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ABSTRACT

We derive the source functions and the energy fluxes for wave generation in magnetic flux tubes embedded
in an otherwise magnetic field-free, turbulent, and compressible fluid. The calculations presented here assume
that the tube interior is not itself turbulent, e.g., that motions within the flux tube are due simply to external
excitation. Specific results for the generation of longitudinal tube waves are presented.

Subject headings: hydromagnetics — stars: interiors — stars: late-type — turbulence — wave motions

I. INTRODUCTION

Wave generation by turbulent motions in the outer convection zones of stars has long been thought to be central to the heating of
stellar chromospheres and coronae (e.g., Biermann 1946; Schwarzschild 1948). The early suggestions were followed by a number of
detailed studies in which the generation of acoustic waves (Lighthill 1952; Proudman 1952; Stein 1967; Renzini et al. 1982; Bohn
1980, 1984) as well as MHD waves (Kulsrud 1955; Osterbrock 1961; Parker 1964; Kuperus 1965; Stein 1981; Ulmschneider and
Stein 1982; Musielak and Rosner 1987, 1988) was considered. These latter calculations are all based on the assumption of a uniform
and weak background magnetic field, an assumption which is contradicted by solar and stellar observational evidence for inhomo-
geneous and locally strong magnetic fields (see Harvey 1977; Stenflo 1978; Robinson, Worden, and Harvey 1980); thus, at least the
solar magnetic field has instead a “flux tube ” structure, and flux tube waves carrying the wave energy away from the convection
zone may well be responsible for heating at least some portion of the outer atmospheric layers (see Spruit and Roberts 1983). Later,
more refined, calculations of wave generation in stellar convection zones confirmed on quantitative grounds that both purely
acoustic waves (Ulmschneider and Bohn 1981; Bohn 1984) and MHD waves for an assumed homogeneous magnetic field (Musielak
and Rosner 1987, 1988) are insufficient to explain the UV and soft X-ray fluxes observed by the IUE and Einstein Observatories
(Linsky 1981; Vaiana et al. 1981; Rosner, Golub, and Vaiana 1985). Indeed, the calculations of Musielak and Rosner (1988) showed
that the MHD energy fluxes for homogeneous background magnetic fields are even less than those obtained for acoustic waves; in
any case, quite aside from the question of matching the required (observed) absolute level of total energy supply, the associated
energy fluxes do not vary enough for a given spectral type in order to explain the variation in the observed UV and X-ray fluxes. For
these various reasons, it behooves us to determine the likely wave energy flux associated with waves propagating in an inhomoge-
neous, magnetized background. The work reported in this paper represents an initial effort in this direction.

Recently, Goldreich and Kumar (1988) have discussed the difference between “free ” and “forced ” turbulence in the efficiency of
generating and damping sound waves. They demonstrate that the difference in generation efficiency between these two cases can be
very large, and that the coupling of gravity to entropy fluctuations leads to a fluctuating buoyancy force which is responsible for
maintaining the turbulence and which leads to dipole emission of sound waves. This point was not appreciated in earlier discussions
of this problem (Goldreich 1987), in which the term dipole emission” was used instead to describe corrections to quadrupole
emission resulting from the anisotropy of the background stratified medium (see Stein 1967; Bohn 1984). Goldreich and Kumar
further showed that the effective damping rate of sound waves by forced turbulence is very likely to be large and will completely
dominate the corresponding scattering processes. This damping process may become important in the evaluation of acoustic energy
fluxes generated in stellar convective zones (Goldreich 1987); in our case, however, it will emerge that this damping effect is
negligible (see § VI).

In this paper, we derive the source function and energy flux for flux tube waves. We consider magnetic flux tubes embedded in a
magnetic field-free, turbulent, and compressible medium and assume that the tubes are thin and oriented vertically; the latter
assumption allows us to separate the generation of compressional tube waves from incompressional waves. In the present paper
(Paper I), we concentrate on the generation of longitudinal tube waves, discuss the wave propagator and the relevant critical
frequencies, and finally discuss the dependence of energy fluxes on the parameters which enter into the calculations. The generation
of transverse tube waves and the application of the results to late-type stars will be treated in following papers.

The plan of our paper is as follows: The MHD equations and the basic formulation are presented in § II; the inhomogeneous
wave equation and its solutions are given in § III; the energy fluxes for longitudinal tube waves are described in § IV; and the model
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parameter dependence of energy fluxes and their discussion are to be found in § V. A summary of our new results and our
conclusions are given in § VL. Three appendices contain mathematical details, which amplify discussions in the main text.

II. MHD EQUATIONS AND THE BASIC FORMULATION

In this section, we discuss the basic equations of motion, and develop the formalism for calculating the generation rate for
magnetic tube waves. In order to simplify the problem to the essentials, we shall assume that the fluid is locally isothermal, that the
gas pressure is a scalar, and that displacement currents and electrostatic forces may be neglected; furthermore, it is straightforward
to show that (as long as shock formation does not occur) dissipation by molecular viscosity and Ohmic diffusion is negligible for the
problem at hand. In the following, we present the linearized magnethydrodynamic (MHD) wave equations, the basic assumptions
for flux tubes, and finally the set of equations used to calculate the rate of tube wave generation.

a) The Linearized MHD Equations
Our assumptions lead to the ideal MHD equations, which may be written in the following linearized form:

0
5;9+V'(pou)=N1, 2.1)
2 +u-V —V22 +u-Vpo|=N (22)
Btp Po s Btp Po )= 2> .
0 1 p 1
—u+—Vp——g——[(VxB)xB,]=N,;, 2.3)
ot o 14 Pog 4np, [ B) 0] 3
and
0
aB—Vx(uxBo)=N4, 2.4)

where p,, po, B, refer to the unperturbed atmosphere, p, p, u, B are the perturbations of density, pressure, velocity and magnetic
field, respectively, V(= [yRT/u]'/?) is the sound velocity and the N; are nonlinear terms to be discussed below; the magnetic field is
assumed to be potential, and the equation of motion is simplified by the assumption that the background atmosphere is in static
equilibrium.

