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Abstract. The nonlinear time-dependent response to purely trans-
verse foot point shaking of a vertical magnetic flux tube in the
solar atmosphere was studied. The adiabatic calculations show
the generation of a longitudinal wave mode which has twice
the frequency of the transverse wave. The amplitude of the
longitudinal wave increases with the wave period and with the
magnitude of the shaking. Due to the action of centrifugal forces
significant lifting of the tube gas was found. A forced oscillator
type resonance occurs which depends on the tube length.
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1. Introduction

We consider the propagation of nonlinear adiabatic magnetohy-
drodynamic waves in intense thin magnetic flux tubes embedded
in the otherwise field-free solar atmosphere. Since the discov-
ery of the highly inhomogeneous magnetic flux distribution at
the solar surface (Stenflo 1978, Zwaan 1978, see also Stenflo
et al. 1987) the propagation of magnetohydrodynamic (mhd)
wave propagation in magnetic flux tubes has been extensively
studied (starting with e.g. Defouw, 1976; Roberts and Webb,
1978, 1979; Wilson, 1979; Parker, 1979; Wentzel 1979). For more
recent discussions see e.g. Edwin and Roberts (1983), Herbold
et al. (1985) as well as Molotovshchikov and Ruderman (1987).

Spruit (1982) as well as Edwin and Roberts (1983) have shown
that in the thin, intense fluxtube geometry there are several wave
modes possible: a torsional mode, the nonlinear propagation of
which has been studied by Hollweg et al. (1982), and recently
by Anton (1989), a transverse mode and a longitudinal mode. The
nonlinear behaviour of the longitudinal wave mode has been
investigated by Herbold et al. (1985) who found that these waves
behave essentially like acoustic tube waves. These authors found
that a main difference between acoustic and longitudinal tube
waves is the propagation speed. The former propagates with the
sound speed cg and the latter with the tube speed c7.
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The attention given to the study of mhd waves is only partly
explained by the fact that they are an interesting phenomenon
of the outer solar atmosphere. A main reason for the great
interest in these waves lies in the fact, that mhd waves may
be one of the basic mechanisms both for the generation of hot
chromospheric and coronal layers around late-type stars (see e.g.
Stein and Leibacher 1980, Kuperus et al. 1985, Ulmschneider
1986, Narain and Ulmschneider 1990) and for the production
of stellar winds (see e.g. Hartmann and McGregor 1980, Dupree
1986, Cuntz 1987, An et al. 1990). For the very tight correlation
of the magnetic flux density and the chromospheric emission
flux see Schrijver et al. (1989). It is highly likely that mhd
waves constitute one of the prime energy carriers from the stellar
envelope to the regions where the UV and X-ray radiation
and the stellar wind flows originate. Thus all aspects of the
waves, their generation, propagation and dissipation are of great
importance.

For the dissipation of mhd waves see the review articles
of Kuperus et al. (1985) or Narain and Ulmschneider (1990).
As the acoustic-like longitudinal mhd waves easily form shocks
they clearly represent an efficient dissipation mechanism. Yet it
seems more difficult to directly dissipate transverse and torsional
waves. The generation of mhd waves is little understood. A
simple dimensional analysis by Stein (1981) and Ulmschneider
and Stein (1982) predicts considerable wave energy flux for both
longitudinal and transverse waves. However, recent computations
of the production of longitudinal waves in solar convection zone
tubes by linear buffeting from the turbulent convection give little
energy (Musielak et al. 1987, 1989). As there are errors in these
calculations (see Musielak et al. 1990) and as there are large scale
distorsions of the flux tubes by the granular flows the energy
production of these waves is probably considerably larger. In
the transition layer, where the flux tubes are thought to occupy
the entire available space, Athay and White (1978) observe little
acoustic energy. This is consistent with the picture that the
longitudinal waves:are dissipated by shocks, which makes the
longitudinal waves a prime candidate for the heating of the low
and middle chromosphere.

An alternative method for the production of longitudinal
waves is the nonlinear mode-coupling from other wave types as
discussed by Wentzel (1974, see also Narain and Ulmschneider
1990). Mode-coupling permits the scenario that transverse or
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torsional waves carry the energy into the outer layers where the
dissipation is eventually affected by longitudinal shock waves.
This could be the way by which the high chromosphere is heated.
Musielak et al. (1990) find considerable transverse mhd wave
energy production. Nonlinear mode-coupling as a viable process
which converts torsional to longitudinal waves has been found
by Hollweg et al. (1982) and by Anton (1989).

