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Abstract. An operator splitting method for the calculation of
spectral line radiation assuming partial redistribution is dis-
cussed which is suitable for atmospheres with shock discon-
tinuities.
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1. Introduction

The numerical treatment of radiation transport in spectral lines
when shocks are present and when partial frequency redistri-
bution is assumed is difficult and needs an efficient method of
solution. Available methods (e.g. Uitenbroek 1990) do not al-
low for grid spacings with zero optical distances as occurs when
shocks are treated as discontinuities. In the present work an op-
erator splitting method is presented which allows the efficient
computation of source functions and line profiles. This method
uses a diagonal operator after Olson & Kunacz (1987) and is
outlined in Sect. 2. Section 3, discusses the convergence prop-
erties of the method. The conclusions are presented in Sect. 4.

2. Method
2.1. Radiative transfer in the observers frame

The situation for which the present method to compute spectral
lines is envisioned is a plane parallel atmosphere permeated by
vertically propagating acoustic shock waves of moderate am-
plitude. Here moderate means that the velocity amplitude is at
most of the order of the sound speed. The wave causes tem-
perature 1", density p and velocity v fluctuations which at the
shocks jump over an infinitesimally small distance from a front
shock state to a back shock state. A typical situation for which
we envision the method is shown in Fig. 1 which is taken from
an acoustic wave calculation in the solar atmosphere by Ram-
macher & Ulmschneider (1992). Here the velocity jumps are
from about -4 km/s in front of the shock to roughly +4 km/s
behind the shock. The temperature jump at the shocks is about

5000 K. Because of the occurrence of these jumps the radiative
transfer is considered in the observers frame.

For a spectral line with background continuum the transfer
equation may be written

oI,
a’;(f) = [puu( +7(D)] [Lu(r) = Spu()] M

where
T(Z)=/XL(Z')dZI ; @

z

is the reference (line center) optical depth and

_ Xxc(@)

() xL(2)

, 3)
is the ratio of background to line center opacities. z is the ge-
ometrical height and I,,,, the specific monochromatic intensity
of a beam of radiation inclined by an angle ¥ with respect to the
outwardly directed z- axis. y = cos ¥} and v is the frequency. xr,
and x¢ are frequency-independent line and continuum opaci-
ties. ¢y, is the absorption profile, given by

_ H(a,v)
Pop = NN 4
with
r
a= m ) (5)
Ly W (1 - pu(z)/cr) ' ©

Avp

T is the damping constant, Avp the thermal Doppler width, u
the gas velocity and cy, the light velocity. The absorption profile
satisfies the normalisation condition
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Fig. 1. Acoustic wave with period P = 45 s and initial energy flux
Fu =2-10% erg em ™2 s~ after Rammacher & Ulmschneider (1992).
Temperature T' (K), velocity u (km/s), pressure log p (dyn/cm?) are
shown as function of Euler height z (km)
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The total source function is given by

uu(T)SE,(7) + r(D)B(r)
Pon(T) +7(7)

SV}L(T) = > 3)

where B is the Planck function and Sy, the line source function
given by (Cheng 1992)

55;4(7-) =
+oo +1
=) _/ _/1 R o' 'y Dl (' dy’
+e(T)B(T) . ©)
(1) = < where €'(1) = Refat (1 _ e—hu/kT) (10)
1+¢ Aoy )

is the photon destruction probability and R is the redistribution
function. For € and R see Mihalas (1978) Chap. 11 and 13. For
R we take either the redistribution function Ry if we consider
PRD or ¢, ../, when CRD is considered (see e.g. Mihalas
1978, Eq. 13-73). Note that in the CRD case the source function
S,f“ﬂ becomes independent of v and .

We now restrict ourselves to two beams along the ray
p = cos ¥, where we have ingoing I;,(7) and outgoing I (1)
photons, and where from now on p = |u|. For an extension of
the present method to an arbitrary number of beams see Buch-
holz and Ulmschneider (1994, in preparation). In the two-beam
approximation Eq. (1) can be written

oIy, (1)
or

= [p (M) +r(D)] [0 = SH)] (11)
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ol
- —g—’;@ = [ +7@)] [ = S7)]

where 7 after Eq. (2) does not depend on direction. The total
source functions are then given by

(12

@}, (T)SLHT) + 7(T)B(7)

SH(r) = K 13
e R R =
— L—
5o (r) = Pou(T)Siy (r) + r(r)B(r) "
Pop(T) +7(1)
Defining
G, v it 7y = BV 1L T) (15)