All terms linear in the perturbations in equations (2.1){2.4) are written on the left-handside; these terms define the wave
propagation operators for MHD waves. However, terms quadratic in the perturbations are collected on the right-handside and are
treated as known quantities described by a given flow (Lighthill 1952; Stein 1967). The latter terms determine the source function
responsible for the MHD wave generation (Musielak and Rosner 1987) and are defined as follows:

Ny=-V-(pu, (2.5)
Ny,=—u-Vp+V2u-Vp, (2.6)
p 0 p 1 1
N=———u———u°Vu+—VXB XB+_F’ (27)
3 po Ot Po( ) 47tp0( ) po *?
N,=V x (ux B), (2.8)

where F, is the fluctuating buoyancy force, which depends on the type of turbulence, and is responsible for the excitation of
turbulent motions (Goldreich and Kumar 1988).

b) The Thin Flux Tube Approximation

In order to calculate the energy fluxes for flux tube waves, we assume that a vertically oriented magnetic flux tube is embedded in
a stratified and nonmagnetized medium, and that all unperturbed and perturbed quantities depend on z and ¢ alone; the z-axis is

identified with the vertical direction (i.e., g = —g2) which, in our approach, is just the tube axis. We then obtain
p=p(z1+0(, 29
p=pz t)+ O(e) , (2.10)
u=uyz, )z + O(e), (2.11)
B = B,(z, 1)z + O(¢) , (2.12)

where € is defined as the ratio of the tube radius R, to the tube length L,; for € < 1, the tube can be treated in the thin flux tube
approximation, an approximation which allows us to consider all unperturbed and perturbed quantities to zeroth order (see, for
example, Roberts and Webb 1978). In this approach, the magnetic field within the flux tube is essentially axial, and is described by
B, = By(z)z; note that the solenoidal condition does not restrict By(z), but does, however, allow one to calculate the horizontal
components of the magnetic field once the vertical component is known.
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We further assume that the cross section of the tube is always circular, and that the thin flux tube is in temperature equilibrium
with the surroundings, so that both density gradients inside [dpo(z)/dz] and outside [dp (z)/dz] the tube are described by the same
density scale height; hence, the vertical density variation is given by

z
pO,e(z) = pOO,ee €Xp (— F) ) (2.13)

p.

where H (= V %/yg) is the density scale height, and is identical to the pressure scale height for an isothermal atmosphere.
In addition, if the total (gas plus magnetic) pressure is constant across the tube, then we must have (see Roberts and Webb 1978)

1
Pe(2) = po(2) + ¢~ Bi(2) - (2.14)

This condition allows us to obtain the vertical magnetic field variation, given by

By(2) = By, exp (— i) , (2.15)
H,
where the magnetic scale height H, can be defined as
Vi _ Po
Hy=————=2H_, 2.16
" g pe—po ° 219

and where V(= B3/4np,)is the square of the Alfvén velocity. In addition, equation (2.14) gives

_ Pod) _ PL2) 2.17)

which allows us to easily calculate the structure of the tube when the boundary values for the pressure and magnetic field are given.
Finally, we assume that the tube is untwisted, so that we ignore processes—such as the generation and propagation of torsional tube
waves—as well as instabilities such as the kink instability. Such transverse wave motions will be considered in a subsequent paper.

¢) The Flux Tube Equations

Combining the continuity and induction equations, and using equations (2.9)2.12) and (2.13)2.15), the set of MHD equations
(2.1)+2.4) can be rewritten as

§p1—§B1+W2u2=nl, (2.18)
where n, contains the nonlinear terms and is given by n, = —(1/po)N 1 — (1/Bg)Ny,;
%m—ﬁ%pﬁﬁ’guﬁnz, (2.19)
where n, = (1/po)N,;
0 N
et Wibi+pig=ns; (2.20)

where ny = N3,; N3, and N, are the z-components of N; and N, (egs. [2.7] and [2.8]), respectively. In addition, p, = p/p,,
P1 = P/po, and B, = B,/B,, are the new dimensionless perturbations; the operators W,, W,,and W, are defined by

- 0 1 - 0 1 N
W=s——-—— W,=——-—— W=@-1)yg. .
1 oz Hp s 2 02 2Hp H g (? )g (2 21)

The set of equations presented above (plus the horizontal pressure balance equation; see § IId) fully describes vertical motions
inside the flux tube: The nonlinear terms n,, n,, and n, can be treated as the source of these motions and can in principle be
determined once the driving turbulent flow in the tube interior is specified. As discussed below, we assume in our present (strong
magnetic flux tube field) case that these internal sources are suppressed by the internal magnetic field, so that the wave motions
inside the tube are driven from the outside alone. If there are no turbulent motions within the tube, the equations describe the
propagation of longitudinal waves along the tube (see Roberts and Webb 1978 or Herbold et al. 1985 for comparison) and can be
easily solved since all coefficients in these equations are constant. To close this set of equations, we need a relationship between the
total pressure (gas and magnetic) inside the tube and the external pressure.
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d) The Horizontal Pressure Balance

The relation between the variable fluid pressure applied to the undisturbed tube boundary by the external turbulence (or any
other pressure variations) and the internal fluid pressure can be written as (Parker 1979, p. 218)

1
Pz, ) + - Biz, ) = Pz, 1), (2.22)

where p, and B, are the gas pressure and the magnetic field inside the tube, respectively. The pressure P, outside the tube is defined
by

Pe = pe(z) + pturb(z9 t) + pte(z’ t) + pw(Z, t) H (2.23)

where p, is the gas pressure of the external fluid in the absence of any turbulence, and p,,.(z, t) is the pressure of the external
turbulence. Note that there are two distinct pressure terms resulting from the backreaction of the tube on the external medium:
p.(z, 1) denotes the external pressure perturbation due to the tube’s back reaction because it is displaced from its mean position,
while p,(z, t) is the external pressure perturbation due to the tube’s back reaction because it is deformed from its mean shape. The
former term disappears if the tube is at rest with respect to its surroundings; this term will be neglected in our calculations. The
second term describes the excitation of acoustic waves in the outside medium due to cross-sectional variations of the tube and, as
discussed by Spruit (1981), is unlikely to be important under solar conditions. Therefore, we shall neglect the interaction between
longitudinal tube waves and external acoustic waves altogether. Thus, we may proceed to linearize equation (2.22); using equation
(2.16), one then finds

1
p1+ViB, = o Pur =M (2.24)
0

where the variable fluid pressure p,,,, caused by the external turbulence can be defined as
Prurb = 3P(u + u7) (2.25)

and where u,, and u,, are the horizontal components of the turbulent velocity. We shall assume that these turbulent velocities can be
determined from the specific turbulent flow outside the tube. Such an approach has been followed by Stein (1967) for the purely
acoustic case, and by Musielak and Rosner (1987) for the case of homogeneous magnetic fields. Note that only motions directed
toward to the tube wall contribute. As p,/p, is of the order 10, p,,.,/po can be considered to be a first-order term.