In the present work we aim to explore the nonlinear behaviour
of transverse tube waves in detail and in particular study the
mode-coupling between transverse and longitudinal waves. For
preliminary results of the present study see Zihringer and
Ulmschneider (1987), Ulmschneider and Zihringer (1987) as well
as Ulmschneider and Musielak (1990). These results indicate
that mode-coupling indeed is very important for transverse
waves. In Section 2, following Spruit (1981) we derive the mhd
tube wave equations valid for thin tubes. Section 3 shows how
these equations are solved using the characteristics method. The
initial magnetic tube model and the applied boundary conditions
are described in Section 4. Section 5 discusses the results of
our coupled transverse-longitudinal wave computations using
different wave excitations and boundary conditions. Conclusions
are given in Section 6.

2. Basic equations
2.1. Magnetohydrodynamic equations

The behaviour of longitudinal-transverse mhd tube waves is
governed by the basic time-dependent mhd equations (Landau
and Lifshitz 1960, p. 218), by the continuity equation, the
equation of motion, the induction equation in the limit of large
electrical conductivity, and the energy equation in the form of
the entropy conservation equation:

op _
@_l_ Wy ) = -V in(VxB)+ 2
p o v =—Vp i rg
60—]3=V><(VXB), with V-B=0, Q)
Z—S+v-vs=fl—f “)
t Rad

Here p is the density, v the velocity, p the gas pressure, B
the magnetic field strength, g the gravitational acceleration, S
the entropy and ¢ the time. For the radiative heating function
dS /dt|graq various forms may be used (see Herbold et al. 1985,
Ulmschneider and Muchmore 1986). In the present paper we
assume adiabatic waves and take dS/dt|gr,q = 0. In a nonionizing
gas we have the ideal gas equation

R
p=p—T, (5)
u

and the thermodynamic relation

Fig. 1. Flux tube geometry
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where R = 8.31-107 erg/mol K is the gas constant, u = 1.3 g/mol
the mean molecular weight and y = 5/3 the ratio of specific
heats. Subscript R denotes a fixed reference state. The sound
speed cg is given by

2 p

=17 ™

2.2. Flux tube geometry

We assume a vertically oriented magnetic flux tube of circular
cross-section A (c.f. Fig. 1) embedded in an otherwise non-
magnetic atmosphere. The position of the fluid particles in the
tube can be either described by the radius vector r in a laboratory
(Euler) frame (%,§,Z), where the z-axis is in vertical direction,
or in a locally cylindrical coordinate system (8,&4,1) by the
arc-length | measured from the bottom of the tube and where
the unit arc-length vector | points along the local tube axis. We
restrict ourselves to purely one-dimensional wave propagation
and consider a thin flux tube (Spruit 1981), where the tube
spreading, that is, the ratio of the components By/B; = ds/dl, is
much smaller than one.

In our one-dimensional description we replace the physical
quantities of the fluid particle in the tube by mean values,
averaged over the cross-section. Moreover we assume that the
tube radius is always much smaller than the radius of curvature
r of the tube. This is necessary to ensure that the fluid particles
can be descibed by a unique and reversible relation between r
and I. The magnetic field is assumed to point in 1 direction:

B = Bi, )

with the magnetic flux given by

® = BA = const. )

To restrict ourselves to purely longitudinal-transverse waves we

further assume that there is no ¢-component or ¢-dependence.
With the multidimensional non-magnetic atmosphere outside

the tube the description of the gas motion in a thin flux tube is
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still a multidimensional problem. To reduce the spatial order of
the problem further, we assume that the external atmosphere is
static (i.e. does not depend on time) and varies only with height z.
The error made by this assumption can only be assessed if more
detailed multidimensional computations are made. Unfortunately
these computations are presently not available. In addition, in
the thin flux tube approximation one has horizontal pressure
balance

2

B
Pto. = Pe(2) ,

(10)
where the external gas pressure p.(z) is independent of time. This
incompressible assumption for the outside medium is certainly a
poor one, particularly as the considered horizontal velocities are
not small against the sound speed. Yet this assumption greatly
simplifies our problem and allows us to study the pure mode
coupling process without energy loss into the outside medium.
Let a be the height measured from the bottom of the tube to
the fluid particle in the initially undisturbed vertically oriented
tube at time ¢ = O (Fig. 1). This height a is called Lagrange height
and uniquely identifies the considered fluid particle. We want to
describe all physical variables as functions of the independent
variables a and t. At some later time, due to the tube displacement
and the gas motion in the tube, the fluid particle originally at
Lagrange height a will be displaced to a position given by the
arc-length I(a, t). The equation of continuity requires that

plat)A(at)dl| = po(a)Ao(a)da, (11)

where A is the cross-section of the tube and subscript 0 denotes
values in the undisturbed atmosphere at time ¢t = 0. We define a
scale factor