901/;4(7')

the line source functions are written
+00
ST () =11 — e(r)] / Gy o' ! T () +
—00

(1= e [ GO/, =4, I +DB() (16

+00
S,E/I:(T) = [1 - 6(7—)] / G(Va —H, Vla ,U,/, T)I;'u’(T)dV,"'

[T —e(m)] / G, —p, V', —p', I, (T)dV +e(T)B(T) .(17)

As the number of photons must be conserved during the scat-
tering process we must require that

+00

+00
/G(l/“u,,ljl,p,/’T)dl/-i-/G(U,—p,,l/’,'u,l,T)dljl=1 7(18)

—00 — 00

+00
/ G(’/, Hs V,’ _/»1',7 T)dVI

—00

+ / G, —p, V', —p',m)dv' = 1. (19)

We now assume that the redistribution functions G are not
strongly p-dependent and that the pi-dependence enters the prob-
lem only, because it Doppler shifts frequencies due to the ther-
mal motion of the gas particles and of the macroscopic fluid
motion. In Eqgs. (11), (12) and (16), (17), photons with v/,
enter a gas element, are scattered and emerge with v, . Here
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Fig. 2. Scattering cases in a two-beam approximation

w either remains unchanged or photons are scattered into — .
This allows to drop the u- dependence in the G-functions except
where it influences the frequencies v.

Consider the scattering process in a gas element moving
with the velocity u in +z-direction. Figure 2 shows the possible
scattering processes. From Fig. 2, following a photon from the
laboratory frame into the comoving frame of the gas element
where it suffers a scattering event and reemerges Doppler shifted
back in the laboratory frame, we have the four cases

U u
GV, 1) =G — vy — 1/0—#, v —yy — VO—N,T)
cy, CL

_ U u
GV, 1) =Gl -1y +1/0—H-,1/ — vy — VO—N,T)
cL

L (20)

_ U
GV, 1) =G — 1y — 1/0—'“,1/ — v+ U—,T)
cL CcL
U U
G WV, nN=Glv -1+ VO—M, vV — g+ 1/0—'“,7')
Ccr, Cr,

With these redistribution functions the source functions (16),
(17) are greatly simplified.
Integrating Eqgs. (11), (12) one has the formal solution

IIn) = /TN [<P (T/, vV — 1 ut;“) +r(T')] S’y

exp{_/r |:(p (T”,V_VO (CZ)/"‘> +r(r //):| . }d;
+I;(TN) exp {—/TN [<P (T",V - Vou(z_"),u)
- L

1023
+ T(T")] dL} @1
W
I;(r)=— / ' [90 (r',u+ VOM) +r<¢')] 85 (r')-
0 cL
ol [ p(reont) | )
T’ CcL 12
+I, (1) exp {/T [go (7’", v+ MT”M)
0 CL
+ 7‘(7'")] dL” } (22)
U

Here I,,,(71), I, (Tn) are boundary intensities which can be
set equal to zero if one has no incident radiation at the surface
71 and if the optical depth at the bottom 7y is very large. The
profile function ¢, has been written explicitly.

With N, depth and N, frequency points Egs. (16), (17) can
be written as matrix equations, where the number of subscripts
indicates the size of the matrices

Sy, =Ry, I +R . 1. +¢eB,, (23)
S_ = R;:’ I+ -t R;V TIV T terByr (24)

where for every depth point 7, €. is a scalar function and the B’s
are vectors of size N, with the identical values of the Planck
function at line center (v = 1) as components. Here

R:: T = =(1- GT)WGVV T

R:; T (1 - GT)WG:; T (25)
R, =(1-e)WG,,
R;V_T - (1 ET)WG;I/_T

where W is a diagonal matrix of size N,, X N,, which contains
the frequency integration weights. For every depth point 7, the
I’s and S’s are vectors of length NV, and the R’s matrices of size
N, x N,,. For the formal solution one similarly finds

II/"I' = A;/ (26)

+
! SV'T' 9

| B Q7)

v'T vt

where the A-operator is a matrix of size N, x N, for every
frequency point . In principle Egs. (23) to (27) can be solved by
direct matrix manipulations. This however involves inversions
of large matrices and is very time consuming. It is therefore
advantageous to use an operator splitting method.
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2.2. The operator splitting method

The operator splitting method supposes that a simplified opera-
tor, A*, in our case a diagonal operator (given in the appendix),
can be found which leads to an approximate solution and which
in a series of perturbation iterations lets the approximate so-
lution converge to the true solution. The speed of the method
derives from the greatly simplified matrix inversion. Assume
that

A=A+ (A" A |, AV =A"+A"=-A"), (28)
where A**, A*~ are two in 77’ diagonal operators. Then by

inserting Egs. (26), (27) in (23), (24) one has

Syr =RoL AT ST+ R (AT =AY, LSk
RO ATS AR (AT = AT) LS, + rBur, (29)
Sy, = Ry AL SE, R (AT = A™) S0
R, A S AR (AT = ATT) LS+ 6By (30)

