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Abstract. We study the response of various solar atmosphere
models to excitation by adiabatic small amplitude acoustic
waves. Both monochromatic waves and acoustic spectra are
considered. We find that upon excitation, strong resonance os-
cillations of a single frequency develop which are superposed
over the excitation signal. These resonances decay exponen-
tially with time; the decay rate varies strongly with the temper-
ature gradient of the model. In realistic and positive gradient
atmospheres the decay rate is much faster than in isothermal
models, while in negative gradient models it is even slower. In-
dependent of whether the atmosphere is excited by a pulse or
by continuous wave action a similar decay behaviour is found.
The response to a stochastic wave spectrum is a series of un-
correlated transient events, each with the associated exponential
decay of the resonance.

Key words: hydrodynamics — waves — Sun: chromosphere —
Sun: oscillations

1. Introduction

Although the dominant oscillatory signal in the solar photo-
sphere is the 5-min oscillation discovered by Leightonet al.
(1962), the pronounced signal in the solar chromosphere ob-
served in the Ca II H and K, Ha and the Ca II infrared triplet
lines is one near 3 min (v = 5.5 mHz). For detailed reviews of the
3 min oscillation see Deubner (1991), Fleck & Schmitz (1991)
as well as Rutten & Uitenbroek (1991). The numerous analyt-
ical and numerical investigations prior to 1980 concerning the
dynamic response of the chromosphere to various excitations,
in which the resonance character of the atmosphere was noticed,
have been discussed by Fleck & Schmitz (1991).

As the interpretation of 5 min oscillations as trapped sub-
photospheric eigenmodes was very successful and even opened
up an entirely new branch of astrophysics, the field of aster-
oseismology, the idea appeared very attractive that the chro-
mospheric 3 min oscillation might be likewise explained by
a chromospheric cavity, acting between the temperature mini-
mum and the foot of the chromosphere-corona transition layer

(Leibacher & Stein 1981). Yet it now appears that this view is
incorrect. Fleck & Schmitz (1991) were the first to show that
the 3-min oscillation, instead of being a cavity mode, might
be explained much more simply as the basic cut-off frequency
resonance of the chromosphere.

The difference of aresonance and a cavity mode is that a cav-
ity mode is dominated by its finite width, into which only waves
of certain frequencies fit, while a resonance does not depend on
such a width. On the contrary, the atmospheric resonance is
the response of the atmosphere to a local perturbation of gas
elements out of their rest position in hydrostatic equilibrium.
Atmospheric resonances usually occur in the wake of a strong
disturbance which propagates through the atmosphere. Reso-
nant oscillations are independent of any cavity width because
they occur already much before the head of a strong disturbance
has reached some hypothetical cavity boundary (see Figs. 4 and
6, below, where resonances occur already much before the tran-
sit time of the atmosphere, which is roughly 300 s).

It could be shown that the linearized hydrodynamic equa-
tions under adiabatic conditions in a gravitationally stratified,
isothermal atmosphere lead to a Klein-Gordon equation (Morse
& Feshbach 1953, p. 139) which is a special form of the tele-
graph equation (Courant & Hilbert 1962, p. 192). Numerically
evaluating analytic solutions for sinusoidal oscillations which
started at time £ = O in an initially undisturbed isothermal at-
mosphere, Fleck & Schmitz (1991) were able to show that the
atmosphere gave a 3-min type resonant response in absence
of any cavity. This response was also confirmed with time-
dependent numerical calculations in finite slabs of an isothermal
atmosphere. These authors moreover showed that the resonance
character was essentially the same when a realistic atmosphere
model (Vernazzaetal. 1981, model C) was taken. This great suc-
cess in our understanding of the 3-min oscillation was further
supported and elucidated by Kalkofen et al. (1994) who were
able to give a simple analytical solution which showed in great
detail the spatial and temporal behaviour of the velocity am-
plitude of acoustic waves excited in an isothermal gravitational
atmosphere.

Fleck & Schmitz (1993) as well as Kalkofen et al. (1994)
also investigated the nonlinear response of various atmosphere
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Fig. 1. Atmospheric models considered in this paper

models to adiabatic waves of large amplitude. Here the forma-
tion of shocks and shock overtaking occur. We will discuss and
extend these results in a second paper of this series (Sutmann
& Ulmschneider 1994).