_ ol _ PoAo
I, = (55>t = A (12)
From Egs. (11) or (12) we have
a
I (a0) = f Pt 4q (13)
o pA t

With the radius vector r given by (x(a,1),y(a,1),2(a,1)) we have
for the unit vector 1

« or 1 [ or
I= (lx,ly,lz) (‘(ﬁ)t = E(a)t > (14)
with
B+ B+ =1. (15)
From the differential

or or 0
df = [(%)t~v]f da+[(a>a~V+E]f dt o

- (G2 (%),
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using Eq. (14) and identifying terms, we obtain the transformation
equations between the Euler and the Lagrange frames

@), -wwr ()= G o
where the velocity is given by

The curvature vector k and the radius of curvature r; are defined
(see Fig. 1) by

ol 10 . 1
= (3), - ) e
a). = p\a) th =

We now want to write Eqs. (1) to (4) in the Lagrange frame
and decompose these equations into longitudinal and transverse
components. For any vector A one has

19)

Ay = (A1, A = (ixA)x1. (20)

The transverse component of Eq. (2) reads

GG = e i),

B? A A
+Ek+p(lxg) x1
where Egs. (3), (8), (17), (19) and the relation

1o, +3B ,
Bx (VxB) = VB’ —Bl o — B> =,

(22)
have been used. We assume that the external medium is in
hydrostatic equilibrium
Vbe = peg, (23)
and modify the pressure gradient term using Eq. (10). The
transverse motion of the tube will displace the external gas.
To crudely take into account the apparent increase of inertia
of the fluid particle in the tube due to this sweeping action
on the external gas we follow Basset (1961) and Spruit (1981)
and replace the density p in the inertial term on the LHS of
Eq. (21) by p + p.. Note that this procedure critically depends
on our circular choice of the cross-section, as the amount of
displaced external material will depend on the shape which the
tube presents in the direction of the swaying. We find

(ﬂ _ i.(a_v i o P l(ii)
ot 2 ot a p+pe g\ da -

P —Pe 4

+ — (g+gld

o+ pe (g gz)

(24)

Here we have introduced the Alfvén speed cy,
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Cq = zt—p (25)

For the longitudinal component of Eq. (2) we have with Eq. (17)

~ [ Ov op
o (m) = _l_(ﬁa)t —relz

where the Lorentz forces, which are perpendicular to i, do not
contribute. With Egs. (5) to (7) we eliminate the pressure in
favour of ¢g and S and obtain

~ f Ov 1 { 2¢s [ Ocs cs,u as

i-[ = =
(at)a+l [y—l(@a) v \ @) | T8l=0- @D

Expanding the RHS of the induction equation (3), using Egs. (1)

and (17) we have

(26)

B dop
(E)a = B-V)v-BV'v = B:-V)v+ — (6‘:) (28)
With Eq. (8) the transverse component of this equation is

a 1 [[ov AR
(5).-:1&). @) ™

where B has been cancelled. The longitudinal component of Eq.
(28) reads

0B B (dp B. (ov
a) ~o\a) T &
t/a p a a a/,
The time derivative of Eq. (10) gives

2
o (B _ (2 _ (o
B (6t>a - (at( p)) iz (m)a’ GD

which is used to eliminate the magnetic field term in Eq. (30).
Replacing the derivatives of p and p in favour of those of ¢g and
S we finally have for the longitudinal component of Eq. (28)

I [ov 2cs 1 (acs
—_ —_ + —
o \oa), y—1c2 \ ot ],

(30)

(32
U cg N Uz dpe
T2t G 2, =0
Y (] t). pc 4 4z
Here we have introduced the tube speed
2.2 2
cse
or = ( ) Az) (33)
cs+cy

In summary, for the 8 unknowns cg, S , v, i of the one-
dimensional longitudinal-transverse mhd tube wave problem, we
have seven partial differential equations and Eq. (15). There
are one longitudinal- (Eq. 27) and two transverse (Eq. 24)
components of the equation of motion, one longitudinal- (Eq.
32) and two transverse (Eq. 29) components of the combined

induction and continuity equations, and from Egs. (4) and (17)
the entropy conservation equation

(%) _ s
ot “ dt Rad

where for our present adiabatic application dS/dt|gss = 0.

