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Abstract. In the present work we derive analytic expressions for
the wave pressure of propagating shock wave trains in stellar
atmospheres or winds. Applications to weak shocks and stronger
shocks with sawtooth profiles are discussed in detail. The shocks
are treated as discontinuities. Our results provide insight in
the momentum balance of time-dependent stellar winds flows.
The analytic expressions can be used as an independent test of
hydrodynamic codes.
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1. Introduction

Wave pressure is self-consistently included in time-dependent
wave computations when the hydrodynamic equations are solved
and the shocks are treated explicitly. The need to consider
wave pressure separately arises only, when the momentum
equation is solved in time-independent computations of stellar
atmosphere or wind models. Recent time—dependent calculations
of acoustically heated outer atmosphere models of late-type
stars (see e.g. Ulmschneider, 1989) have again pointed out the
well known limiting shock strength behaviour of monochromatic
waves in gravitational atmospheres. This behaviour of shocks
to reach a limiting strength arises from the balance of two
opposing tendencies: Due to wave energy conservation, the rapid
density decay in the stellar atmosphere leads to an amplitude
growth, while on the other hand, shock dissipation results in
a decrease of the wave amplitude. The validity of the limiting
shock strength behaviour in wave computations where hydrogen
ionization, radiation damping, shock dissipation and variable
gravity are taken into account has been discussed by Cuntz and
Ulmschneider (1988).

In monochromatic and stochastic short period wave mo-
dels for the outer atmosphere of Aldebaran, Cuntz (1990)
has recently investigated the influence of wave pressure on
time-dependent stellar atmospheric structures. By time-averaging
he evaluated the local actual pressure scale height and the
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local thermal pressure scale height in the models. The actual
pressure scale height includes the full influence of the waves
on the atmospheric structure while the thermal pressure scale
height incorporates just the change of temperature and mean
molecular weight. Cuntz found that the two scale heights are
quite similar for monochromatic waves with small amplitudes.
For stochastic waves, however, the actual pressure scale height
becomes significantly larger than the thermal pressure scale
height demonstrating the importance of the wave pressure by
strong shocks.

The limiting strength property of the waves produces wave
trains with rather typical and universal shape (see e.g. Ulmschnei-
der, 1989) which is independent of the source of the acoustic
energy generation. This opens the possibility to construct time-
independent shock heated atmospheric models. The waves change
the atmospheric model structure through their contribution in
the momentum and energy equations. The momentum contribu-
tion is the wave pressure and the energy contribution is shock
dissipation and radiation damping. For the energy contribution,
heating formulae are already available in the literature (see
e.g. Ulmschneider, 1970; Bray and Loughhead, 1974). Time-
independent wave models can be calculated if both contributions
are considered consistently. Such models give general insight in
the behaviour of the waves and can easily be used as starting
models for time-dependent computations.

There are older time-independent atmospheric model com-
putations (e.g. McWhirter et al., 1975) which have used a wave
pressure term, but due to an inadequate expression (propagation
speed taken equal to the sound speed) for this term difficulties
were encountered. Hartmann and McGregor (1980) have con-
sidered wave pressure in their Alfvén wave driven wind models
computing the momentum transfer of the waves from their
energy deposition. Further attempts to include wave pressure in
time-independent wave models were discussed by Holzer and
McGregor (1985) for various heating mechanisms. In the present
work we want to obtain useful expressions for the wave pressure
from shock wave trains. For this purpose, we derive, in Sect. 2, a
general expression for the average momentum deposition by the
shocks. In Sect. 3 we quantify this expression for weak shocks
and larger amplitude shocks with sawtooth profiles. Section 4
gives our conclusions.
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2. Momentum transfer of shock waves

We consider acoustic shock waves which travel through a stellar
atmosphere. If there is only one shock (or at most a few shocks)
present at any one time, it is most natural to consider the
shock propagation through the atmosphere as a time-dependent
problem. If, on the other hand, at any one instant, there
exists a large number of shocks within the atmosphere, it will
often be sufficient to consider only the average response of the
atmosphere on the presence of an ensemble of shocks. In the
following, we derive an equation for the average structure of such
an atmosphere by taking the time-average of the momentum
balance.

2.1. Time average of the total momentum

Let us consider some arbitrary but fixed volume element V'
within the stellar atmosphere. The total momentum of the gas
contained in V is given by

Pu=depvﬂ. Y]

vV

Here the index p indicates the different vector components. If we
observe this volume element for a sufficiently long time interval
T, many shocks traverse V. The momentum P, of the gas
contained at each instant in V varies strongly with time and so
does the time derivative 0P, /dt which equals the instaneous net
force excerted on the gas. The average net force excerted during
the period T on the gas then is given by

T
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Fig. 1. Definition of the instants ¢; and 7; when a shock enters or leaves
V, respectively.