Assume that the source functions can be written as a series with
successive terms of decreasing magnitude S}, = S0 +S7!
S, =S;%+8; !+ .. Inserting these expansions and collecting

terms of the same order, noting that the terms with A — A* are
of lower order, one finds for the zeroth order

SO =R, AL S R ASTST) +e,By, (31)
S;0=R A S +R) S ASTSY 4By, (32)
for the first order
StL=RE, AN SR, (A* _ A**) o g+0

R ATS R (AT M) S, (33)
;. R;:,A“ St + Ry, (AT = A7), S30

R ASTS AR (AT AT, LS00, ()
and for the k-th order
SR = RY AL ST, 4 REL, (AT = A™),, spA!
R NS A R (A=A, s, (9)
SoF =Ry ASLSIE R (AT A7), L Sy
RO ASSOR R (AT AT, SR L (36)

Adding Egs. (31), (33), (35) as well as (32), (34), (36) up to k
and defining successive approximations of the source functions
by
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k k
Sl =D S5 5 Sp=) 8, 37
j=0 3=0
one finally finds

(1 — R, AS)SE

vtk

+—
=+R} A Sy +€Bu + R
++ *+
RuurA VTIc 1+Ruurlurk 1 Ruu'r v'r I/‘Tk‘ 1 ’(38)
e A k—
(1 Ruu TAU T)Su'rk:
_ —+ *+ ot
=+R, 5 AL Sy e B +R T
—+ *+ —— AX— Q—
Ruu -rA u T,k— 1+Rw/ TIV T,k—1 Rl/u’r v v T k=11 (39)

where for the k — 1-st approximation of the source function the
formal solution

+ +
Iu T,k—1 " Au"r‘r’su’r’,k—l

- e , (40)
Iu 't k—1 " =A TT’SV’T’,k—I

has been used. Equations (38), (39) constitute a system of equa-
tions for the k-th approximation of the source functions given in
terms of the k — 1-st approximation. The advantage this system
is, that it involves only quantities of a fixed depth 7 and that
the matrices need only be of the N, x N, size while the full
dependence enters when the formal solution is computed.

To solve this system of equations we define eight auxilliary
matrices

Al = RIATL, L A =R AT, @
A =R A =R A

D=1 —-A )", (42)
For=(—AL, — AL DurAls )7 (43)
Guvrr = DuwrrAss, “4)
Hyyr =ForAL Duir 45)

and two error vectors

_ p+t o+ +— 1— +
EVT k-1 — Rw/"rIu’T,k——1+Ruu’7-Ix/"r,k—1+6TBUT—SV’7,k—1 ’ (46)
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Eur,k

V=R T

vv'T

1R 1rerBur—=S, k1 .(47)

v T, k— v'T,k—

Adding and subtracting S}, 1, S}, x_; in Egs. (38) and (39)
the system can be written
( w/ T)(SVTk Vr,k—l)
= ;; 'r(syrk S;r,k—l) + E.;'r,k—l ) (48)
1- ;I/_;T)(S;Tk - S;T,k-—l)

A;:r(su-rk I/T,k~1) + Ez;r,k—l ’ (49)

and eventually

ok =S k1) = Guwr(Sy—Spr k- ) HDuw By oy, (50)

(Surk Sur,k—l) = HI/I/’TE;T’]C_I + FVV,TE:T,k—] (62))
The procedure to solve the system (38), (39) is as follows. On ba-
sis of the information about the line, the atmosphere model and
the frequency, angle and depth grids the redistribution matrices
and the auxilliary matrices can be computed. These matrices
need to be calculated only once, at the start of the iteration. For
the redistribution matrices G the redistribution function R;; is
used either alone or in the form of Eq. (13-73) by Mihalas (1978,
p. 435). For Ry the approximation of Gouttebroze (1986) was
used. The simplified diagonal operator, A*, constructed using
the method of Kalkofen & Ulmschneider (1984) is given in the
appendix. The solution is obtained by the following iteration
steps. With the k — 1-st estimate of the source functions S}, .,
S, k—1» the formal solution is computed via Egs. (40), using the
linear method of Kalkofen & Ulmschneider (1984). The error
vectors EW_ k—1>Epr 1> are evaluated from Egs. (46), (47). By
using Eq. (51) and subsequently (50), the k-th estimate of the
source functions are found etc.