In this present first paper we want to extend the linear wave
studies by investigating the role which the atmospheric temper-
ature gradient plays in the decay characteristics of the atmo-
spheric resonance. We find that the chromospheric temperature
gradient profoundly influences the resonance properties of the
atmosphere. In Sect. 2 we discuss the time- dependent numerical
methods which we use as well as the analytic results of Kalkofen
et al. (1994). Section 3 presents our results while Sect. 4 gives
a discussion. Section 5 brings our conclusions.

2. Method

2.1. The atmosphere models

For the investigation of atmospheric oscillations of the Sun
suitable initial atmosphere models are necessary. Of these the
isothermal models are of great interest, because they allow ana-
lytical studies. As we wanted to reproduce these analytic results
numerically we selected an isothermal model with temperature
T, = 5000 K and height z = 2000 km which corresponds to
about 17 scale heights. To study how the atmospheric model in-
fluences the response to oscillatory perturbations we also used
polytropic atmospheres which are characterized by a constant
temperature gradient dT'/dz = o (Lamb 1908). We use atmo-
sphere models with & = —1, +1 K/km and also a height of
z = 2000 km. Finally we employ the semiempirical atmosphere
model C of Vernazza et al. (1981). All atmosphere models have
solar gravity g = 2.736 - 10* cm s~2 and are shown in Fig. 1.

2.2. The hydrodynamic computations

The computation of acoustic waves has been discussed in previ-
ous work (Ulmschneider et al. 1977; Ulmschneider et al. 1987,
Rammacher & Ulmschneider 1992) and therefore does not need
to be described again. For our present adiabatic work the radi-
ation treatment is skipped. The time—dependent hydrodynamic
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equations are solved for an atmospheric slab using the method
of characteristics. At the top of the atmosphere a transmitting
boundary is used while at the bottom, disturbances are intro-
duced by means of a piston.

In our present investigation we excite with waves of ex-
tremely small amplitude to make sure that we avoid shocks and
to be able to compare our results with linear analytic solutions.
As shock formation is particularly easy in extended atmospheres
and for high frequency waves, we restrict our investigations to
low frequency waves and to cases where the width of the atmo-
spheric slab is sufficiently small.

2.3. The bottom boundary condition

At the bottom boundary, velocity fluctuations are prescribed by
using a piston. To study the response of the atmosphere to dif-
ferent types of piston motions, we have chosen four types of
velocity functions:

a) long period continuous sinusoidal oscillations with a fre-
quency below the cut-off frequency (cf. Eq. (10))

up(t) = Mesin(wt) (1)

where w = 27v is the circular frequency, ¢ the time, M the Mach
number and c the sound speed,

b) pulse excitation, which can be described as a sinusoidal wave
with period P, where the piston is stopped after one period. This
kind of movement can be seen as superposition of two sinusoidal
waves with a phase lag of one period

u(t) = Mc (FB(t) — FB(t — By)) sin(wt) )

where .74 (t) is the Heaviside step function which is defined by

0 t<0
FB(t) = , 3
®) {1 £>0 3)
and w =27/ Py,

c) wave spectra, which are constructed by superposing sinu-
soidal waves with frequency w,,. The amplitudes of the partial
waves are distributed in a Gaussian manner

N

uo(t) =c Y My sin(wnt +¢n) ©)
n=0

where ¢y, is a constant but arbitrary phase, N = 100 and

2
M, = Mexp {_(_w%gl} , 5)
is the Gaussian distributed Mach number of the partial waves.
we = w2 = 2myc is the central frequency and w,, is the width
of the function. The constant frequency interval was chosen as
Aw=wi —w; =215-1075 Hz.

d) stochastically generated wavetrains, which result from chang-
ing the frequency stochastically after each period. The moving

piston can be described by superposing sinusoidal waves
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up(t) =
N n—I1 n
Me) H.%(t - Y P) - B - zpi)} sin(wnt)] (6)
el =0 =0
with
2w

P0=O 5 P’n__ )
Wn

Wn =Zn WM )

where Z, € [0,1] is a random number, wjy; the maximum
frequency and N is found from the condition that Y P; > ¢.

2.4. Fourier analysis

For the Fourier analysis of velocity fluctuations at different
heights of the atmosphere it is necessary to take a fixed Eu-
lerian grid in space and an equidistant grid in time. Because
our hydrodynamic code works in the Lagrange frame and as
the time step is chosen according to the Courant condition, we
interpolated the velocity both in space and time. The interpo-
lation is done by the method of weighted parabolas, described
by Ulmschneider et al. (1977). The equidistant time interval is
chosen as 1 s, the height interval as 100 km. The time interval for
the Fourier analysis is always 2000 s which gives a frequency
resolution of Av = 0.5 mHz.