(34)

3. Method of characteristics

In order to numerically solve the system of time-dependent
longitudinal-transverse tube wave equations we follow our work
on acoustic- and longitudinal waves (Ulmschneider et al., 1977,
Herbold et al., 1985), and select the method of characteristics.
This method has been found to be very efficient for problems
where the characteristic time scale is the Courant time (Hammer
and Ulmschneider 1978). By a proper linear combination of the
partial differential equations from the above set we derive ordi-
nary differential equations along specific characteristic directions.
These characteristic directions are themselves given by ordinary
differential equations and represent the world lines in the a, ¢
plane along which infinitesimally small disturbances travel.

From a linear combination of Egs. (27), (32) and (34), that
is, the longitudinal components of the equation of motion and
the induction/continuity equations and the energy equation, we
find after some algebra

2
L 1§_Sdcs + /;;j
Y T yher , (35)
T uer vzer dPe T
( - ) 2 d lz =0
pCy
along the two characteristics C;, C; given by
da) ~ir (36)
at ) la

Here the top sign in Egs. (35) and (36) is for the C;’ and
the bottom sign for the C|  characteristic. Note that for purely
vertical propagation, where I, = 1, Egs. (35) and (36) reduce to
the longitudinal tube wave equations of Herbold et al. (1985,
their Egs. 53, 54). Combining Egs. (24) and (29), ie. the
transverse components of the equation of motion and the
induction/continuity equations, we find after some algebra the
two equations

(1—B) dvy — Lclydv, — lxlzdvz F cxdly

— Pe
Ixl,dt = 0,
P + eg A 37)
(1—1) dvy, — Llydv, — Iyl dv; F cidl,
Pe
— lyl,dt =0,
p+ Peg e
both along the two characteristics C, C; given by
(‘;—“) - 4% (39)
t ¥ a
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Fig.2. Space-time diagram of the computational domain showing the
various characteristics

where ¢ is the propagation speed of the pure transverse wave
given by

0
P+ pe

c = cq (39)

The top sign in Egs. (37) and (38) is for the C; and the bottom
sign for the C; characteristic. Note that the pure longitudinal
wave propagates with the tube speed cy. For a discussion of
the two characteristic tube speeds ¢, and c7 see e.g. Edwin and
Roberts (1983). Finally Eq. (34) is integrated along the 9 or
fluid path characteristic a = const:

(as) W 8
“\&) YT @
a

Fig. 2 shows the characteristics network between two consecutive
time steps in the a,t plane for an interior point P and for the two
boundary points B, T. The characteristics for the three considered
points are indicated. The physical state in the tube is supposed
to be known on the a axis between the boundary points E and F
at time ¢,. At the interior point P the 8 unknown variables at the
time t,+ At are uniquely determined by solving in addition to Eq.
(15) the 7 ordinary differential equations, (35), (37) and (40) along
the 5 characteristics. As the method of characteristics explicitly
follows the physics of the information flow, it is well suited for the
discussion of the nature of the boundary conditions which have
to be applied in our longitudinal-transverse wave computation.
Fig. 2 shows, that for the bottom and top boundary points, B
and T, respectively, due to missing characteristics, exactly three
boundary conditions each must be given.

dt . (40)
Rad

4. Boundary and initial conditions
4.1. Boundary conditions

Both at the top and the bottom of the tube, sets of boundary
conditions have to be chosen. At the top boundary, where we want
the waves to exit without reflection we have adopted transmitting
boundary conditions. Here we follow our acoustic calculations
(Ulmschneider et al. 1977) and assume that, similarly as for
large amplitude simple waves, the velocity amplitude remains
constant along the outgoing C{ and Cj characteristics. To
facilitate the specification of boundary velocities we introduce
three perpendicular unit vectors 11,12,13 We assume that l3 =lis
identical to the arc-length vector I, that 1; lies in the x, z plane,

629

and that iz is perpendicular to il and i3 in such a way, that
ll,lz, l3 form a right hand system. With the components of i
given, the two vectors 11 and b, can be computed using

!
A yxI 1 z
= = = 0|, (41)
y>x0 /eie {—lj
o ) —Iyl,
L, =1xI; = —— {l§+l§] 42)
VE+E [ i,

If the indices 1, 2, 3 indicate components along il,iz,i3, the
conditions at the top boundary point T can be written
V3T = V3R] - (43)

Vit =VlR2 > V27 =02R2 >

Here Ry, R, refer to the foot points of the ct, C;r characteristics
(c.f. Fig. 2). For the bottom boundary conditions we choose two
cases. For both cases in this study of transverse waves, we
horizontally shake the bottom of the tube and consider only
linearly polarized waves in x- direction. The two cases concern
the treatment of the longitudinal wave. The closed case assumes
a tube with a closed bottom as in an organ pipe. For this case
we assume at the bottom boundary point B:

. t
Closed : vig=-—Vvg sm(2n§) , vop=0, v3p=0, (44)
where v is the specified velocity amplitude of the shaking and P
the shaking period. The open case assumes an open tube where

the longitudinal wave is allowed to exit downwards:

. t
Open: vig=-—Vg s1n(271:§) , vop=0, vig=vig . (49)
Here Sy is the foot point of the C| characteristic (c.f. Fig. 2).
Note that in both the open and closed cases the waves are excited

by purely transverse oscillations.

4.2. Initial flux tube model

For the time-dependent wave calculation one needs an initial
atmosphere and flux-tube model. These models were computed
similar as by Herbold et al. (1985). For the external atmosphere
we took a grey radiative and hydrostatic equilibrium model,
computed with the two beam approximation. As the tube is
assumed thin, the radiation field in the tube is determined by
the external field which leads to temperature equality between
the tube and its surroundings at every given height. With
the specification of a tube radius of 50 km and a magnetic
field strength of 1500 G at the height where in the external
atmosphere the optical depth ts5009 = 1, the physical state of the
tube is uniquely determined. This tube we call exponential tube.
The height of the exponential tube is limited to less than 1200
km because above this range the criterion Bs/B; < 1 for thin
flux tubes breaks down.

However, due to neighbouring tubes exponential spreading
becomes unrealistic at these heights anyway. To crudely take into
account neighbouring tubes we have modified the exponential
tube above the height 500 km to allow only linear spreading.
This is achieved by artificially raising the external gas pressure in
accordance with Eq. (10). The external density is likewise changed
to satisfy hydrostatic equilibrium. The increased external pressure
is supposed to roughly simulate the external magnetic pressure
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Table 1. Diameter dg in km, magnetic field strength By in G, external and internal gas pressure p, and pg in dyn/cm?, temperature T
in K, sound speed cg, Alfvén speed cy, tube speed cr, transverse wave speed ck in km/s as function of height a in km for our linear

tube model.

a do By Pe po T cs ca  cr  ck

0 100 1500 1.38E5S 4.82E4 6001 80 109 66 56
340 208 344  725E3 253E3 4688 7.1 106 59 54
670 386 101  528E2 1.26E2 4681 7.1 138 63 170
1000 561 48 9.63E1 587E0 4681 7.1 304 69 16.
X Ly [ AT v
(km)- 34 g
w0 ; L(K]

- /’/‘i_A'z_‘
20 AL

_ Vv,

0 - 0

--500

-20- T

7 -,2--
-40 - L

7 v iy T3
B 7500 1000

height Z (km) height Z (km)

Fig. 3. Snapshot of a longitudinal- transverse wave of period P = 45 s
at time 600 s after pure transverse sinusoidal shaking at the bottom has
started with a velocity amplitude of vy = 0.4 km/s. Horizontal vy, vertical
v, and parallel v, velocity components, horizontal 4x and vertical z —a
displacements as well as the temperature 7 are shown as function of
height z. Note that v, and v, are multiplied by a factor of 5 to facilitate
the presentation.

X V\\ Ly |AT
(km)—1_2 \"-—.\AT Vy 3 9
- (K)

+-500

1000

height Z (km)

Fig. 4. Same as Fig. 3, however with period P =90 s.

excerted from neighbouring tubes; likewise the increased external
density should simulate the increased inertia. The resulting linear
tube is assumed to represent the conditions of the chromospheric
network and spreads with height as shown in Tab. 1.

Fig.5. Same as Fig. 3, however with period P = 180 s.

5. Results

For the linear open tube case we have solved the time-dependent
equations described above for adiabatic waves of periods P =
45, 90, 180, 300 s and purely transverse shaking at the bottom
with velocity amplitudes vg = 0.2, 0.4, 0.8, 1.6 km/s. From these
computations Figs. 3 to 6 show snapshots at the time ¢ = 600 s
of waves with periods P =45, 90, 180, 300 s, all with the same
shaking velocity amplitude vy = 0.4 km/s.

5.1. Height dependence of the wave properties

The horizontal velocity vy is seen to grow rapidly with height.
This is a consequence of wave energy flux conservation. As the
transverse wave speed cy, is roughly constant over a large fraction
of the tube (c.f. Tab. 1), flux conservation, pvZcy & const, implies
that the amplitude of the velocity v, behaves roughly like p—1/2
and thus grows similarly in all four Figs. Strict flux conservation
would imply an amplitude of vy = 1.5 km/s at 340 km height,
while only v, = 0.8 km/s is found in Figs. 3 or 4. This shows
that the transverse wave flux is only approximately conserved.
The reasons for this are discussed below.

