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Abstract. We compute the propagation of adiabatic magnetohydrodynamic
waves along thin flux tubes in the solar atmosphere. The time-dependent
development and amplitude growth of the waves, excited at the foot of
the photosphere as pure transverse waves, was followed into the low
chromosphere. Strong mode—coupling to lonﬁitudinal waves was found. The
swaying of the tube which increases with height resulted in a lifting of
the entire tube mass which we attribute to centrifugal forces. This
lifting resulted in adiabatic cooling of the tube.

1. Introduction

As discussed by Spruit (1982) thin magnetic flux tubes allow three types
of tube wave modes: longitudinal, transverse and torsional waves.
Despite the fact that these waves are probably all excited very
efficiently it is interesting to investigate their non-linear coupling
especially as this may have great importance for both chromospheric and
coronal heating (c.f. Ulmschneider 1 873. Hollweg et al. (1982) have
computed the time-development of coupled longitudinal and torsional
waves. They showed that from a purely torsional excitation longitudinal
waves of considerable energy developed. In_ the present pa?er we want to
report similar time-dependent work on coupled longitudinal and
transverse waves.

2. Method

Following Spruit_(1981) we assume a vertically oriented thin magnetic
flux tube (c.f. Fig. 1) in which a mass element of width da at time t=0
can be uniquely identified by the Lagrange height, a, measured in the
outward direction from the level where the continuum optical deE;h
outside the tube is one. At a=0 the tube has a diameter of 100 and a
magnetic field strength of B, =1500 G (c.f. Tab. 1). The tube is assumed

t=0 :
Fig. 1 Flux tube gedmetry

to spread with height almost exponentially in pressure balance in an
external unmagnetized radiative equilibrium atmosphere similarly as
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discussed by Herbold et al. (1985). At some later time t (cf. Fig. 1)
the tube is assumed to have kinks and the cross- sectional area A may be
changed. The mass element has now the width dl and is displaced to a

a d, By Pe Po T Pe c

G |Om) () (23] (23] 0[] [ ] E?% [ 5 [ | [ ]
0 |100 1500 1.4(5) 4.7(4) 6049 3.6(- 7) 1.2(- 7) 8.0 12.2 6.7 6.
832 |637 3T 8.3(1) 2.8(1) 4705 2.8(-10) 9.4(-11) 7 0.7 5.9 5.4

Tab.1l. Diameter do' magnetic field strength Bo' external Pe and
internal gas pressure p,, temperature T, external P and internal
density p,. soundspeed c, Alfvenspeed c,, tube speed cr. and speed
cg as function of the (Lagrange} height a in the initial tube model.

position described by the arc length 1{(a,t). The unit vector in
direction 1 is defined by:

= - - . 2 .52 1 2 _
T= @) =L, - eyl W 12412402200 @)
and 1, defined below. A curvature vector is defined by
= [al] - 1 [51] L1 5
1), = T, |3l (2)

The position of the mass element may also be described by the radius
vector T from an Eulerian coordinate system (cf. Fig. 1). The magnetic

field is assumed to be exclusively in the l direction. The conservation
of mass requires

p(a.t) A(a.t) dl = p,(a) A (a) da . (3)
where is the densit and the subscript o denotes values at time t=0,
Eq. (3) defines a scale factor

—_ pG AG
= B - . (4)
We first consider Eulers egquation:
p[gl + v-w] = -yp - %?Hx{vxﬁ) + pg . (5)
For the transverse component of this Eq. one has (Spruit 1981}):
p[{%%]a— [1. [g%']a}] - —[1xv(p+§1~;)]xl + Ry p(b@)yd . (6)

As the transverse wave moves also mass outside the tube we replace p in
the inertia term by p+pe Using p+BQ/81 = p(z) one finds

pey” 4 a'i] PmPe
[t]a' [ [3:] ] = Preg Ta[EE o PP (el ) . (7)
with ey = AlfVenspeed For the long:tud:nal component one has:

(8 - L ]

We now con51der the induction and continuity equations:

B _ ox(¥xB) = F(v-B) + (B-9)7 - B(v-¥) - (F-7)B . (9)

T
%+ (Fov)p+ p(v?) =0 . (10)
Using these Egs. we find for the transverse component:
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a1 1 [(3 a a¥] 1%

g -- £, (-6 - (11)
and for the lgngitudinal component:

-3 0 106, :
[a?a b 58] * Tl (&), (12)

From the time derivative of BZ/8m = P~ P we have

Pj';f_ [g%}; g_t. (Po- p)Ja = v, gz_e = [glg]a . and with Eq. (12):

- ol

Eliminati p and p in favour of the sound speed c and the entropy S we
now have the following 5 equations, Eulers equation:

- 2
(e [ﬁ]; -}-a[%-[gg]t- C—Tﬁ[gg]t] +gl =0 (14)
a«‘;’] L o Cf[a’i] P=Pe 2, 1% -0 15
+ EHF i [é;qa_ p+p, L 0a)," P+ pg (g + gl,l) = = (15)
Induction and continuity equations:
T 2 v d
1 .[8 2 1 (8 3s p
I Ta_‘[a%t*'r—«cfc—z [E‘%J ‘#L—cz*"f][a?] - %5 g =0. (16)
i 3 a A POy
a7 _ <. [69) _ , (31) _ _
D LB

where cp = [c2c§ £ [+ ci))lfz is the tube speed.
Entropy conservation equation:

[as] _ds
ET'a dt rad

Going over to characteristic form these equations read:

(18)

a 2 c v_cr dp
1+d7 + »2r S-de 7 HE-dS 7 F—%“{—l S ¢ 2L e g ]dt = 0,(19
= ¥eler Tscy T Yae rad pcy % % (=)
+ - . de . . =T
along the Co™ characteristics given by g =+ 1~ . (20)
a
where Eqs. (19), (20) are those of Herbold et al. (1985) for 1= 1, and
2 - P~ Pe
(1-13)dvy = Llydvy= 11 dv, ¥ epdly- w2 glylde =0 (21)
12 B " s . "
(1-19)dvy = Llydvy~ 1y1ydv, ¥ epdly- xS glylde =0 (22)
c
along the CT characteristics given by %%-: + TE-E + er/(p * Bz Té-(23)
a

3. Results

We have solved the timedependent equations described above for a case of
an adiabatic wave and purely transverse shaking at the bottom of the
tube assuming

Vg =~ Vg sin(2wt/P), Vig = 0, v =0, (24)
with VO:O.S km/s and transmitting boundary conditions at the top.

Transmission was achieved assuming V| = const along CE and Vig'Viy =
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const along CT. The wave period was taken to be P=45s. As this shaking

took place only in the x-direction the wave is confined to the x-z
plane.

Fi%A 2 shows a snapshot of the wave after 755 time stezj. Note that
the E ysical variables are shown here as function of the Lagrange height
a. The curve labeled x shows the horizontal position of the center of

r % T Vo ¥z Z=4
F7 {K) i L 2
{km) | [km] fle
rA[EmyEm
300 — =ang :/Jst ;j et
R=00E Tl R S e s — 120
- =2 1
L000 The
—20
G0 — = 80
o 3000 0 0 =— &0
— 40
100 b3 2000
| mey 20
_ -4 1000 — 0
—-20
0——-80 0 Sag

G 100 200 300 400 500 600 700 800
height a (km)

Fig. 2 Snapshot of the wave calculation at time t=1010.4 s,
r=tube radius, other symbols are explained in the text.

the flux tube. At 800 km hei%ht the tube center is displaced by 60 km in
the -x direction. This is about 10 percent of the tube diameter of 600
km at this height. The maxima and minima of the x curve corresponding to
dx/da=0 coincide nicely with the nodes of the horizontal velocity v,.

The amplitude of v, increases as a function of height due to flux
conservation. With the propagation speed cp roughly constant (Tab. 1)

the amplitude of Vv, ETows roughly like p_1/2. It is seen that Y has a

maximum of 4 km/s at 800 km height. At that height the x-curve has an
inflection point where the gas elements in_ the tube, due to the motion
of the wave in +z direction, are horizontally displaced with maximum
speed in +x direction.

Fig. 2 shows that in addition to the transverse wave a longitudinal
wave 1s generated where the vertical velocity v, due to mode coupling

shows a surprisingly large amplitude of 2 km/s, that is roughly one half
the amplitude of v_. Moreover it is seen in Fig. 2 that the longitudinal

wave has twice the frequency of the transverse wave. This is understood
if one decomposes the curvature force vector into vertical and
horizontal components. In one wavelength of the x-curve the z-component
of the curvature force vector changes sign four times while the
x—-component changes sign only two times.

Another surprising result of the present calculation is that the
entire mass of the tube appears to be lifted relative to the initial
position. Fig. 2 shows as function of height the distances z—-a which are
the height differences between the current (Eulerian) position of the
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gas elements and the (Lagrange) height (= the height at the start of the
computation). It is seen that the bottom of the tube is lifted by about
40 ., the top by about 90 km, while everywhere else the tube is lifted
by at least 28 km. The reason for this lifting appears to be the
increase of the horizontal motion with height. As the bottom of the tube
does not move much in the horizontal direction the large horizontal
motion of the higher tube regions generates centrifugaT forces, which,
alwags outwardly directed, lead to the lifting of the tube. The result
of this lifting is an adiabatic ccoling of the entire tube as can be

seen in Fig. 2 by comparing the current T and initial T0 temperatures.

4. Conclusions

We found that purely tranverse excitation of magnetic flux tubes will
lead to transverse waves with amplitudes strongly growing with height.
In addition due to strong mode coupling, longitudinal waves were
generated with amplitudes only a factor of two smaller than those of the
transverse waves. The wave period of the longitudinal wave was one half
that of the transverse wave. The horizontal swaying of the tube
increases strongly with height and resulted in centrifugal forces which
lead to a lifting and adiabatic cooling of the entire gas column in the
flux tube. This part of our calculation would certainly be modified if
radiative damping were taken into account. In addition the analogy to
other free-boundary organ pipe-type wave motions suggests stron
resonance effects i.e. dependences on the chosen wave period. T%ese
effects will be considered in our forthcoming work elsewhere.
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