The set of tube equations (2.18)—2.21), together with equation (2.24), fully describe the generation (due to the turbulent motions
outside and possibly inside of the tube) and the propagation of longitudinal tube waves; this set of equations can be written as a
single inhomogeneous wave equation and can be solved by Fourier-transforming this equation. This problem will be addressed in
the next section.

III. THE INHOMOGENEOUS WAVE EQUATION
In this section, we derive and solve the inhomogeneous wave equation for longitudinal tube waves. We also calculate the source
function and discuss the cutoff frequencies for longitudinal tube waves.
a) The Wave Propagator

We eliminate the density, magnetic field, and velocity perturbations from equations (2.18)+2.21) and (2.24) and obtain the
inhomogeneous wave equation for the pressure perturbations in the form

0* , 02 0 2
72 Vi gzt 2Von — o) 5o+ Bews [pr =S,z 1), (3.1)
where the characteristic velocity for longitudinal tube waves (Defouw 1976) is given by
14444
2 A's
Vt - Vi + Vs2 H (3.2)
and
Pe y Vi
=—=1+=-—=; .
pe=ii=t4gyas (33)
we also define the three critical frequencies w,,, »,, and w,,,
- = A 2 _ N
Wy = 2Hp s Wy = 2Hb s Dy = VA I/s (y 1) - VA gy » (3'4)

where wgy is the Brunt-Viisild frequency. Note that for intense magnetic flux tubes (V; < V,), o, becomes the magnetic Brunt-
Viisild frequency ; however, for V, > V,, the characteristic tube velocity V, = V, and o, & wgy.

In equation (3.1), all the nonlinear terms are collected on the right-handside, where they become the source function for the
longitudinal wave generation. We postpone the calculations of these source terms to the next subsection, and provide here only the
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definition of the source function

V 2 2 R a -1 V 2 N N a -1
Sz, t)= (f,i) {(% - ng)[(a_z) (Vin, +ny) + (_V_:> ”4] —(VIW, + W,)l:ns - g(a) n, — Vii n{l} . (3.5

To eliminate the first-order space derivative from the inhomogeneous wave equation (eq. [3.1]), we make the following transform-

ation
B 1/2
P = m(—") , (3.6)
Po
and obtain the inhomogeneous wave equation in the form
o 2 & 2 hY 37
ﬁ_V'(??-I-Qt D> = t(z’t)a 3.7
where
p 1/2
Sz, 1) = (—") S,z 1) (3.8)
B,
and
QF = (0n — 0p)* + P02y 3.9
with help of equation (2.15), one obtains instead
QF = joh + B . (3.10)
Finally, after some algebraic manipulations, equation (3.10) can be written in the form given for the first time by Defouw (1976)
Vi(9 1 Vviy-1
sz_r(___+_s ) G.11)
" HI\16 2y Vi y?

The left-handside of equation (3.7) is the propagation operator for the tube waves; this relation allows for cross-sectional
variations. In this case, the gas pressure is the principal restoring force. The waves which result are longitudinal tube waves, which
may be viewed as acoustic waves propagating along the tube, but modified by the tube geometry. As a result of this modification, the
characteristic phase velocity equation (3.2) and the critical frequency for the vertical propagation (eqs. [3.10] and [3.11]) are
different from those for acoustic waves. By studying the dispersion relation (which is global in the approach considered here), it can
be shown that Q, is the cutoff frequency for longitudinal tube waves, so that the waves cannot propagate if their wave frequency is
either lower than or equal to this cutoff. As shown by equation (3.10), the cutoff frequency for longitudinal waves is not as simple as
for acoustic waves and depends on both density and magnetic field scale heights, as well as on the Brunt-Viisili frequency modified
by the tube geometry; note, however, that the value of the critical frequency Q, is always comparable to the acoustic cutoff frequency
(see eq. [3.11]). The tube cutoff frequency reaches a maximum when the tube structure is entirely dominated by the magnetic
pressure (e.g., when the gas pressure inside the tube is negligible); in this limit, however, the longitudinal tube waves cannot
propagate (this point will be further discussed in § Vb).

' b) The Source Function

To calculate the source function defined by equation (3.5), we make one additional assumption, namely that there are no
turbulent motions inside the thin flux tube; this Ansatz simplifies our calculations substantially since n, = n, = n; = 0. Under this
assumption, it is only the external turbulence which is responsible for the wave generation; this can be justified if we recall that
strong magnetic fields (such as those characterizing the thin flux tube we are considering) will tend to suppress turbulent motions
within the tube. Equation (3.8) can then be written in the following form

__Pe 6_2 2

where M, = uf, and M, = u2, and where B, = V,/V,.

The source function does not depend either on the first or the second spatial derivative of M, and M 4y (see eq. [21] of Stein
1967); this does not mean, however, that we have pure monopole emission. As will be shown below, we actually have dipole
emission as a result of our one-dimensional geometry. Finally, since the Brunt-Viisili frequency is the buoyancy frequency (and
thus the natural frequency for gravity waves), and as gravity waves are evanescent in the convectively unstable convection zone
(where w}y is negative), the term %/(0t?) + w3y constitutes a cutoff frequency for wave generation below wpgy.