For calculating this average, we assume V' to be small enough
that there is at most one shock in V. We denote by ¢; the instants,
at which a shock enters into ¥ and by t; the instants, at which
a shock leaves V' (cf. Fig. 1). The index i enumerates the shocks
traversing ¥ during the period T'. The total number of shocks
crossing V' during the time interval [0, 7] is denoted by I. We
choose [0, T'] such that we have t; =0 and t;; = T, ie., we start
the averaging process at the instant where a shock enters into V'
and finish it at the instant where the (I + 1)-th shock enters V.

We have to consider two different cases:

1.) There is no shock in V. This holds during the I intervals of
time [z, ti+1]'

2.) There is one shock in V. This holds during the I intervals of
time [t;,7;].

These cases have to be treated differently in calculating the
average momentum transfer.

In the first case during the time intervals between shocks we
have

ity Lit1
1 . 1 0 pvy
?fdtP”—Ffdtde Fran 3)
Ti Ti |4

Since no shocks are present, all hydrodynamic quantities are
continuously differentiable and there holds the usual equation of
momentum conservation

0 pvy 0
it Yo [Pvyou + POy ] = —gup @

where g, is the inwardly directed gravitational acceleration.
Note that as costumary we assume summation if the same
component index occurs twice in an expression. Inserting this
into Eq. (3), observing that ¥ is a fixed volume and interchanging
integrations and differentiaton (permitted, since all quantities are
continuously differentiable) yields

tit1
1 tﬁPH_
T ot

Ti

tip1 Lit1

1 d

-5 de {6—; fdt [pvvvy +p5,w] +8u fdtp}. 5)
V T Ti
On the other hand, we have
tit1

1 . 1
7 | 4tPu= 3 [Pultiv) = Pule)] - (©)

Ti
Hence it follows for the intervals [;,t;,1] between shocks

2 [Puttin) ~ Pate)] =

4o

In the second case, for all ¢t € [t;, ;] there is one shock in V.
We denote all quantities ahead of the shock by an index 1 and all
quantities behind the shock by an index 2 (cf. Fig. 2). The shock
can be considered as an infinitely thin layer in ¥/, dividing the
volume V in a pre-shock volume V; and a post-shock volume
V,. Since the jumps of the hydrodynamic quantities across the
shock are bounded, any contribution of a spatial integration over
the infinitely thin shock layer to the volume integration over V'
can be neglected. Then

Liy1 Liyy

fdt [pvvv” +p5,,v] +8u f dtp}. (@)

Ti

0
0 xy

Pu= f 4V (pu)a + f v (o) ®)
Va(t) Vi(t)

with

@) +np=V. ©)
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region 1

region 2

Fig. 2. Definition of the pre-shock region 1, the post-shock region 2 and
the vector k&

The volumes V;(t) and V>(t) depend on the time ¢ since the
shock moves across V. According to our definitions we have

@y =v , Vit)=0 (10)
Vi@ =0 , M@=V
and
mm=jﬁwwm

g (11)
P = [ av (oo

|4

Py(t) is a continuously differentiable function of the time t €
Jti,7i[, since this holds for Vi(t) and V,(t) as well as for the
integrands within ¥} and V5. Thus, it follows

—fdtP,l

and from Egs. (11) we obtain for the intervals [t;,t;] where
shocks are present in V':

p(Tt) P,u(ti)] (12)

(13)

L fat=t [ [Gno, m ]
s v

Note that the spatial integration is over the post-shock momen-
tum at instant 7; and over the pre-shock momentum at instant
tj, respectively.

2.2. Average momentum change

By combining Egs. (6) and (12) for all I intervals with and
without shocks, we obtain

T
(P,) = % f dtp, = %[PM(T) — P,(0)] (14)
0

since the contributions of all division points t; and t; of the
t-axis between t = 0 and ¢t = T cancel pairwise. On the other
hand, by combining Eqgs. (7) and (13) for all our intervals, we
obtain by means of (14)
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1
7 [Pu(T) = Pu(0)] =

tiz1 1 Lit1

__de{axVZfdt VYU + POy | +gﬂ2fdtp}
i=1 =17,

I
4= f 12 z (pvu(w)), — (va(ti))l] . (15)

1

We divide this equation by the volume ¥ and take the limit of
an infinitely small volume element V. In this limit the volume
integrals divided by V' tend to the value of the integrands at the
place of the infinitely small volume element and simultaneously
the instants 7; become identical with the instants t;. The term
in brackets in the second term in Eq. (15) becomes equal to
the jump [(pv,) 25~ (pvy) ] of pvu across the shock front. It
follows

+Lou v
T p”t:T Plu

A5l ]

where

(4) = TZ f dt A(t)

is the time average of some quantity 4 between shocks.

