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142092 Troitsk, Moscow Region, Russia

2Institut fiir Theoretische Astrophysik, Universitdt Heidelbery,
Im Neuenheimer Feld 561, 69120 Heidelberg, Germany

Abstract

The one-dimensional longitudinal-transverse wave calculations of Ulmschnei-
der et al. (1991) in magnetic flux tubes are extended to include shocks. We
find that in the most general case oblique kink shocks occur where the shock
surface is symmetric with respect to the kink angle. The shocks suffer strong
non-linear mode-coupling and propagate with a common speed.

1. Introduction

In a stellar atmosphere, consider a thin, roughly vertically directed magnetic
flux tube with a field strength B, embedded in a non-magnetic external
medium. At some height we assume an oblique shock, which is supposed
to propagate towards greater height. Let the variables in the region im-
mediately in front and behind the shock be denoted by indices 1 and 2,
respectively. The tube behind the shock points in the direction of unit vec-
tor 1 and has the cross-section Az, while in front of the shock, it points in
the direction 1; and has the cross-section A;. The physical state inside the
tube behind the shock is given by the gas velocity uz, the density pz, the gas
pressure p; and the magnetic field strength B;. The gas pressure external
to the tube is p.. We assume that p. depends only on height and not on
time. In front of the shock the physical state in the tube is given by similar
quantities with index 1. Note that u;, u; are not necessarily directed along
the tube. The normal of the shock &, is assumed to be inclined by an angle
@2 against the tube axis I, and by an angle ¢; against 1;, such that the
tube suffers a kink. The shock is assumed to move with velocity Ugy in
direction égg in the laboratory frame, where generally ésy # €y.

As the shock occurs only inside, it can not move away from the tube. We
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thus have for the perpendicular (L) components

(Usg-ér1)éri=uyy , (Usg-€iz)éia=uis . (1)
In the frame, comoving with the shock we have the flow velocities

vi=uy—-Usg , vz2=u;-Usyg , (2)
from which with Eqs. (1) we find

vii=vi2=0 . (3)

We now make the thin flur tube approrimation (see e.g. Herbold et al.
1985, Ulmschneider et al. 1991), assume horizontal pressure balance and
magnetic flux conservation

Bf B} _
B; A; = By A; = constant . (5)

2. Oblique shocks

- Generally the four unit vectors I;,15, 55, &, have different directions. We
have derived the conservation laws for the thin tube with an oblique shock
and find that these equations lead to a symmetrical kink at the shock,

p1 = g2, O
€, = % (i1 + iz) : (6)

List of unknowns (where Unsg = Ush - il, and a, b denote the two L
components):

Ulal, Ulbl, W1, Vial, Vibls Vi1, A1, B1, p1, ;1 (7)
Ula2, ULlb2y, U2, Via2, V1b2, Vi2, A21 Bﬁa P2, P2 (8)

UnsH, l:ls Iyl: Izlr 1:1:2; Iy2r lzZs lzsH, IySHa "zSHs la:m lyn& len (9)

List of equations: We eliminate 2-direction cosines using 12, +12, +1%, =1,
2o+ 12, +12, =1, Bgyp+ 125y + 255 = 1 and replace &, by Eq. (6).
Eqgs. (4) and (5) allow to eliminate the four variables By, B;, A;, Az in
favour of p;, pz. From Egs. (3), v1a1 = Vi1 = Via2 = vip2 = 0, and Egs.
(2) give U141 = Uia2 = ULasH, ¥1b1 = uvib2 = UibsH, where UiasH,
U, psy can be written in terms of Upsy and Iz, ly1, lz2, ly2, lzsH, lysH-
With Egs. (2), v1, vz can be eliminated in favour of up, w as well as
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Figure 1: Vertical u, and horizontal u, velocity versus height for an mhd
tube wave at phase 1 and with an oblique shock at a later phase 2.

Unsy and lzq, L1, le2y ly2y lzsH, lysa. Tt is seen that only 7 longitudinal
unknowns

ur1, P1s P1y Uiz, P2, P2 Unse (10)

together with 6 transverse unknowns

I:.-:SH: IySH, I:|:1| l'yl'.u Iz‘h Iy2 ) (11)

remain. The 7 longitudinal unknowns can be treated similarly as in Herbold
et al. (1985), the 6 transverse unknowns (with 2 transverse characteristics
in front and one behind the shock) as in Ulmschneider et al. (1991).

Using a time-dependent code we have followed the development of a wave
introduced by longitudinal and transverse perturbations. Fig. 1 shows two
subsequent wave phases. Strong transverse and longitudinal shocks develop.
A first result is that despite of the different longitudinal and transverse
wave speeds a shock disturbance with a common speed develops. This is a
very interesting non-linear property which will be of great significance for
the heating and momentum deposition of such shocks initiated by mode-
coupling and purely horizontal perturbations.
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