¢) The Solution
Having obtained the source function, we Fourier-transform equations (3.7) and (3.12) in one dimension, using

[p.(z, 1), Sfz, )] = J'J dk'do'[p,(k', o), S(k', ®)] exp [t — k'z)], (3.13)
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where

[Pk, @), Sik, )] = (2—7103 H dz' dv'[p,(7, 1), Sz, )] exp [—i(wt’ — k2], (.14

and obtain the solution for the pressure perturbations emitted by the turbulent motions,
Sk, w)
w? - QF — k*VY’

where S,(k, w) is the Fourier transform of the source function given by equation (3.12). To calculate the explicit form of the source
function S,(k, w), we integrate equation (3.12) by parts, and obtain

pak, w) = — (3.15)

1 1/2
Sk 0) = — ﬁ,_,(%) j J dz' dt' BAw? — wpy) My, + M) exp [—i(wt’ — kz')] . (3.16)
0.

The solution of the inhomogeneous wave equation given above will be used to calculate the energy fluxes emitted as a result of the
interaction between the turbulent motions and the flux tube. Note that for S,(k, @) = 0, the solution given by equation (3.15) leads to
a dispersion relation which describes the propagation of longitudinal tube waves, and the critical frequency Q, becomes the cutoff
frequency.

IV. ENERGY FLUXES FOR LONGITUDINAL TUBE WAVES

In this section, we derive the final expression for the energy fluxes emitted as longitudinal tube waves. We begin with the definition
of energy flux for the flux tube geometry and then present and discuss the final results.

a) The Mean Energy Flux
The time-averaged longitudinal wave luminosity can be calculated by using the energy conservation principle, which gives
(Liz, 1)) = <pu, Af3u; + W)) , 4.1)

where A, is the cross-sectional area of the tube and W is the specific enthalpy; note that the wave luminosity defined above is the
mean energy flux multiplied by the cross section of the tube and therefore has dimension (ergs s *). It should also be noted that
within the thin flux tube approximation, the magnetic terms in equation (4.1) cancel one another, and that the energy flux does not
depend on the magnetic energy; this reflects the fact that the gas pressure is the principal restoring force.

Expanding in an adiabatic perturbation series, and considering second-order quantities only, one obtains

5
Ll 0) =3 22 oo + 3 poCee) + oG “2)

where A is the perturbation of the tube cross section. The first term in equation (4.2) can be neglected as there is no net flow along
the tube. One may estimate both remaining terms in equation (4.2) using the solutions given by Herbold et al. (1985),

=20l - s 4.3)

Finally, by combining equations (4.2) and (4.3), one obtains for the mean energy flux F(z, t) = L(z, t)/4,
CF(z, 1)) = (1 + 0Kpu,) . (4.4)

Using the relation between the pressure perturbations p and p, (eq. [3.6]) and replacing u, by u¥, the energy flux can be expressed
in terms of p, and written in the form

CF(z, 1)) = (po Bo)'*(1 + OKp,uz> , (4.5)
where the velocity perturbation u* is calculated from equations (2.18)+2.21) and 2.26), and is given by

Bo 1/2 a -27]-1 a -1 a
* _ _ [0 2 —_ —_ —_ *
u; = <p0> 1 + wgy % ey %z +4|p%, (4.6)

where the asterisk denotes complex conjugate and
4—3y

1
=——. 4.7
A 4 H, @7
Now, we replace u* in equation (4.5) by equation (4.6) and obtain
AN 0/0z + 2) *>
= — — . 4.8
(F(z, t)) By(1 + 5)<Pz<at> [l + 02v(@/3) 7] P 4.8)
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To evaluate the mean energy flux given by the above equation, we express p,(z, t) and p¥(z, t) in terms of its Fourier transform (see
eq. [3.13]), and obtain

"

CF(z, 1)) = By(l + ) J J f J dk' dk” do’ do>” " ﬁ sk, @)p3(K’, ") exp [i(e — ")t — ik — K")z].  (4.9)
- BV

We take the time average over T, of the monochromatic wave energy by performing the integration over time ¢, and then obtain

0 2nB, 1 o
< = <FG, t)>>To =40 o Lz ), (410
where
’ *(1,"
Iz, o) = || dk dk"(k” — i3) S‘ﬁk—“’z ‘—giﬁk—“iz) exp [—i(k' — k")z] @11)
k - kl k’l - kl
(,02 _ QZ
k2 = —V?—' , 4.12)

and where { }r, refers to a temporal average over a time scale T,. Note that dF(z, t)/dw does not have the standard energy flux
dimension, but rather has dimensions (ergs cm ~2s~! Hz™ 1),

b) Monochromatic Wave Energy Flux

To obtain explicit forms for the energy fluxes emitted in the form of longitudinal waves, we must evaluate the asymptotic Fourier
transform at large z (Appendix A) and calculate the product of the individual source functions and their conjugates. We transform
the coordinates in equation (3.17) to average positions and times of the interacting turbulent eddies and then evaluate the turbulence
velocity correlations by assuming that the fourth-order correlations can be reduced to second-order correlations (see Batchelor
1953, p. 23). We calculate the one-dimensional convolutions (Appendix B) over the turbulence spectrum by assuming the spectrum
to be a separable product of a frequency-independent energy spectrum and a frequency factor (see § Va and Appendix B). Finally,
after some algebra, we obtain the monochromatic wave energy flux (ergs cm~2s~! Hz ™ 1),

1 o k, —il 2 2
Fo) — ———— L~ w — 4.1
(1 6) V;; 2 12;v k% | St(kl’ )l s (klz ¢) ’ ( 3)

9OF(z, 1) 8B,
oo T,

where ¢ is an arbitrary phase (henceforth assumed to be zero). The sin? (k,z — ¢) term appears as a result of squeezing the tube at
regular intervals of z + nn/k, along the tube; at these points, the efficiency of longitudinal wave generation is highest. In addition,
| S,(ky, w)|? is the product of the individual source function and its conjugate and is given (from eq. [3.16]) by

T, Z
|Silks, @) = 252 2 gt — wfyilh, ), (4.14)
(]

and where the convolution integral J (k,, w) is defined (Appendix B) by
1 a0
Jo(ky, ) = 16 j dk' Ea(ky — K)Eo(K)gky, k', ), (4.15)

where k' is the wave number of a turbulent eddy. Following Hinze (1975, pps. 61, 202), we note that the one-dimensional energy
spectrum E,(k’) is connected to the three-dimensional energy spectrum E(k) (see Appendix C) by the relation

1=  Ek K2
Ez(k’)=5J; dk%<1+7€—2->, (4.16)

where k is the wave number of all turbulent motions which contribute to the one-dimensional energy spectrum. In addition, the
function g(k,, k', w) is expressed by the frequency factor. Explicit forms for both the energy spectrum E(k) and the frequency factor
are given in § Va below.