2.5. Asymptotic solution for the isothermal case

Following Lamb (1908, 1932), Kalkofen et al. (1994) showed
that the response of an isothermal atmosphere to a continuous
excitation by the velocity oscillation

up(t) = Mce ™t | ®)

which starts at time ¢ = 0 is asymptotically given by

w(z,t) = Mc {e‘“‘"t—x/wl—wa z/e)_ 294 z

e 32wy — w?)

. [wA sin (wAt — %w) + 1w cOs (wAt — %W):l }eZ/QH) ,(9)

for t >> z/c. Here z is height, w the circular frequency, H the
scale height, M << 1 the Mach number,

=19 _ °
“AT%c T 2H (10)
the acoustic cut-off frequency and
c=+/vRT,/u , an

the sound speed with R = 8.31 - 107 erg grad ~'mol ™" the uni-
versal gas constant, 4 = 1.3 g/mol the mean molecular weight
and v = 5/3 the ratio of specific heats for neutral gases. Note
that different to Kalkofen et al. we use a “-”’-sign in Eq. (8)
which leads to the correct expression in Eq. (9) for evanescent
waves which are exponentially damped compared to propagat-
ing waves. As discussed by Kalkofen et al. (1994), Eq. (9) con-
sists of two contributions, the exciting wave with frequency w
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Fig. 2. Height-time plot for oscillations in an isothermal atmosphere
with cut-off frequency v4 = 5.0 mHz for an excitation frequency of
v = 1 mHz. For the presentation the global exp(z/(2H)) term has been
removed

and a resonance oscillation around the cut-off frequency wy4.
This resonance contribution vanishes for large times ¢ due to
the t=3/2 term. Depending on whether w is greater or less than
w 4, the exciting wave contribution is propagating or evanescent,
respectively. The contributions have a z-dependence and in ad-
dition, due to energy conservation, the wave amplitudes of both
contributions grow with height like e*/@)_ This means that for
the exciting contribution there will always be a net growth with
height, even in the evanescent case, except for w — 0, where
the amplitude stays constant with height.

As we later want to investigate the different response of non-
isothermal atmospheres, we discuss the complicated behaviour
of Eq. (9) in more detail by using a graphical representation.
Figures 2, 3 show the velocity given by Eq. (9) for excitation
frequencies ¥ = w/(2w) = 1 and 10 mHz. Actually Figs. 2,
3 display the velocity with the global e%/?H) term removed.
From Egs. (10), (11) with T, = 5000 K the cut-off frequency
isvg = wa/(2m) = 5.0 mHz. The figures display velocities by
increasing density of grayness such that negative velocities are
shown white and positive velocities black.

Figure 2 shows the case of an excitation by oscillations of
frequency v = 1 mHz. As this frequency is below the cut-off
frequency, the wave is evanescent and is damped as function of
height. Figure 2 shows the incident wave with frequency v at
height z = 0 km. For a fixed time, but increasing height z, it is
seen that the exponentially damped excitation component gets
more and more replaced by the resonance contribution which
grows with height. On the other hand, for a fixed height (say
z = 500 km) the resonance oscillation dies out for increasing
times due to the t~3/? dependence and only the exciting wave
survives, weakened due to its exponential damping with height.
As both the resonance oscillation and the incident evanescent
wave have infinite phase speed the stripes in Fig. 2 are vertical.

The case with v = 10 mHz > v4 is that of an excitation by a
propagating wave. The resonance oscillation with v4 shown at
the left hand side in Fig. 3, is kicked on by the initial disturbance
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Fig.3. Same as Fig. 2 however for an excitation frequency of v =
10 mHz. For the presentation the global exp(z/(2H)) term has been
removed

which moved into the undisturbed atmosphere. Here, as in Fig.
2, we have assumed that the head of the wave has already gone
through the entire 2000 km height range, which is the condition
for the validity of Eq. (9). At a given height the resonance dies
outdue to the t—3/2-dependence and only the incident oscillation
survives. As the resonance oscillation is increasingly important
at greater z, its replacement by the incident excitation occurs at
progressively later times. Thus the resonance oscillation with
its infinite phase speed is confined to the upper left hand side
of Fig. 3, while the propagating wave shows inclined stripes in
agreement with its finite phase speed.