3. The convergence properties of the method

In his discussion of the acceleration of the iterative convergence
in methods of radiative transfer, Auer (1987, 1991) uses an exact
solution to test his complete redistribution method. In our case
of partial redistribution an exact solution is not known to us. To
assess the convergence properties of our method we therefore
generated an “exact” solution by slightly modifying the source

1025

lambda iteration

log error E
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Fig. 3. Maximum error versus iteration number for our method with
and without NG-acceleration, and using the lambda- iteration

term. To improve the convergence in our iteration scheme we
follow Auer and employ the NG-acceleration in the following
way. For every frequency and angle point, we retain the source
functions as function of depth of four subsequent iterations.
Similarly as discussed in Auer (1987) we then extrapolate to
an improved source function vector at the given frequency and
angle in such a way as to make the least squares sum of the
source function changes 6.5 a minumum.

Employing 29 frequency, 2 angle and 170 depth points we
iterate IT" = 4000 times until the relative deviations 65/.5 are
less than a few times 10™'3. In this situations the error vectors
6S : Ej, _1, B, ,_; have elements which are everywhere
smaller than about 5 - 107!, Comparing this in Egs. (46), (47)
with the source term eB we see that the error terms are every-
where at least 3 - 10~ times smaller than the smallest value of
€B of 1.8 - 10~ !4, which occurs at the front shock point near
1400 km (see Fig. 2 of Rammacher & Ulmschneider 1992). By
adding the error vectors to the vector eB we slightly modify our
problem in that we now seek a solution for this combined source
term. For this source term the source functions of the last iter-
ation (at IT=4000) are an exact solution to machine accuracy.
This we henceforth call “exact” solution, Sez4¢¢, although it is
only the exact solution to a slightly modified problem.

Using the thus found source functions as exact solution, we
are able to investigate the convergence properties of our method.
In Fig. 3 we give the maximum error E = |S — Sezact|/Sezact
over all frequency, angle and depth points of a given iteration as
function of the iteration number I7". It is seen that with the NG-
acceleration, after about 1400 iterations, the source function has
converged to machine accuracy. Without NG- acceleration, the
convergence is noticeably slowed, while for the pure lambda-
iteration the convergence is very slow as expected.

With about 200 iterations and using the NG-acceleration, a
reasonable accuracy of about E' = 0.1% is reached. This is what
one demands in practical applications. That I'T' = 200 gives a
resonable accuracy is also seen from Fig. 4, which shows the
emerging line intensity as function of iteration number I7".

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994A%26A...288.1021U&amp;db_key=AST

FT992A&A. © 72887 121U

1026

8E-6 |- N\

6E-6 |- [ hy

intensity
'S
m
&
1

2E-6 |-

OEO0
-0.2

0.2

wavelength (A)

Fig. 4. Emerging line intensity as function of iteration number using
our method. Convergence is found after about 200 iterations

It remains to discuss why the convergence is an order of mag-
nitude slower than that discussed by Auer (1987, 1991). First,
our problem couples the source functions over the frequency in-
tegral which should lead to a much more difficult convergence
behaviour. Second, we use the diagonal Olson+Kunasz operator
which is known to lead to much slower convergence compared
to a three or pentagonal operator or to the full Scharmer opera-
tor (Carlsson 1986). That this is so, has been tested by looking
into the convergence property of the method in the CRD case,
replacing Ry by ¢,y . Theerror E =5 10713 in this case
was reached after about 300 iterations, using NG acceleration,
which is much slower than the 55 iterations found for the same
case using a three diagonal operator (Buchholz et al. 1994). The
convergence of the method in the PRD case is thus as one ex-
pects from a diagonal operator. Finally note that the computer
code including test output can be obtained from the author upon
request.

4. Conclusions

We have developed an operator splitting method for the calcu-
lation of spectral line radiation assuming partial redistribution.
This method is able to treat shock discontinuities and leads to a
reasonable accuracy in about 200 iterations. Machine accuracy
is reached at about 1400 iterations.

Acknowledgements. The author thanks Larry Auer for helpful com-
ments on the manuscript.
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Appendix

This appendix gives the simplified diagonal operator, A*, con-
structed on basis of the linear integration method of Kalkofen
and Ulmschneider (1984). Assuming depth pointsk = 1,---, K
counted downwards into the star and frequency points n =
1, -, N one computes for the outgoing beam the optical depths
7,1 and for the ingoing beam the optical depths ok One then
has with 6 = 77 ;.1 — 71 ¢

s
2 §<1
*+ 246 =
k=Y 26— ) (52)
" { T 0>1
fork=1,---, K —1,
N (53)
and with § = Tok — Tnk—1
L 5<1
*— _ ) 246 -
=13 : (54)
k { 21+261 6>1
fork=2,---, K,
1 =0 . (55)
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