The imaginary term in equation (4.13) can be neglected, as it vanishes upon integration over w. In addition, we spatially average
0F(z, t)/0w over height Z, < 1/k, by performing a spatial integration of equation (4.13), and obtain the height-dependent contribu-
tion to the mean monochromatic wave energy flux (in units of ergs cm 3 s~ Hz™!) for a given flux tube,

<62F(z, )

0w 0z,

. 00’ — 0y

—_— 2V in2 1
t Vt3(w2 _ Qt2)1/2 Jc(kl: (D) s (klz) s (4 7)

> =2n(1 + d)p. B.

where a factor of 4 was included to take into account the fact that only the outgoing flux is considered.
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Separating the dimensional factors by using the turbulent velocity u, and the turbulent length scale [, and performing the
integration over z and w, we obtain the total luminosity (ergs s~ ') due to longitudinal flux tube waves

H @ 0%F(z, t)
L=N,A d do —=—
o J; %o J:) 0w 0z,

" H " 1 angs [ 2 g (@ —OBy) - =\ «in2
=(2n)*N, Ay | dzoB.Bi(1 + 6) 7 p.u; M; DD~ =577 Jolky, @) sin® (k2) , (4.18)
o I, o ®* — Q)

where N, is the number of flux tubes on the stellar surface, which can be related to the magnetic flux tube surface filling factor; p, ul
is (up to a constant of the order of unity) the convective flux (Ulmschneider and Stein 1982); and M(=u,/V)) is a coupling Mach
number. The frequencies w = w,@® are written in terms of a characteristic turbulent frequency (= 27u,/l;) and a dimensionless
frequency @. Similarly, the convolution integral J, is written as u2I?J,. Finally, H is the thickness of the turbulent region in the
convection zone.

The total wave luminosity for longitudinal tube waves (eq. [4.18]) shows a dependence on the third power of the Mach number
(dipole type of emission with respect to Mach number); this dipole source of emission can be explained by the process in which
turbulent eddies moving in the opposite directions squeeze the flux tube and lead to the generation of the pressure perturbations
(acoustic waves) that propagate along the magnetic field lines. The dipole nature of the longitudinal tube wave generation
distinguishes our results from those obtained by Stein (1968), who considered the generation of acoustic waves in a nonmagnetic,
stratified, and turbulent medium and found a dependence of the acoustic wave luminosity on the fifth power of the Mach number
(quadrupole type of emission; see, however, Goldreich and Kumar 1988). The results presented here are also different from those
given by Musielak and Rosner (1987), who obtained monopole type of emission for the generation of compressible MHD slow
waves in a stratified medium with an embedded uniform magnetic field. Our results show, however, the same dependence on Mach
number as that found by Goldreich and Kumar (1988) for forced turbulence in a nonmagnetized medium. This is no mere
coincidence, but rather reflects the fact that the magnetic field acts very much like the external buoyancy force in constraining the
motions of the fluid within the tube.

To calculate the wave luminosity given by equation (4.18), we have to specify the number of flux tubes on the stellar surface (e.g.,
the fraction of the stellar surface covered by flux tubes), as well as the values of the magnetic field strength, pressure, and density at
the level in the atmosphere where the integrations begin. In addition, we must determine the wave frequency domain for longitudi-
nal waves, and must describe the turbulence; in the latter case, we have to know the shape of the turbulence energy spectrum, the
frequency factor, and the characteristic length scale of the turbulent motions. In the next section, we will show how these parameters
are restricted by the observational data or by theoretical studies.

V. MODEL PARAMETER DEPENDENCE OF ENERGY FLUXES

In this section, we present preliminary energy fluxes and energy spectra for longitudinal waves, and discuss the dependence of our
results on the free parameters. We begin with a description of the turbulence, discuss the dependence of the energy fluxes on the
magnetic field and, finally, present the energy spectra for longitudinal tube waves and show how the results depend on the chosen
magnetic field strength, the turbulent energy spectrum, and the frequency factor.

a) The Turbulence Energy Spectra and Turbulent Length Scale

Turbulent motions are characterized by the turbulent velocity and by the turbulent length scale; both these parameters are
necessary to calculate the turbulent energy spectra, but have a simple form only for the very special case of isotropic, homogeneous,
and incompressible turbulence. In this simple case, dimensional analysis shows that the frequency-independent energy spectrum
E(k) has the Kolmogorov form

By =% (i‘-)_m, (k> k) 5.1)

in the inertial range; alternatively, at smaller scales, where viscous effects begin to play a role, the spectrum takes on the exponential

form
64u? [ k\* 4k
— i _ = 5.2
B k, (k) exP( k:)’ G4

where the normalization condition for E(k) is given by

J * Bk = % u? (5.3)
0

and where the maxima of the Kolmogorov and exponential spectra occur near k, = 2m/l,.

Using the turbulence energy spectra given by equations (5.1) and (5.2), we can calculate the one-dimensional energy spectrum
E,(k) defined by equation (4.16); and E,(k) can be evaluated analytically (see Appendix C). The results are presented in Figure 1,
which shows a comparison between one-dimensional and three-dimensional turbulence energy spectra.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1989ApJ...337..470M&amp;db_key=AST

J. - 2337 CAT0M

]

{19894

478 MUSIELAK, ROSNER, AND ULMSCHNEIDER Vol. 337
T
EXPONENTIAL (EE)
1.0} .
0.8} EE2 _——"" N~ ]
e———" KOLMOGOROV (EK)
o AN
i \
o6l \ .
- \
a N
= \
B 04l “N 4
5 I\

T
|
|
|
|
|
|
|
|

yld
e

—_—
_————e

0.0 -
101 100 101

TURBULENT WAVE VECTOR

FiG. 1.—We display the one-dimensional (dashed curves) and three-dimensional (solid curves) dimensionless turbulent energy spectra (in units of u2k;” ) vs. the
dimensionless turbulent wavevector (in units of k,). We show E,(k) for an exponential turbulent energy spectrum (EE2) and for a Kolmogorov turbulent energy
spectrum (EK2).