3. Results

In this section we discuss our adiabatic numerical studies which
were performed using the time-dependent hydrodynamic code
described above. As waves with realistic amplitudes, introduced
at the bottom of the atmosphere, will grow to large amplitudes
and form shocks, we keep the Mach number of the velocity
excitation at the piston to very small values of between M =
2.4-10~* and 4 - 10~*. This is to ensure that in our atmospheric
slab the oscillations remain in the linear regime even for short
period waves, which generate shocks most easily.

3.1. The isothermal atmosphere

Our wave simulations in isothermal atmospheres of various tem-
perature turned out to give rather similar results. For this reason
we discuss only results for models with T, = 5000 K. Figure
4 shows the time-development of oscillations in an isothermal
atmosphere, continuously excited with a frequency v = 1 mHz.
The oscillations are shown at an altitude of z = 800 km (7 scale
heights). It is seen that initially large resonance oscillations with
v4 = 5.0 mHz are superposed over the incident wave. As time
progresses these resonance oscillations die out and the incident
wave survives.
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Fig. 4. Velocity oscillation as a function of time in an isothermal at-
mosphere with T, = 5000 K (resonance frequency v4 = 5.0 mHz)
continuously excited by a wave with frequency v = 1 mHz. The oscil-
lations are shown at an altitude of z = 800 km
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Fig. 5. Same as Fig. 4, but at an altitude of 2000 km

This behaviour is even more drastically seen in Fig. 5
which shows the same wave as in Fig. 4 but at an altitude of
z = 2000 km (17 scale heights). In principle the waves in Fig. 5
show the same behaviour as in Fig. 4, or as that predicted by the
asymptotic Eq. (9): the initially large amplitude of the resonance
oscillation dies out with increasing time. Moreover, the ampli-
tude of the resonance oscillation in Fig. 5 is much larger than
that in Fig. 4, which is explained from the z-dependence in Eq.
(9). It will take considerable additional time until the resonance
oscillation has completely died out. Also notice in Figs. 4 and 5
the time lag between the start of the oscillations (with negative
velocities) and the start of the computation at time ¢ = 0 s. This
time lag is due the transit time of the head of the wave through
the undisturbed atmosphere.

Excitation of the isothermal atmosphere by a pulse is shown
in Figs. 6 and 7. It is seen that the propagating pulse, which
travels into the undisturbed atmosphere, generates a wake of
resonance oscillations. The ideally infinite phase speed of the
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Fig. 6. Height-time plot for oscillations in an isothermal atmosphere
with cut-off frequency v4 = 5.0 mHz for an excitation by a pulse of
300 s duration
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Fig.7. Velocity oscillation as a function of time in an isothermal at-
mosphere with 7, = 5000 K excited by a pulse. The oscillations are
shown at z = 2000 km height

resonance oscillations, shown as vertical stripes in Fig. 6, is seen
to be perturbed by propagating disturbances which rapidly die
out with time. Figure 7 shows the exponential time development
of the velocity at height z = 2000 km.

In addition, Figs. 6 and 7 explain that the power spectrum of
the oscillations has a characteristic time behaviour. We find that
while the power in the time interval from 500 to 2500 s has peaks
at frequencies 6 to 7 mHz, the power in the time interval from
7000 to 9000 s has only one peak at 5 mHz. This is understood
from the propagating character of the pulse disturbance close
to the start of the calculation. As seen in Fig. 6 the vertical
stripes at the top left part of the diagram are inclined (finite
phase speed) and squeezed together in the right hand direction,
thus generating higher frequencies, while on the right part of
this figure they are mainly vertical, corresponding to the basic
resonance (5 mHz) of the isothermal atmosphere.
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Fig. 8. Normalized power spectrum as a function of height for a poly-
tropic atmosphere with negative temperature gradient, for times greater
than 7000 s

3.2. Polytropic atmospheres with negative temperature
gradient

We now discuss the polytropic atmospheres. As we find that
polytropic atmospheres with negative and positive temperature
gradients behave very differently, let us first discuss those with
negative temperature gradients. For polytropic atmospheres
there is no longer a unique cut-off frequency. At the bottom,
where our model has a temperature of 7' = 6000 K, we have a
cut-off frequency v4 = 4.5 mHz, while at z = 2000 km height
at a temperature of 7" = 4000 K, we have v4 = 5.6 mHz. Let
this atmosphere be continuously excited with a frequency of
v = 3.0 mHz. The power spectrum as a function of height for
times greater than ¢ = 6000 s is shown in Fig. 8. It is seen that
the relative power of the exciting wave decreases, while that of
the resonance oscillation increases with height. The important
fact is, that despite different cut-off frequencies as functions of
height, a common resonance frequency develops with a peak
at v = 5.0 mHz, which is typical for 7' = 5000 K, that is, the
average atmospheric temperature.