The last term on the r.h.s. of Eq. (16) is the average of the
momentum jump puv, across the shock front. This momentum is
transferred to the gas. Let k; be the normal of the i~th shock
front. Then

t=0] = _6va [(pvuvv> + <P>5uv] - g,;(p)

(16)

17)

(Pou)2i — (o)1 = [(pv)2 —(Pv)n] i (18)

where v is the velocity component of the gas in the direction of
k We denote the velocity of the i — th shock front in the stellar
frame of rest by U; and the pre-shock and post-shock velocity
components of the gas normal to the shock front in the frame
where the shock front is at rest by u;; and u; 5, respectively. Then

vi=u+ U,  v=u;+ U (19)
and from the Hugoniot condition,
(pw)1,i = (pw)2,i s (20)
of mass conservation across the shock we obtain
(ovp)2,i — (pvp) 1 = [P2,i —p1,i] U; fcp,i (21)

We define the mean time between shocks by

T

o= (22)

and the average momentum transfer of a shock to the gas by

I

1 A~ A
1) (p2i = p1) Ui = (2 = 1) Uik
i=1

(23)
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Further, we note that for a sufficiently long time 7 the Lh.s of
Eq. (16) becomes negligibly small if the pre-shock momenta pv,
at t =0 and t = T on the average vary slower than linear with
T, which usually will be the case in a stationary atmosphere.
Then it follows that

0

o [(P)éuv + <P”uvv>]

3%, (b2 = P UKy) = —gulp).

1
7 24)
This is our final result for the average momentum balance in
an atmosphere with many shocks. The second and third terms
on the Lh.s. of Eq. (24) represent the wave pressure. The second
term, which is always different from zero in an atmosphere
with non—vanishing fluid motions, is present even in absence of
shocks. This represents the usual wave pressure of an ensemble of
sound waves. The third term on the Lh.s. represents the average
momentum transfer of shocks to the gas which enters into the
equation like an external force. Its form can easily be understood
by the following consideration assuming periodic shock waves.
Let u; and uy be the velocity in front of and behind a shock
of speed U. Then pyuy — pu; = (pa — p1)U is the change in
momentum density at a fixed position following shock passage. If
the interval in time between successive shocks is 2, then with the
passage of each shock, a parcel of gas experiences an impulsive
force (pp — p1)U /2.

ulkms') logp
20 T T T T -+ — - L0 4

1
HEIGHT (10 cm)

Fig.3. Snapshot of a time-dependent stochastic wave calculation for
Arcturus. The run of the flow speed u, the sound speed c, the temperature
T and the pressure p are shown.

2.3. Plane parallel atmospheres

With fluid motions and shocks present in an atmosphere, we
cannot expect that there exists any symmetry for the actual
hydrodynamic variables. The time averaged quantities in the
absence of strong magnetic fields and systematic fluid motions,
however, should show the same kind of symmetry as the local
gravitational field, i.e., invariance with respect to rotations about

an arbitrary axis parallel to the direction of the vector g,.
The most general second rank tensor invariant with respect to
this symmetry operation is a linear combination of the two
fundamental tensors J,, and #,f,, with # being the unit vector
parallel to g,. Thus

(pvuty) = a(z) v + b(2) Ay (25)

a and b may depend on the coordinate z parallel to g,. By
contracting Eq.(25) and by multiplying Eq.(25) with #,f, one
easily shows

1 1 P
(o) = 5(003) 8+ { (o) — 5 () } iy 6)
where v, and v are the velocity components perpendicular and

parallel to #, respectively. Then, since the averages (pvi) and
(pvﬁ) depend only on the z-coordinate,

0 2 {pv})

o (P"u”v) =My oz

Tx 27

For the same symmetry reasons, the average momentum
transfer of shocks is a vector parallel to g, thus

((p2 = p)UR) = (o2 — p1) Uk - i) . (28)
Combining Egs. (24) to (28) yields
9 a(pvd) 1 .
—a%)+—azl—§<(pz—m)Uk-ﬁ)=—g<p>, (29)

which is valid for the average momentum balance in a plane
parallel stellar atmosphere.