For the frequency factor, either the Gaussian form

2  \?
-z = 5.4
st 0= e (2)]. »
or the exponential form
1
Ak, @) = - exp [— (kﬂuk):' , (5.5)
k
can be assumed (see Stein 1967), with
2k 1/2
u, = U’; E(k’)dk’] . (5.6)
In addition, A(k, w) is normalized so that
J Ak, w)dw =1 . 5.7
0

The shape of the turbulence energy spectrum for stratified atmospheres is not known, and neither observational data nor
theoretical considerations can help us to deduce its general properties. The energy spectra presented above certainly do not apply to
the stratified turbulent atmosphere, especially to the largest turbulent eddies, whose size is comparable to the atmospheric scale
height. Nevertheless, we shall adopt the above forms for the spectra since they span the range of likely behaviors of the actual
spectra.

As an aside, we note that Stein (1967, 1968) and Bohn (1980) similarly adopted various ad hoc forms for the energy spectra, using
the two functional forms just discussed and the so-called Spiegel turbulent spectrum, and three different functional forms for the
frequency factors; in all these cases, stratified and magnetic field-free atmospheres were considered, and a turbulence correlation
length scale equal to the pressure scale height was assumed. In addition, these authors assumed that the turbulent velocity of the
largest eddies is the same as the velocity of convection motions given by the convection zone model. In our approach, the turbulent
medium which surrounds a tube is stratified and magnetic field-free, so that in order to describe the turbulence, we have to make the
same assumptions as those just mentioned. The difference is, however, that the largest turbulent eddies (with sizes comparable to the
density or pressure scale height) do not contribute to the generation of longitudinal tube waves; in the interaction between the tube
and turbulence, only eddies with sizes comparable to the tube diameter are important, and these eddies dominate longitudinal wave
generation. We will include this effect in future energy flux calculations by computing the diameter of tube d, for a given height
(using the magnetic flux conservation law) and then, by setting I, = d,, estimate the turbulent velocity of the eddies with size d,.
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Unfortunately, neither the variations of the tube diameter with height in the deep photospheric layers, nor even the diameter of an
individual “elementary ” flux tube can be estimated with any confidence from the observational data because of current limitations
on spatial resolution (see Solanki and Stenflo 1985).

b) The Magnetic Field Strength

In the approach presented in this paper, the magnetic field strength is a free parameter, but its maximum value is, in fact, fairly
constrained by observational data, as well as by the horizontal pressure balance of the flux tube (see § IId). From the observational
point of view, the magnetic field strength within flux tubes can be estimated for the Sun by analyzing the statistical properties of the
Stokes I and V line profiles (Solanki and Stenflo 1985); this method gives the field strengths in typical network regions ranging from
1400 G to 1700 G. From a more theoretical perspective, horizontal pressure balance (based on the thin flux tube approximation)
restricts the magnetic field pressure within the tube to be less than or equal to the gas pressure outside the tube (equality only
obtains in the unlikely case that the flux tube is purely “ magnetic,” i.e., that there is no gas inside the tube). For typical published
models of the solar photosphere (for example, Vernazza, Avrett, and Loeser 1983), the maximum field strength obtained from
horizontal pressure balance also does not exceed 1700 G.

In our approach, the horizontal balance for pressure and magnetic field perturbations (eq. [2.26]) restrict p, and B, to be
quantities of the same order as the turbulent pressure outside the tube; note that the turbulent pressure is a small fraction of the gas
pressure outside the tube. If the gas pressure inside the tube becomes comparable to the turbulent pressure outside the tube, then
perturbed and unperturbed quantities become comparable and the inhomogeneous tube wave equation (3.1) is no longer valid. In
order to insure the validity of the perturbation scheme, we therefore consider only the cases when the unperturbed gas pressure
inside the tube is at least twice as large as the turbulent pressure defined by equation (2.25); our method of calculation does not
allow us to estimate the energy fluxes generated in the form of longitudinal waves for magnetic field strength values close to the
maximum value.

¢) The Wave Energy Fluxes

The wave energy fluxes presented in this paper are preliminary and are obtained for log g = 4.5, for one fixed tube diameter
l, = d, = 0.5H,,, for one fixed Mach number M = u,/V; = 0.1, for an external gas pressure varying from 11.0 x 10° to 5.0 x 10° dyn
cm 2 and for magnetic field strengths varying from 1000 G to 1600 G; the latter variations of the magnetic field lead to variations of
the tube Mach number from 0.15 to 0.08, respectively. These assumptions significantly simplify the problem and allow us to display
the dependence of the wave luminosity spectra on the chosen magnetic field, the turbulent energy spectrum and the frequency factor.
Note, however, that we do not need to specify the number of flux tubes on the stellar surface (or the filling factor) as we do not
calculate the total wave luminosity.

The dependence of wave energy fluxes on the form of the chosen turbulent energy spectrum and the frequency factor are shown in
Figures 2 and 3. As discussed above, we consider Kolmogorov and exponential energy spectra (egs. [5.1] and [5.2]) and Gaussian
and exponential frequency factors (egs. [5.4] and [5.5]). In addition, these figures also show the dependence of the results on the
magnetic field strength of B, = 1500 G and 1100 G; one sees a significant decrease in the wave energy flux when the magnetic field
increases. This decrease of the wave energy flux with increasing magnetic field strength is mainly due to the B, B & (V, By)” term in
equation (4.17), which describes the fact that as the tube background field strength increases, and the flux tube becomes increasingly
rigid, it becomes more and more difficult for the external turbulence to excite gas pressure fluctuations within the tube.

The maxima of the wave energy fluxes occur at the wave frequency (w > 2-4Q,) and, in general, for the Gaussian frequency factor
are closer to Q,. The wave generation efficiency for the exponential turbulence spectrum is only slightly higher than for the
Kolmogorov spectrum; the latter reflects small differences in the integrated one-dimensional energy spectrum E,(k) (eq. [4.16]) for
both three-dimensional turbulent energy spectra considered here (see also Fig. 1).

