FTIOBAGA = —300: 230270

Astron. Astrophys. 300, 302-308 (1995)

ASTRONOMY
AND
ASTROPHYSICS

Propagation of nonlinear longitudinal-transverse waves
along magnetic flux tubes in the solar atmosphere

II. The treatment of shocks

Y.D. Zhugzhda' 2, V. Bromm!, and P. Ulmschneider!

! Institut fiir Theoretische Astrophysik der Universitit Heidelberg, Im Neuenheimer Feld 561, D-69120 Heidelberg, Germany
2 Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences,

Troitsk, Moscow Region 142092, Russia

Received 30 October 1994 / Accepted 15 January 1995

Abstract. Equations were derived permitting the treatment of
shocks which occur in longitudinal-transverse waves propagat-
ing in thin magnetic flux tubes. Such waves usually lead to kinks
which may grow into oblique shocks. The kink angles between
the shock and the tube directions are found to be symmetrical
with respect to the shock. Purely longitudinal shocks occur only
in special cases of high symmetry or of well defined propaga-
tion conditions. Wave calculations were performed which show
the formation of oblique shocks. We also discuss recent sugges-
tions that the basic equations for the treatment of longitudinal-
transverse waves are incomplete.
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1. Introduction

A powerful approach to study the behaviour of waves in in-
tense magnetic flux tubes observed on the sun is the thin tube
approximation, which considers the tube as a one-dimensional
sequence of mass elements, where the physical variables do not
change much across the tube from their values on the tube axis.
In this approach one usually assumes further that the flux tube
is embedded in an otherwise nonmagnetic, time-independent
solar atmosphere and that the motion of the tube, aside of dis-
placing matter, does not perturb much the outside atmosphere.
With these assumptions a formidable time-dependent problem,
to treat magnetic tubes in three dimensions in an external at-
mosphere which varies in all three spatial directions, can be
reduced to a more easily manageable one-dimensional prob-
lem. The properties of waves in thin flux tubes and the use of
the thin tube approximation have been extensively discussed
both in time-independent (e.g. Defouw 1976; Roberts & Webb
1978, 1979; Wilson 1979; Parker 1979; Wentzel 1979; Spruit
1981, 1982; Rae & Roberts 1982; Edwin & Roberts 1983) and

time-dependent investigations (e.g. Herbold et al. 1985; Molo-
tovshchikov & Ruderman 1987; Ferriz-Mas et al. 1989; Ulm-
schneider et al. 1991, henceforth called Paper I).

Our present work is an extension of Paper I. In that paper,
following Spruit (1981), we listed the magnetohydrodynamic
equations in the thin tube approximation and solved them us-
ing the method of characteristics in order to study the time-
dependent propagation of longitudinal-transverse waves along
solar magnetic flux tubes. Unlike to the situation in many finite
difference methods, the method of characteristics treats shocks
as discontinuities, which must be handled differently from reg-
ular interior points, as they represent true internal boundaries.
Failure to treat shocks adequately will cause the numerical pro-
cedure to break down. It is thus a severe handicap of the proce-
dure discussed in Paper I, that its methods are applicable only
to cases where shocks do not occur.

In a previous paper (Herbold et al. 1985) the simpler case of
pure longitudinal tube waves propagating along a vertical flux
tube was discussed, together with the treatment of longitudinal
shocks. As these shocks occur only under very special symme-
try or propagation conditions, it is essential to look for a more
general treatment of shocks allowing for kinks. The aim of this
paper is thus to extend both the Herbold et al. treatment and Pa-
per I, to derive the equations which govern the oblique shocks
in the more general longitudinal-transverse wave case, and to
study the shock formation in these waves. It has to be pointed
out that the shocks which we discuss here are not yet the fully
general oblique switch-on shocks, which occur when torsional
motions (see e.g. Ferriz-Mas et al. 1989) are also considered.
To include torsion (twist) is momentarily beyond the scope of
this work.

Even in our present longitudinal-transverse case the discus-
sion of the completeness of the set of equations may not be
finished. Choudhuri (1990) and later Cheng (1992) correctly
found that some centrifugal and Coriolis force terms are miss-
ing in the equations used by Spruit (1981) and in Paper 1. These
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force terms arise when longitudinal flows are constrained to
move along a curved and a swaying tube, respectively. Fluid
flow along a swaying tube can act like the motion in a rotating
system with a horizontally directed rotation axis. However, as
the longitudinal flows in the tube are usually small compared to
the sound or Alfvén speeds, the question is whether these miss-
ing terms are important in the framework of our approximate
treatment. The paper is organized as follows: Section 2 describes
the geometry and gives some basic relations. Section 3 derives
the oblique shock case and discusses the situations where purely
longitudinal shocks occur. Section 4 presents wave calculations
with the development of shocks and discusses the importance of
the mentioned missing terms. Section 5 gives our conclusions.

