9000, the fifth nonlinear term
(B,/4np)(0B,/0z) ~ 20,000, and the sixth nonlinear term
(B,/4mp)(0B,/or) ~ 4000. From these estimates, it is obvious
that large nonlinear effects are to be expected. From equation
(7.15) at small t, we see that the nonlinear term (B,/4np)(0B,/0z)
should dominantly determine the functional form of v,; indeed
the computational result shown in Figure 7a indicates a nodal
structure identical to this dominant driving term, as expected.
Actually this very case shows how a nonlinear equation gener-
ates higher harmonics. The consistency of this description can
be tested by reducing the initial amplitude by a factor of 10, as
in Figure 7b; the single linear term in equation (2.7) is then
reduced by the same factor, but all the nonlinear terms are
reduced by a factor of 100. Thus, we see immediately that the
linear term ought to dominate, and in fact the discrepancy
between the linear analytic solution and the computed result is
sharply reduced, an effect which becomes more pronounced as
the initial amplitude is reduced yet further. Why do the other
physical variables not show similar nonlinear effects after the
first integration time step even when the initial amplitude is
large? When one examines equations (2.6), (2.8), (2.10), (2.11),
and (2.13) carefully, the answer is simply that in the evolution
equations for all variables other than the z-component veloc-
ity, there always exist linear terms which dominate the nonlin-
ear terms for the entire range of initial perturbation amplitudes
shown in Figure 7.

In order to illustrate further the nonlinear evolution of these
standing waves, we show the evolution for a MHD slow mode
of the gas pressure perturbation in Figure 8. For reference, we
also plot the corresponding analytic solution scaled to the
appropriate (large) amplitude; keep in mind that this is done
only to highlight the nature of the nonlinear wave evolution,
and that the actual solution lies well in the nonlinear domain.
We find that the nonlinear calculation is quite stable as we
observe the gradual steepening of the perturbation as the
system oscillates back and forth. The way of steepening is
exactly as one would expect as the sound speed increases
locally with increasing pressure. At times ¢t = 180.07 s and
t = 205.62 s, we see ripples which we believe are the result of
back reflections due to the steepening. Since we have not
implemented shock treatment in the present code, we stopped
the calculation at the indicated time.

In Figure 9, we show the nonlinear evolution for a MHD
fast mode of the gas pressure perturbation. Again, the nonlin-
ear numerical calculation is stable. The results are physically
symmetric about the center of the cylinder, consistent with the
initial perturbations and the expected nonlinear evolution. We
again see the clear effects of generation of higher harmonics
and the resulting wave steepening. We have examined the con-
servation of energy, mass, and magnetic flux, and we find these
conserved to three significant digit accuracy (consistent with
expectations based on the accuracy of the differencing scheme
and with our experience with the linear calculations).

VII. DISCUSSION AND SUMMARY

We have developed a two-dimensional MHD computa-
tional code using the method of characteristics and have
shown that it is highly accurate and stable. Its present capabil-
ities are demonstrated by solving two very different problems
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for which analytical solutions exist, and by considering nonlin-
ear simulations of large-amplitude standing MHD waves.
Aside from coding complexity, the most difficult problem
encountered is the numerical treatment of the boundary points
for various physical boundary conditions; nevertheless, it is
straightforward to carry out modifications of the treatment at
the boundary, although, in general, the accuracy at the bound-
ary is always slightly less than that for interior points. This is
because the cubic spline interpolation scheme requires the
normal derivatives of the physical variables at the boundary:
for certain boundary conditions, the normal derivatives at the
boundary are given, but for other boundary conditions, the
normal derivatives at the boundary are not; in the latter case,
we have to use the ratio of the finite differences to approximate
the normal derivatives at the boundary. The error introduced
by this procedure turns out to be relatively unimportant in the
interior.

An important feature of the present scheme is that as long as
the interpolation is given for all the grid points, the numerical

iterations for solving for the physical variables at each grid
point are entirely independent of each other. Thus, for super-
computers based on massively parallel architectures, the total
computational time can be dramatically reduced.
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