Toward low frequencies, the wave energy flux rapidly decreases as the tube cutoff frequency Q, is approached. This effect is due to
the w? — QZ term in the denominator of equation (4.17), and has already been discussed in § ITla as a general property of our wave
equation (3.7). At high frequencies, which after equation (4.12) are associated with large wave vectors k, the wave energy flux decays
rapidly due to the strongly decreasing energy spectra and frequency factors. That is, if we compare the EE and KE spectra in Figure
3, we see that wave energy spectra derived with an exponential turbulent spectrum decay more steeply with frequency than those
derived with a Kolmogorov turbulent spectrum; in addition, if we compare the EE and EG spectra in Figure 3, we see that wave
energy spectra derived with a Gaussian frequency factor decay more steeply with frequency than those derived with an exponential
frequency factor.

The dependence of the frequency-integrated energy fluxes on the magnetic field strength is given in Figure 4, which shows the
results obtained for both turbulent energy spectra and both frequency factors. The results strongly depend on the magnetic field
strength: the energy flux decreases when the magnetic field strength increases. This effect has already been discussed and simply
reflects the increasing rigidity of the flux tube.

VL. DISCUSSION AND CONCLUSIONS

We have derived the source function and the energy fluxes for the generation of longitudinal tube waves in a thin, vertical flux
tube embedded in an otherwise magnetic field-free stellar convection zone. We have shown that longitudinal tube waves in such flux
tubes are generated by a dipole wave emission process; earlier qualitative results given by Stein (1981) and Ulmschneider and Stein
(1982) suggested dominance of monopole emission (see, however, Goldreich and Kumar 1988). The similarity between the type of
emission found here and that obtained by Goldreich and Kumar (1988) for forced turbulence in a nonmagnetized medium is
apparently not accidental, as in both cases an effective “external ” force exists which acts to constrain the motions of the radiating
medium.
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F1G. 2—Comparison of the wave energy spectra vs. frequency for two different values of the magnetic field strength (B, = 1100 G, dashed curves; and = 1500 G,
solid curves). The energy fluxes are obtained for a Kolmogorov turbulent energy spectrum and an exponential frequency factor (KE), and for an Kolmogorov energy
spectrum and a Gaussian frequency factor (KG).

The efficiency of longitudinal wave generation decreases significantly when the magnetic field strength increases, mainly because
the tube becomes increasingly rigid against the perturbations by the external turbulence. Note also that since the gas pressure within
the tube decreases with increasing magnetic field strength, our approximations for the generation rate of longitudinal tube waves
become unreliable as the gas pressure inside the tube approaches the turbulent pressure outside the tube. Furthermore, note that we
have neglected the role of turbulence within the tube itself; to the extent that this assumption can be maintained, we were able to
circumvent the difficulties encountered by previous workers who ignored the effects of the fluctuating buoyancy force.

The absorption of the generated waves also deserves some comment. The absorption results from the wave-turbulence inter-
action, and becomes important when the dimension of the region of wave generation is bigger than (or comparable to) the
wavelength of the generated waves (Stein 1968). In our case, we find that both the vertical and horizontal dimensions of the emitting
region (of the order of the thickness of the turbulent region, and of order of the tube diameter, respectively) are much smaller than
vertical and horizontal wavelengths (viz., the latter is infinite for vertically propagating waves). As a result, damping due to a
wave-turbulence interaction becomes negligible.

When acoustic waves are generated in a stratified and turbulent medium, monopole and dipole corrections to quadrupole
emission also appear and show a narrow maximum in the energy flux for wave frequencies very close to the acoustic cutoff
frequency (Stein 1967, Fig. 5); this energy flux cannot be carried away efficiently by acoustic waves from the generation region
because these waves are almost evanescent. The situation is different for the forced turbulence case discussed by Goldreich and
Kumar (1988), who showed that in this case dipole emissions dominate for a broad range of wave frequencies (see their eq. [17]). In
the generation of longitudinal tube waves considered here, the maximum of the energy flux generated by dipole emission occurs at

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1989ApJ...337..470M&amp;db_key=AST

No. 1, 1989 FLUX TUBE WAVES IN STELLAR CONVECTION ZONES 481
PERIOD [s]
102

_ 101+ —

N

I

"0

)

£

o

2]

2

K >

s 2

S w

T 100} 3 i

18} w

g £

(73]

% o

2 2

w 2

= (3]

w

w

z l

; 10-1} l -
I
|
|
|
l
|
!

-2 1
10 102 [0} 101 100 101

FREQUENCY [Hz]

FiG. 3—As in Fig. 2; we compare the effect of assuming a different spectral form for the turbulent energy spectra: the energy fluxes obtained a Kolmogorov
turbulent energy spectrum are shown with solid lines (KG and KE), while those obtained with an exponential turbulent energy spectrum are shown with dashed lines
(EG and EE). For the exponential turbulent energy spectrum, we denote the case of an exponential frequency factor by “EE,” and for the case of a Gaussian
frequency factor by “ EG,” In all cases, the magnetic field strength is B, = 1100G.

o = 2-4Q, (making again our results more similar to those of Goldreich and Kumar) and then shows a steep decrease for higher
frequencies.