3. Wave pressure for different shock trains

In this section, we derive expressions for the wave pressure for
the case of vertically propagating shock wave trains. A typical
example of a shocked atmosphere is shown in Fig. 3 (Cuntz,
1987). This result of a numerical solution of the full system of
hydrodynamic equations demonstrates clearly that the variation
of the hydrodynamic quantities between shocks can rather
accurately be approximated by linear segments (except, perhaps,
for the very strongest shocks). For this reason, in the following,
we restrict our considerations to sawtooth shock waves. We
first consider weak shocks and then somewhat larger amplitude |
shocks, where the velocity amplitude is still considerably smaller
than the sound speed. The time-averaged atmosphere is assumed
to be at rest.

3.1. Weak shocks

We consider an ensemble of weak shocks propagating outwards
parallel to g, in a plane-parallel stellar atmosphere. For small
amplitude sawtooth waves one has the following velocity, density
and pressure variations at a fixed point within the atmosphere

t
0(t) = Vi — 20m;i—»

7, (30)
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t

p®) = po+ pmi — 2Pm,i§i > 31

p(®) = po + Pmi — 2Pm,i (32)

t
P’
where 2; = t; —t;_; is the time between passage of the (i—1) —th
and i—th shocks, subscript m indicates maximum amplitudes, and
po and pg are the unperturbed density and pressure, respectively.
We assume that vy = 0, ie., that no average flow occurs in the
atmosphere. Then one has

L i L d
p>=7z;fdtp(t)=fz;po%=po
= 0 =

(33)

since Zi #P; =T and correspondingly
(p) =po- (34
For the second term at the Lh.s. of Eq. (29) we obtain

1 2 1

1 2P;

(o) = Z f dt p(t) () = —poz Ui (35)

i=1 i=1

For weak shocks one has for the velocity jump across the
shock front

Umji = S CsMi (36)

where

ni = P_2—_/)1_ < 1 (37)
p1

is the shock strength and cg the sound speed (Ulmschneider,
1970). py,pr are the densities in front and behind the shock.
From Egs. (35) to (37) it follows that

(po) = 112 pocs (), (38)
where

1
=Y % ()

i=1

is the square average of the shock strength. The second term at
the Lh.s. of Eq. (29) can then be written as a wave pressure force

a1 2, 2
fW_EEPOCSw} (40)
or, alternatively, as
= 2 T @)
z cg
since ypy = c% po and
1 2
Finecn = {5 vpocs (1) - 42)

Eq.(42) represents the mechanical energy flux of sawtooth shock
waves (Ulmschneider, 1970, note difference of notation of F,,,).
For weak shocks, the dissipation of Fy,., with height is given by

363

dFmech _ 1 3 —1
P 12v(v+1)po<n>9’

(43)

(Ulmschneider, 1970, Bray and Loughhead, 1974). Hence, the

wave pressure force fy, is of third order in the shock strength 7.
For the third term on the Lh.s. of Eq. (29) we obtain

1
1 _es 1 ___ Pocs
fsn= o2 =pU) =5 ygn,pu ~ 25 m). (44)
=

We used U = cg and pp/pg = vm/cs which are valid for weak
shocks. This equation shows that the wave pressure due to shocks
comes from the momentum deposition per wave period of the
full shock jump. Compared to the wave pressure force f,,, which
is of third order in the shock strength #, the contribution fg, of
the shock pressure is of first order and thus much larger if the
shocks are sufficiently weak. We therefore neglect f,, relative to
fsh- Eq. (44) thus gives the leading order wave pressure force due
to weak shock waves. The hydrostatic equation, modified by the
inclusion of wave pressure can thus be written

dpo  pocs
dz P N =—pog ,

(45)
where pg is the unperturbed gas pressure. Eq. (45) together with
the equation governing the evolution of the shock strength #
(see Ulmschneider, 1970), and a suitable energy equation, should
allow to compute time-independent acoustically heated stellar
atmosphere models.