The horizontal displacement Ax is seen to trail vx by n/2 in
phase, with maxima at the nodes of v, and nodes at the maxima
of vy. The velocity component v, and the direction cosine I, have
a phase difference of n. For the wave propagating in vertical
direction these facts are explained as follows. If at a node of 4x
the inclination of the tube in the +x-direction is largest, then
the fluid particle because of the frozen-in condition suffers the
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Fig. 6. Same as Fig. 3, however with period P = 300 s.

largest rate of displacement in Fx- direction, being pushed out
of the way by the advancing B-field. v, and I, have the same
spatial frequency kg. x oscillates around a value xg = voP /(27)
obtained by integrating Eq. (45). The profile x versus height gives
the actual geometrically distorted shape of the tube axis.

An interesting property is that the maximum swaying am-
plitude Ax increases with the wave period. For the waves of
Figs. 3 to 6 the maximum horizontal swaying amplitudes 4x are
20, 45, 100, 130 km at periods P = 45, 90, 180, 300 s respec-
tively. Although there is a considerable increase of the swaying
amplitude by a factor of 6, it is seen from Tab. 1 that these
displacements are still only a fraction of the tube diameter. The
reason for the increased swaying amplitude with wave period is
the similar dependence of the velocity amplitudes vx on height
for the waves of Figs. 3 to 6 of identical excitation amplitude .
The longer integration timespan for longer wave periods then
leads to greater excursions Ax = | vydt.

5.2. Appearance of a longitudinal wave

In addition to the horizontal velocities, vertical velocity compo-
nents v, appear. Figs. 3 to 6 show that v, (and I;) has a spatial
frequency of 2k, twice as large as that of the components vy and
l;. This is understood from the fact that the direction cosine I,
goes through two cycles for every one cycle of I, because after
Eq. (15) the sign of I, does not affect the magnitude of I,. The
reason for the appearance of these longitudinal (compressional)
velocity components is the action of the curvature forces which
are always perpendicular to the local tube direction, c.f. Eq.
(19). These forces have horizontal and vertical components. In
one wavelength of the Ax profile the vertical force component
changes sign twice while the horizontal force component only
once. It is the action of the vertical force component which
leads to rarefactions and compressions of the gas and thus to a
longitudinal wave.

As already noted above, there is only approximate flux
conservation for the transverse wave. Part of the wave energy is
used to feed the longitudinal wave mode. This is seen from the
fact that the amplitude of v, increases spectacularly by about a
factor of 16, 30, 70, 140 over the entire height range for the
waves with period P = 45, 90, 180, 300 s, respectively. Yet the
longitudinal wave flux is only a fraction of the transverse wave
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flux. As we will discuss below, the missing transverse wave energy
flux is spent mainly on the work done in lifting the tube gas.

Strictly speaking the vertical velocity component v, is not
the longitudinal velocity. The component parallel to the tube is
defined by

vp = Ixvx + vy + Lv,. (46)
Figs. 3 to 6 show the parallel velocity component v, and its
rapid increase with height. It is seen that vp, similar to v;, has
a spatial frequency of 2ky but contrary to that component is
entirely negative. This behaviour of v, is explained as follows:
The product Ivy, due to the phase difference of =, as shown
in Figs. 3 to 6, is always negative and because v, is much
larger than v, leads to a negative main contribution in Eq.
(46). The same product is also responsible for the doubling of
the spatial frequency. That v, is persistently negative, appears
to contradict the mean upward mass flow necessary for the
lifting (see Sec. 5.3). This apparent contradiction is due to a
projection effect: v, results from a total velocity vector, directed
predominantly horizontally but slightly vertically (generating the
lifting), projected onto a considerably inclined tube axis.

The nonlinear coupling of the longitudinal and transverse
wave types generates a whole spectrum of different spatial
frequencies. Fig. 3 shows that v, in addition to the dominant
spatial frequency 2kg also has the fundamental frequency kg as
seen by the fact that every second amplitude is characteristically
different in size. In addition the term v,l, in Eq. (46) produces a
series of higher orders of k.