In Fig. 8 the power has been normalized to one at every
height to allow a comparison of the two (resonance and inci-
dent wave) contributions as a function of height. For later times
the resonance contribution very slowly decreases and the contri-
bution of the incident wave increases. Finally after a very long
time only the exciting wave survives showing the left hand ridge
with amplitude unity over the entire height and no right hand
ridge in Fig. 8.

The excitation by a pulse in an atmosphere with negative
temperature gradient is shown in Fig. 9. It is seen that the veloc-
ity behaves similarly as in the case of the isothermal atmosphere
(Fig. 7). But the decay rate of the oscillation for long times is
much reduced compared to the isothermal case. This seems to
be a general property of negative gradient atmospheres as it is
also found in the case of continuous excitation. Likewise, as
in the case of a continuous excitation, a resonance at 5 mHz
develops.
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Fig. 9. Velocity oscillation as a function of time at height z = 2000 km
inan atmosphere with negative temperature gradient, excited by a pulse
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Fig. 10. Velocity oscillation as a function of time at height z = 2000 km
in an atmosphere with positive temperature gradient, continuously ex-
cited by a wave of frequency v = 3.0 mHz

3.3. Polytropic atmospheres with positive temperature
gradient

We now discuss the polytropic atmosphere with a positive tem-
perature gradient. Here at height z = 2000 km with temperature
8000 K one has a cut-off frequency of v4 = 3.9 mHz, while
at z = 0 km one has v4 = 4.5 mHz. Figure 10 at height z =
2000 km shows the velocity oscillations as a function of time
for a continuous excitation with a frequency of » = 3.0 mHz.
Contrary to the isothermal or negative gradient cases, it is seen
here that the resonance disturbance dies out very rapidly. At z =
2000 km after about At = 6000 s, essentially only the exciting
wave remains. For lower heights z = 400, 800, 1200, 1600 km,
these times are At = 4000, 4500, 5000, 5500 s, respectively.
This drastic decay behaviour is even more clearly seen in the
pulse excitation. Figure 11 shows the essentially exponential de-
cay of the resonance disturbance. A comparison of Fig. 11 with
Figs. 7 and 9 shows that the temperature gradient greatly influ-
ences the decay characteristic of the atmospheric resonances.
While isothermal atmospheres have a slow decay rate this rate
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Fig. 11. Velocity oscillation as a function of time at height z = 2000 km
in an atmosphere with positive temperature gradient, excited by a pulse
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Fig. 12. Velocity oscillation as a function of time at height z = 1900 km
in model C of Vernazza et al. (1981), excited by a pulse

is even slower for negative temperature gradient atmospheres
but very much faster for atmospheres with positive temperature
gradients. Also note that the initial oscillation amplitude of the
resonance in the positive gradient atmosphere is greatly reduced
compared to that in the other two cases.

Another important result of both wave calculations in at-
mospheres with a positive temperature gradient is that, despite
a dependence of v4 with height, again a resonance oscillation
with a common frequency v = 4.5 mHz develops, which, differ-
ent from the atmosphere with a negative temperature gradient,
is equal to that of the lowest, most massive layer.

3.4. The Vernazza et al. model

We finally investigate the response properties of a realistic solar
model. Figure 12 displays the time-development of the veloc-
ity oscillations at z = 1900 km height due to an excitation
with a pulse. Comparison with Figs. 7, 9 and 11 shows that
realistic atmospheres have the very rapid resonance decay char-
acteristics common to atmospheres with a positive temperature
gradient which is very unlike to that of the isothermal or neg-
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Fig. 13. Power spectrum for excitation by a Gaussian acoustic spectrum
centered in the nonpropagating region for model C of Vernazza et al.
(1981). The input power at the bottom of the atmosphere is shown
dashed while that at z = 1900 km height is shown drawn