2. Geometry, velocities

In a stellar atmosphere consider a thin, roughly vertically di-
rected magnetic flux tube with the field strength B along the
tube, embedded in a non-magnetic external medium. At some
height zg we assume an oblique shock which is supposed to
propagate towards greater height (see Fig. 1). Atheight z < zg,
in the region immediately behind the shock, the tube points in
the direction I, and has a cross-sectional area A,, while at height
z > zg immediately in front of the shock, it points in the direc-
tion 1; and has the cross-sectional area A,. Here " denotes a unit
vector.

The physical state inside the tube behind the shock is given
by the gas velocity u,, the density p;, the gas pressure p; and the
magnetic field strength B,. u, is the three-dimensional velocity
in the laboratory frame and is not necessarily directed along
the tube. The gas pressure external to the tube is p.. To make a
one-dimensional treatment possible we assume that p., depends
only on height but not on time (see Roberts & Webb 1979; Rae
& Roberts 1982). In front of the shock the physical state in the
tube is given by Ay, uy, p1, p1 and By. Let us split the velocities
u; and u; into the perpendicular (transverse) and longitudinal
components up1, upy and wyg, ujp, with respect to the tube.

The normal of the shock 1, is assumed to be inclined by
an angle ¢, against the tube axis i, behind the shock and by
an angle ¢; against i; in front of the shock, such that the tube
suffers a kink by an angle ¥ = ¢ + , at the shock. Note that
the angles 1, ¢, can be positive or negative, and are assumed
to be small (much less than 90°).

Let A,» and A, be the back and front areas of the shock
surface, respectively, and Usy = Ug mlgy the velocity of the
shock in the laboratory frame. Figure 2, somewhat exaggerated,
shows a very thin flux tube (represented by a solid line) with a
kink shock at some time ¢, and at a somewhat later time ¢ + At.
Note that in general igz # 1;, 1,. As the shock cannot move
away from the tube we must have that

a

(USH 'ipl) iy = (ul 'lpl) ipl =upy ,

(Use -1p2) ipp = (w2 - 12) Tia = up 2.1
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Fig. 1. Tube geometry and unit vectors at an oblique shock, the shock
propagates towards the top of the figure

t+At t

Fig. 2. Thin flux tube (solid) with an oblique shock at time ¢ and at a
later time ¢ + At. The shock path (dashed) is not along the tube. Also
shown are unit vectors mentioned in the text

where I,; L 1; and i, L 1, are unit vectors pointing into the
swaying direction of the tube in front and behind the shock (see
Fig. 2). We now want to go into the frame which comoves with
the shock, that is, moves with the velocity Us g in directionigy;.
Let v; and v, be the velocities in front and behind the shock,
respectively, in the comoving frame. We then have

vi=u —Ugsyg , vo2=uw —Ugg (2.2)

The dot product of Eqgs. (2.2) with the vectors i, and 1,52, using
Eqgs. (2.1) gives

2.3)

Vp1=vp2=0 )

that is, only the longitudinal components v;;, v;> remain in the
comoving frame. The longitudinal components of Egs. (2.2) can
be written

vi=un—Usg -l , vo=up—Usy I 24)
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3. Oblique shocks
3.1. Jump conditions at the shock

From Eq. (2.3) it is clear that, because the magnetic flux as well
as the mass and energy fluxes must be conserved across the
shock, we have very similar jump conditions as those derived
by Herbold et al. (1985), namely

B]A] = BzAz =9 B (31)

prun A = ppupAy =3 (3.2)

%’Ulzl +W, = %’UIZZ+W2 ,
where W is the specific enthalpy. As the momentum conser-
vation involves the motion at a kink and leads to a symmetry
condition for the kink angle, we must take particular care and
rederive this jump condition from the basic equations. The equa-
tion of motion can be written

ov
’0(5‘1,: +v‘Vv>

(3.3)

=-V VB2 + ! B-V)B € B4
= p 81 4n pgez .
where g is the gravitational acceleration and €, the unit vector

in the outward vertical direction. From Eq. (3.4) for thin tubes
one can derive

ov ov 0 B? 1
05 =i (75 ) i
Here n is the direction normal to the shock surface and s is
some direction along the shock surface. This equation is similar
to those derived for thin tubes by authors cited in the introduc-
tion, except that here it is written for the normal direction of the
shock surface. In accordance with the thin flux tube approxima-
tion that there is little variation across the tube, we assume that
there is little variation along directions within the shock surface
(8/0s = 0). This is assured by assuming that the tube is quite
thin and that the angles between I; and i,,, between i, and 1, (cf.
Fig. 1) as well as between 1,, and &, are not too large, say much
less than 90°.

Taking the n-component of Eq. (3.5) and multiplying by A,,
gives
ov vy,

pA"—é-z-f_ + p’UnAngT;- =

d B* B’ A
'“An'a'g <p+ 8_71' - g) - pAngn >

Adding the continuity equation

OpAn . Opun Ap, ~0
o ), on . ’

multiplied by v,, we have

OB .
Bna_ —pge, .(3.5)
n

(3.6)

3.7

1o} 0 9 _
—8—75 (pvnAn) + % (p'UnAn) =
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o ( B
—An% (p+ ——) — pAngn.