Because long period waves have more extensive swaying
excursions 4x, they suffer greater gas pressure fluctuations. This
results in a greater longitudinal wave energy generation for long
period waves: In Figs. 3 to 6 the ratio of the velocity maxima
v, /vy near 800 km height is 1/9, 1/8, 1/6, 1/4 for the waves
with P =45, 90, 180, 300 s, respectively.

5.3. Lifting due to centrifugal forces

As already mentioned above, an interesting effect found in
our calculations is the lifting of the gas column in the tube.
We attribute this effect to centrifugal forces introduced by the
increase of the swaying with height. Swayings in +x- directions
both result in outwardly directed force components. Figs. 3 to 6
show the lifting z — a of the fluid element originally at height a
as function of height. The topmost points in Figs. 3 to 6 after
the swaying has operated for 600 s, are lifted upwards by 30
to 40 km, roughly independent of the wave period. This lifting
continues at later times as shown in Fig. 8.

As is seen from the temperature distributions AT = T'(z) —
To(a) in Figs. 3 to 6, this lifting leads to adiabatic cooling which
is more extensive towards the top of the tube. As the gas is
lifted to greater height the gas pressure there is increased, and
due to horizontal pressure balance, the tube expands, whereby
the magnetic field strength decreases. The oscillations in the
temperature distributions with twice the fundamental frequency,
2ky, indicate that they are associated with the longitudinal wave.
This is also seen by the small phase difference between 4T and
v, in Figs. 3 and 4.

The bottom of the tube moved down into the sun by about
7 km. This effect depends on the chosen boundary condition and
on the magnitude of the swaying as seen in Fig. 7. In calculations
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Fig. 7. Longitudinal-transverse waves of period P= 90 s at time t=450
s, excited by different velocity amplitudes vy = 0.2,0.4,0.8 km /s. The
vertical velocity v;, the height shift z —a and the horizontal displacement
Ax are shown.

with a closed case boundary the tube bottom showed an opposite
behaviour and was lifted by a comparable amount. In these
closed tube cases the entire tube atmosphere was lifted which
has already been found by Zihringer and Ulmschneider (1987).

5.4. Other tube models

So far the computations involved a linear open or closed
tube model. We now want to discuss a few other model
computations. For a similar excitation as for the linear tube
model we found for an exponential tube model (see Sec. 4.2)
that although the results were rather similar at low height they
differed considerably at great height. This behaviour is expected
as below the height 500 km both tube models are identical.
At great height the swaying amplitude in the exponential tube
became much larger than for the linear tube as the outside
gas pressure in the exponential tube is much smaller. Due to
the increased swaying, the lifting, the adiabatic cooling and
longitudinal velocity component generation were all strongly
magnified.

Another case investigated by us was a linear tube model
with the magnitude of the magnetic field reduced from 1500 G
to 1000 G. Aside of the fact that the different Alfvén speed
lead to a much smaller wavelength for a given excitation
period, the amount of lifting, adiabatic cooling and longitudinal
velocity component generation was not much different from
the corresponding strong field case. Both the exponential tube
and the 1000 G tube cases were computed only for curiosity
and are not very realistic. The exponential case because the
magnetic fields are not permitted to spread unperturbed by
neighbouring fields, and the 1000 G field case because it violates
the requirement that at photospheric heights the tubes are nearly
empty and the magnetic field strength obeys B2/8n ~ p,. We
hencefourth stay with the linear open tube model of Tab. 1.

5.5. Dependence on the intensity of swaying

As nonlinear mode-coupling effects increase with the amplitude
we expect that the ratio v, /vy increases with increasing excitation

amplitude vg. For the P = 90 s wave of Fig. 4, two additional
snapshots at similar times but with different excitation amplitudes
are shown in Fig. 7, which demonstrate that this expectation is
indeed true. The ratio v,/vx near 670 km height is found to be
1/15, 1/8.2, 1/6.8 if v9 = 0.2, 0.4, 0.8 km/s, respectively. Near
the top of the tube these ratios increase rapidly. Thus the ratio of
longitudinal to transverse wave energy increases with increasing
swaying amplitude.

The amount of lifting also depends on the swaying velocity
vp. It is seen that the top point is lifted by 7, 30, 110 km for for
the swaying amplitudes of vy = 0.2, 0.4, 0.8 km/s, respectively.
It should be noted that with swaying amplitudes of vy = 0.8km/s
and larger, the horizontal velocities v, became supersonic after
a short propagation time of the wave. Here the validity of our
equations becomes questionable. In addition, to be consistent
with our one- dimensional description, it is necessary to ensure
that the radius of curvature of the tube stays larger than the tube
radius. This condition limits the excitation amplitude. In our
cases with P = 45s we find, that the waves should have initial
velocity amplitudes vy < 0.5 km/s. This is valid for the linear
tube, for the exponential tube the excitation amplitude must be
much smaller.