As a simple example let us consider an isothermal atmosphere.
The variation of the shock strength # for weak shock wave trains
is given by

dn _ _n [ldﬂ

1 1d
o+ )11+_ Y

5P (46)

dz po dz

(Ulmschneider, 1970; Bray and Loughhead, 1974). The pressure
gradient can be eliminated by means of the hydrostatic equation.
Since Fypecn has to be calculated from the true hydrodynamic
quantities and not from the time averaged ones, we have to use
(45) without the correction term pgcsn/#. It follows then, for
constant cg and 7, that

dn _n |y v+ n
kR O P . 47
dz 2 [Q% csP “7)
This equation is solved by
_ zZ—2Zy .
n(z) =n(z¢) exp ( >H, )
(48)

n(z) z—z -
I+ —(exp| —— ) -1 .
e (o () )]
Here Hy = cg /{yg) is the local hydrostatic pressure scale height
(not including the effects of shocks), z, the initial z and

y8?
(y + Decs

is the limiting shock strength. The modified hydrostatic equation
(45) then can be written as

oo = (49)

dpo y 7
=— 1—-———=1. 50
12 pog[ " (50)
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Hence, the momentum transfer of the shocks to the gas increases
the local scale height of the atmosphere. The modified local scale
hight is

2 —1
H=C—S[1——y—i} (51)
24 Y+ 110
which approches
H = Ho(y+1) (52)

in the limit # — 74, i.e., within a few scale heights.

3.2. Larger amplitude shock waves

We now assume that the hydrodynamic shock waves are not
necessarily weak, but that uy < cg. The strength of the shock is
given by the shock Mach number Mg,

U - u

Mg = ,
¢

(53)

where U, u; and c; are the shock speed, the gas velocity and the
sound speed in front of the shock, respectively. For a perfect gas
the pressures p; and p; and the densities p; and p; in front and
behind the shock are related by

2wMZ —y +1
R_ g IUTVEL (54)
p1 y+1
and
—U + 1)M2
m-U_r_g_ 0+DMs (55)
w-U p; (y —)Mg +2

(Landau and Lifshitz, 1959; note the correction of a misprint).
We now assume for the shock wave a similar velocity structure

as in Egs. (30) to (32). We obtain from Egs. (53) and (55) for the

velocity amplitude vy,

0—-1

5 =——2@ Mscl.

u; —uyg
Um =

(56)

For an average sound speed c% = (c% +c%)/2, with ¢y/c; =
p2p1/(p1p2) and using Eqgs. (54), (55) one has

2
+1

¢ = o » (57)

Q&

which with Eq. (56) yields

-1 [ 2
=2 My .
m= e VS g+1c°

Here ¢g can roughly be identified with the undisturbed sound
speed. The wave pressure force f,, due to the second term in Eq.
(29) is the same as in Eq. (40), so that

d1 5
fw_d_z gpovm,

(59)

(60)

except now vy, is now given by Eq. (59).
For the third term in Eq. (29) we find a shock pressure force
of

— U
fa=2mo0 Y Ifl) : 1)
where from Egs. (53) and (56) we have with u; = —uvy,, valid for
shocks with moderate strength, so

U= RN Mg ¢, (62)
and with Eq. (57), we can write

o -1 Mg 2
U=2 = .

6+1""o+1\[ 21 ©)
From Eq. (33) and with pg = (p3 + p1)/2 we find

_2ME-2 ©4)

PZ Pl - ’)IM'52~+1 pO )

where pg is again roughly identified with the undisturbed density.
The shock pressure force fg, is thus given by

fo = P00 IMZ—2 Mg 2
s 2 yMi+1 @+1\[ 2 °

Expanding Eqgs. (53), (55), (59) and (64) the weak shock results
can be reproduced. With these result for f,, and fg the hydro-
static equilibrium equation modified by wave pressure can be
written

(65)

dp _dpo

E—';l?‘l'fw—fsh:—/’og- (66)

4. Conclusions

We have derived expressions for the wave pressure in atmospheres
permeated by trains of sawtooth-type shock waves both for
weak shocks and somewhat stronger shocks. Two contributions
modifying the hydrostatic equilibrium were found. The first
contribution, f\,, arises from the nonlinear term in the momentum
conservation equation and is present even in the absence of
shocks. Due to the linear sawtooth shape of the waves considered
by us, its numerical value is somewhat different from the form
derived for sinusoidal waves. However, this wave pressure term,
fw, 1s small, and in the presence of shocks, can safely be
neglected. The second contribution to the wave pressure, fg,
arises from the transfer of the wave momentum to the gas at the
shock discontinuity. The advantage of the present expressions of
the wave pressure is that they allow to compute the behaviour
of atmospheres permeated by a spectrum of shock waves of
very different wavelength. Here short period waves could be
treated with the present formalism, and long period waves with
a time-dependent method without the need of a very fine mesh
size.
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