The reason that the maximum of the dipole emission rate of longitudinal tube waves lies well above Q, is that the source function
does not depend on the tube cutoff frequency, but instead depends on the Brunt-Viisild frequency modified by the tube geometry.
The latter frequency is lower than the tube cutoff frequency, which is comparable to the acoustic cutoff. Even if the acoustic cutoff
frequency «,, (as well as the tube cutoff frequency Q,) increases in stellar photospheres (for example, w,, = 0.024 at the top of the
convection zone and w,, = 0.034 at the temperature minimum; see Vernazza, Avrett, and Loesser 1976, model C), we may conclude
that waves with frequencies near the maximum of the longitudinal wave energy flux reach the temperature minimum region as well
as the chromosphere. Preliminary calculations of the energy fluxes for the flux tubes embedded in the solar convective zone
(Musielak, Rosner, and Ulmschneider 1987) show, however, that these fluxes (being of order 1057 ergs cm ~ 2 s~ 1) are at least two
orders of magnitude too low to play any role in the heating of the lower solar chromosphere. The fact that the wave energy fluxes are
so low can be easily explained by two effects: first, the relatively slow (subsonic) turbulent motions in model solar and stellar
convection zones; these motions (which in the present context totally determined the source function, and thereby the resulting
wave energy fluxes) cannot produce substantial turbulent pressure perturbations, and therefore the interaction between the tube and
the turbulence is of low efficiency. Second, recall that we have entirely suppressed turbulent motions within the flux tube; as a
consequence, wave driving by buoyancy fluctuations cannot occur within the tube. Thus, judging by the results of Goldreich and
Kumar (1988), it may well be that buoyancy fluctuations also dominate the wave generation problem for magnetic flux tubes;
unfortunately, presently available theoretical tools are inadequate to study this problem in the strong field (V, & V) limit.
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F1G. 4—The frequency-integrated wave energy fluxes for longitudinal tube waves plotted as a function of the magnetic field strength for different turbulent energy

spectra and different frequency factors; the annotations “KE,” “KG,” “EE,” and “EG ” are as in Figs. 3 and 3 and specify the functional form of the turbulent energy
spectra (Kolmogorov [K] or exponential [E]) and the frequency factors (Gaussian [G] or exponential [E]).

Finally, we note that work corresponding to that discussed here remains to be carried out for transverse tube waves; this will be
the aim of a succeeding paper.
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APPENDIX A
THE ASYMPTOTIC FOURIER TRANSFORM

Let us consider a one-dimensional inhomogeneous partial differential equation with constant coefficients, given in the form

P(a—2 a—2>u(z, t)=f(z1), (A1)

ot?’ oz2
where P is a polynomial and f(z, t) is a function which vanishes outside a restricted region. To solve this equation, we Fourier-
transform u(z, t) and f(z, t), substitute these into equation (A1), and obtain

Uk, ) = — % @)

"o ) )
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where U(k, w) and F(k, ) are the Fourier transforms of u(z, t) and f(z, 1), respectively. The solution for u(z, t) can be written as
+ o + o0 . F(k, (O) )
u(z, t) = j_m do j_w dk exp [—i(wt — kz)] Po?, — k) (A3)

for the special case of a monochromatic source with frequency o,
F(k, w) = F(k)d(w — o) , (A4)
we have the result
to exp (ikz)F(k)

— _— . A
u(z, t) = exp (—wot) » dk P—wi, —k) (A5)
Dropping the subscript zero, and since the integration over k can be performed with the help of the residue theorem, we find
.« _€xp (ik, 2)F(k,)
uiz,t) =exp (—ot)2ni ) ———— == > A6)
(2. ) = exp (002t 1. 60 wyakll, (
where G(k, w) = P(—w?, —k?); see also Lighthill (1960).
Using equation (A6), we may evaluate the asymptotic Fourier transform of I,(z, w) given by equation (4.11), and obtain
2 k—il
I(z, ) = — % (k — i)[S*(k, w) exp (ikz) — Sk, w) exp (—ikz)]* = 4n? —k—zl— | Sk, w)|? sin? (kz — ¢) , (A7)

where ¢ is an arbitrary phase.

APPENDIX B
THE CONVOLUTION INTEGRAL

In order to calculate the explicit form of the source function, it is necessary to evaluate a fourth-order velocity correlation. As this
cannot as yet be done from first principles, we follow customary procedures (in the present context, see for example, Batchelor 1953
or Stein 1967), and replace the fourth-order correlation by a sum of products of second-order correlations:

(gt + uyueitty + )y = 8uu ) (U (B1)

where we have used the fact that there is no difference between the x- and y-directions. We thus have to evaluate the convolution
integral

1 + o + 0
J ek, @) = on? J dr I drux, v, z, Dudx, ¥, 2 + 1, t+ DIULX, Y, 2, DudX, y, 2 + 7, t + 1)) exp [i(wr — kr)]

+ o + o
= j dk’ j dw®_(k — K, 0 — )0 (K, ), (B2)

— o0 -

where @, (k, w)is the Fourier transform of the velocity correlations.
We assume that ®_(k, w) may be factored into the frequency-independent one-dimensional energy spectrum E,(k) and the
frequency factor A(k, w)

q)xx(k9 (D) = lEZ(k)A(k9 CO) ’ (B3)

where k is the wave number of the kth eddy, and where the factor 4 comes from the different normalization of @, (k, w) as compared
to the energy spectrum E,(k) and the frequency factor A. Note that E,(k)is normalized so that

r E,(k)dk = u? (B4)
0

and is connected to the three-dimensional energy spectrum (see Hinze 1975).
Using equation (B3), we may evaluate the convolution integral (B2) and obtain

Jexxxlk, @) = -113 j dk'E,(k — K)E,(K)g(k, k', ») , (BS)
where
+ o
gk, k', w) = f do'Alk — k', © — 0)AKK', @) . (B6)
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Because there is no difference between the x- and y-directions, we have
Jxxxx(k’ CO) =J xyxy(k’ (D) =J yxyx(k’ CO) =J yyyy(k’ (D) =J c(k’ (D) . (B7)
APPENDIX C

THE ONE-DIMENSIONAL TURBULENT ENERGY SPECTRUM

'The one-dimensional turbulent energy spectrum E,(k) defined by equations (4.16) can be evaluated analytically for both three-
dimensional turbulent energy spectra considered here (egs. [5.1] and [5.2]). We begin with the three-dimensional Kolmogorov
energy spectrum, and calculate E,(k) by evaluating the integral in equation (4.16). It gives

24 u? -3
E,(k) = 35 é ( ) k=k), €y
and
3uz (1 k?
E)==+|-+— .
) =357 ( ST ktz) (k < k) (&)
For the exponential turbulence spectrum, the integral in equation (4.16) can be evaluated as
u? (16k®> 8k 3k 3 4k
E,(k) =L S +—+- - —
A k,(kf T +k,+4>°"p< 2 ©
and is valid for all turbulent wavevectors k.
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