5.6. Resonance effects

The time-development of the swaying of purely transversely
excited flux tubes is shown in Figs. 8a and 8b. Both cases have
the same excitation amplitude vy = 0.2 km/s and wave period
P = 300s. Horizontal velocity amplitudes of this magnitude of the
solar five minute oscillations have been observed by Title (1987) in
the SOUP experiment. Transverse wave calculations using these
excitation parameters have been discussed by Ulmschneider and
Zihringer (1987). Different from their work based on exponential
tubes we assume here linear open tube models.

Fig. 8a shows 25 consecutive phases of the horizontal devia-
tion Ax of the tube axis versus height separated by 75 s = 1/4
wave period. The starting model was purely vertical with Ax =0
at time t = 0 s. It is seen that in phases 1 and 2, at ¢t = 75 and
150 s, the wave did not have time enough to completely cross the
model. The length ~ 1000 km of our tube model was chosen to
be about 1/4 of the wavelength A. Fig. 8a shows that in response
to the shaking with constant amplitude, the swaying amplitude
at greater height first increases rapidly with time and then, after
about 5 wave periods, reaches a maximum. We attribute this to
a resonance situation similarly as in a forced oscillator. Such
a resonance depends strongly on the tube length, as is shown
below.

The deviation of the flux tube by about 9° from the vertical
direction leads to magnetic field oscillations with amplitudes of
about 16 percent for the By and 1.3 percent for the B, component.
Our calculations show that the magnetic field strength B decreases
secularly with time due to the mass flow towards the top, as
discussed in Sec. 5.3. The lifting of the tube gas at the upper part
of the flux tube can be seen in Fig. 8a (and 8b) by the height
dependence of the top of the tube. Fig. 8a shows that the top
of the tube after 1875 s is lifted by 100 km and that this lifting
process continues vigorously.

Fig. 8b shows an identical wave calculation to that of Fig.
8a which uses the same linear open tube except that the tube
length has now been decreased from 1000 km to 800 km. The
same phases as in Fig. 8a are shown, plotted on similar scales.
That the excitation and initial state of the tube are identical is
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Fig. 8. Snapshots of a longitudinal- transverse wave of period P = 300 s
with excitation amplitude of vy = 0.2 km/s shown at 25 consecutive
(numbered) phases 75 s appart. Only the horizontal displacements 4x
are shown. Panels a and b show the results for tubes of 1000 and 800 km
length, respectively

seen by the fact that the phases 1 and 2 are the same in Figs.
8a and 8b. The smaller tube length in Fig. 8b decreases the
height below the ~ 4/4 value. By comparing Figs. 8a and 8b it
is seen that the increase of the swaying amplitude with time and
the maximum swaying amplitude as well as the lifting are all
much smaller in the shorter tube case. This shows that the tube
height plays a critical role for the occurrence of resonances in
the shaking amplitudes as is expected from the analogy with the
gas oscillations in an organ pipe. For realistic situations it is not
clear what the choice of a different tube height means. A realistic
tube does not end at a certain height and is not independent of
its neighbours. It is true that the canopy height can be widely
different in active and quiet regions. The present work shows
that the height over which it can be considered a single entity
plays an important role. However, a realistic behaviour of the
swaying can only be simulated if radiative damping effects are
taken into account.

6. Conclusions

The nonlinear response to purely horizontal foot point shaking
of vertical magnetic flux tubes was studied. Due to the approx-
imate transverse wave flux conservation, the horizontal velocity
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component vy was found to increase with height. The horizontal
swaying excursions Ax were greater both with increasing height
and with larger wave period. The nonlinear interactions led to a
with height rapidly increasing vertical velocity component v, with
twice the spatial frequency of the transverse wave. The amplitude
ratio v, /vy indicative of the efficiency of the longitudinal wave
generation strongly increases with the wave period.

The increase of the swaying with height led to outward
vertically directed centrifugal forces which produced a significant
lifting of the tube gas. This lifting resulted in considerable
adiabatic cooling near the top of the flux tube. The vertical
velocity component and the amount of lifting were found to
depend strongly on the magnitude of the shaking. The chosen
tube length plays a role in the appearance of resonances, similar
as for a gas column in an organ pipe. However, these resonances
are difficult to interpret in view of the fact that realistic tubes
do not have a finite extent and moreover have neighbors. Finally
it must be stressed that the inclusion of radiation effects are
urgently needed.
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