ative temperature gradient atmospheres. For a pulse excitation
we found that after times greater than 2500 s, despite a height-
dependent v 4, a common resonance oscillation with frequency
v = 5 mHz develops. The power spectrum for continuous exci-
tation, however, showed a marked time dependence. For times
between 500 and 2500 s a double peak at 5 and 6 mHz developed
at great heights. In subsequent times the 5 mHz peak became
more important while, similarly to the cases discussed for other
atmosphere models, both peaks rapidly decayed compared to
that of the incident frequency. Consistently with the positive
temperature gradient case, both wave calculations show much
reduced initial amplitudes of the resonances compared with the
isothermal and negative temperature gradient cases. This indi-
cates that for atmospheric oscillation studies, isothermal and
negative temperature gradient atmospheres should be avoided.

3.5. Evanescent and propagating behaviour

Very instructive for the understanding of the energy transport in
stellar chromospheres is to compute a Gaussian spectrum which
has contributions both above and below the cut-off frequency.
To avoid shock formation of the high frequency components
and to assure linearity, we have chosen the central frequency
vc = 2 mHz in the nonpropagating region w < w4 and select
wy =wa/10 to give only a slight overlap with the propagating
region. Figure 13 shows that the power at z = 1900 km height
in model C of Vernazza et al. (1981) in the nonpropagating re-
gion ¥ < 5 mHz is essentially zero, while a large amount of
power is present in the propagating region v > 5 mHz. This
is due to the fact that the evanescent parts of the spectrum are
exponentially damped, while the propagating parts are expo-
nentially amplified. Figure 13 thus shows that the atmosphere
can be considered as a high pass filter. Note that because we
wanted to study the linear behaviour, we have largely avoided

Fig. 14. Velocity oscillation as a function of time at height z = 1900 km
in model C of Vernazza et al. (1981), excited by a stochastic wave
spectrum where all frequencies are below the cut-off frequency

the propagating frequency range in our present paper. It will be
addressed in Paper II of this series.

3.6. Stochastic excitation

Excitation by a stochastic wave spectrum is probably more real-
istic because it simulates the character of an uncorrelated series
of transient events. Figure 14 shows the velocity at z = 1900 km
height in model C of Vernazza et al. (1981) for an excitation
given by Eq. (6) where wjs = 27 -3.3 mHz is below the cut-off-
frequency. We find, see Fig. 14, that each change in frequency
is accompanied by a new resonance oscillation together with its
associated decaying wave train at the cut-off frequency.

4. Discussion

A first point of our discussion is the question of the agreement
of our numerical computations with the analytical results. There
are two main differences between the two approaches. The first
is that the analytic case considers an atmosphere with infinite
extent while the numerical case uses an atmosphere with finite
extent and a transmitting boundary condition. The second dif-
ference is that the analytic result rests on expansions where only
the first terms were retained and, moreover, which is valid only
for large times. Fleck & Schmitz (1991) were able to numeri-
cally evaluate analytical solutions both for a semi-infinite and a
finite slab. They found that the general behaviour of the solution
was not affected by the finite slab width, despite the fact that
their case had a rigid upper boundary condition which, due to
the many reflections, contributed to a very noisy appearance of
the wave field (see their Fig. 2). Our time-dependent computa-
tions did not show any noticeable difference to the behaviour
shown in their Fig. 1 and for times ¢ > 2000 s to our Fig. 2. This
we attribute to the fact that our transmitting boundary condition
works very well for linear waves. The second difference is more
difficult to assess.
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Fig. 15. Decay of the averaged velocity amplitude of the wave crests
with time in the case of the pulse excitation. Shown are the isothermal
atmosphere with Ty = 5000 K, the polytropic atmospheres with pos-
itive and negative temperature gradients o and model C of Vernazza
et al. (1981). Also shown is the decay behaviour concerning a power-
law as well u o< t~'/% as u o ¢~>? (The initial amplitudes of the
power-laws are arbitrarily chosen)

From roughly 30 wave crests we are able to measure the
damping rate of the velocity in our numerical calculations. The
obtained decay behaviour of the velocity amplitudes is shown
in Fig. 15. It is seen that in the timespan of our computations
these decay curves are best represented by an exponential damp-
ing law u(t) ~ e~ %, where for § = 1.8 - 107,5.8 - 1075,5.4 -
10~*,6.7-10~* s~! for the isothermal atmosphere, the negative
and positive temperature gradient atmosphere and for model C
of Vernazza et al. (1981), respectively. Moreover, for an atmo-
sphere with dT'/dz = 0.5 K/km we find § =4.2 - 10* s~ 1.

This agrees quite well with the visual appearance of the de-
cay of the resonances in all our Figs. (4, 5,7, 9, 10, 11, 12, 14)
and suggests that the t=3/2 law found by Kalkofen et al. (1994)
may be only an approximation to a universal exponential decay
law for the resonances excited in the atmosphere. This view is
also supported by a comparison of the t=3/2 law with our expo-
nential results for the isothermal atmosphere as shown in Fig.
15. It is seen that both laws behave rather similarly. We thus sus-
pect that the t~3/2 law is an artifact of the approximations made
in the analytical derivation and that in reality the resonances
decay exponentially both over short and long time scales. This
is also what one would naively expect. Unfortunately we are not
able at the present time to show this with a more sophisticated
analytical derivation.

A second point to be discussed is the difference in the decay
behaviour found between a pulse excitation and a continuous
wave excitation mentioned by Kalkofen et al. (1994). These
authors analytically derive a t=1/2 Jaw for pulse excitation as
opposed to the t=3/2 law for continuous excitation. This is not
found in our calculations (see Fig. 15, but also Figs. 7, 9, 11,
12). We invariably found for the pulse excitation an exponential
decay law, with the same damping rate as for the continuous
wave excitation case. For this reason we have rederived the pulse
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case analytically (Sutmann 1994, in preparation) and found a
t=3/2 law which as discussed above is in good agreement with
the exponential case and our numerical simulations.

The difference between our result and that of Kalkofen et
al. apparently lies in the way the pulse excitation is applied
(Massaglia 1994, private communication). While we apply the
pulse by a temporal piston motion which stops after a given
time span (see Eq. (2)), a motion which is intended to simulate
a sudden disturbance arriving at the bottom of the atmosphere,
Kalkofen et al., following Lamb (1908), set an initial condition
at time ¢ = 0, assuming for the perturbation a é-function-like
dependence in space.

5. Conclusions

The time-dependent numerical simulations of the response of
solar atmosphere models to various linear excitations lead to the
following conclusions.

1. Continuous excitation in isothermal atmospheres by waves
with incident frequencies both above and below the cut-off fre-
quency v4 leads to strong resonances at 4. The resonances
are stronger at greater atmospheric height. For progressively
later times the resonance oscillations die out following an ex-
ponential law, only the incident wave survives. Although our
results show an exponential behaviour, they are in qualitatively
good agreement with the analytical t~3/2 power-law results of
Kalkofen et al. (1994) (see Fig. 15). We suspect, however, that
the analytic solution suffers from crude assumptions and that
the exponential decay is correct.

2. For a pulse excitation of the isothermal atmosphere we find a
similar behaviour as for the continuous excitation. In particular
we find the same exponential decay law. This is supported by
an analytical derivation (Sutmann 1994, in preparation) which
yields the t=3/2 power law.

3. Excitation of an atmosphere with a constant negative temper-
ature gradient leads to a qualitatively similar response. Both for
continuous and pulse excitation an exponential decay of the res-
onance is obtained, however, the decay rate now is much slower
than in the isothermal atmosphere. A common resonance fre-
quency is found which corresponds to the average height of the
atmosphere.

4. For atmospheres with a constant positive temperature gra-
dient, both for continuous and pulse excitation, a very rapid
exponential decay of the resonance is found, quite unlike to the
cases of the isothermal and negative gradient atmospheres. In
addition, for the positive gradient case the amplitude of the ini-
tial resonance disturbance is much reduced compared to that
in the other cases. A common resonance frequency is found
corresponding to the lowest, most massive layer.

5. The response of the Vernazza et al. model C is similar to the
positive gradient case. A very rapid exponential decay is seen for
the resonance, both for continuous wave and pulse excitation.
After some time this resonance has a common frequency near
v = 5 mHz. The resonance behaviour of the model is very
different from that of an isothermal atmosphere model.
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6. From a spectrum introduced at the bottom of the atmosphere
containing both propagating and evanescent components, only
the propagating component survives the passage through the
atmosphere. The chromosphere can thus be seen as a high pass
frequency filter.

7. Stochastically generated wavetrains are able to generate
stochastically appearing resonance oscillations at the cut-off
frequency. Each change in frequency is associated with a new
resonance oscillation episode together with its subsequent de-
cay.
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