& (3.8)

With g,, = gii-é, and bringing A,, under the differential operator,
similarly as in Herbold et al. (1985, Egs. 24 to 27), we obtain

0 0 2 B?
En (pvnAy) + n [An (pvn —2pe +2p+ E)] +

d;
A+ pAngn =0 (3.9)
n
from which we get the jump relations
BZ
A (pvrzy,l — 2pe +2p1 + 4;_1) =
B2
Anp (pvgz — 2pe +2py + 32) , (3.10)
4
which, using horizontal pressure balance,
B B
Prtg =Pt o =Pe (3.11)
can be written
2 [ 2 1
Api | pviy — 4—7;Bn1 =Ap | pUpy — 4—7;Bn2 (3.12)

Because of the kink we must also consider the s-component of
Eq. (3.5). Multiplying by A,, we get for this component

ov Ov, -4 ﬂ[‘)Bs

S
PAnT ¥ Pondngr = Angm

- pAng§ : éz ) (313)

from which, by adding the Eq. (3.7) multiplied by v, we have
with g5 = g8 - €, and using magnetic flux conservation

0 0 1
b'z (pUsAn)*'% [An (pvnvs - E_‘_‘BnBs):l*'pAngs =0.(3.14)

This gives an additional jump condition

1
Ani (Plvnlvsl - 74_7erBSI> =

1
AnZ (pZUnZUSZ - EBnZBSZ) (315)

This relation is valid independently for both transverse compo-
nents of the magnetic field.
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3.2. Symmetry condition for the oblique shock

We now want to show that Egs. (3.12) and (3.15) lead to a
symmetrical kink at the shock. Writing these equations in terms
of mass flux j and magnetic flux ® we have

. d )

J Un1 — EBnl =7 Un2 — EB’HQ I} (316)

. 0] ) P

J Vst — '4—‘le =] Vs2 — ’_BSZ 3 (317)
T 4

We now write the n- and s- components in terms of the longi-
tudinal components and have

Bpi =Bjcosp; , Bpy=DBjcospy , (3.18)
Unl =U11COSP] , Up2 =V2CO08Qy (3.19)
B = Bysing, , Bg=Bpsing; (3.20)
Vg1 = v Sing; , vVsy =vpsing; , (3.21)
from which we find
j ® B; | =cos ] e B (3.21)
COs 1 | JUn 4 1) =COS¥P2 | )02 I 2 ) .
sin v @ B; ) =sin v @ B (3.22)
®1 | Jvn el w2\ Jv2 a2 .
This implies
cospr _ s%n ©1 (3.23)
cos(py  sin(y
which is only true if
p1=92 . (3.24)
With
A A
nl = — ny = ——= (3.25)
COS 1 COS (3
we obtain finally
B? B2

Ay <p1'U121 - 4—7:_) = A (szlzz - ﬁ) ; (3.26)

which is very similar to the Herbold et al. (1985) result and
which from Eq. (2.3) might have already been expected. How-
ever, this result is due precisely to the symmetry condition of
Eq. (3.24) which is not trivial. For oblique shocks we thus have
the magnetic flux condition (Eq. 3.1), the three Hugoniot-type
jump conditions (Egs. 3.2, 3.3, 3.26) and the kink angle sym-
metry condition (Eq. 3.24).
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Fig. 3. Characteristics in the time-space plane for the oblique shock
case

3.3. Set of equations for a time-dependent treatment

For our time-dependent treatment it is not sufficient to derive
the jump conditions at the shock, but we must make sure that
we are able to completely predict the behaviour of all physical
quantities before and behind the shock together with the motion
of the shock. For this reason we have to carefully compare the
number of unknowns with the number of equations in order to
determine whether we have enough relations. Let us denote the
two directions perpendicular to the tube by a, b and as usual the
longitudinal direction by .

List of unknowns:
In front of the shock we have the unknowns

Ual, Ubt, Wi, Vals Vbl, Vi1, A1, Br, p1, p1oy (3.27)
behind the shock there are the unknowns

Ua2y Ub2, U2, Va2, Vb2, Uiz, A2, Ba, p2, P2 (3.28)
and in addition

UnsH, lz1, lyt, Lo, Loz, Ly, Lo,

lesh, lysw, LasH, lons lLyn, Lan. (3.29)

Here we have assumed that all other thermodynamic variables
can be computed using p, p. We further assume that l;1, ly1,
1,1, etc. are the direction cosines with respect to the z, y, z-
axis of the four unit vectors i;, 1, igy and 1,,. Furthermore
Uism =Usg - 1.
List of equations:

For the direction cosines of the four unit vectors we have the

conditions
B+ +02,=1 , et (3.30)

which can be used to eliminate 1,1, l,2, [;sH, [.n. Because of
the symmetry condition (3.24) we have

R 1 +1
i, =—1"2 (3.31)
l1+12|
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which allows to compute [y, ly, as well. The four Egs. (3.1)
and (3.11) permit to eliminate the four variables B;, B,, A;,
Aj in favour of py, p, and the four relations (2.3) give v, =
Upy = Vgn = Upy = 0. Egs. (2.1) provide Uysy = Ua1 = Ua2,
Upsy = up = upy and give uga, upy in terms of Uy sy and
lz1» lyl, Iz, lyz, lesHS lySH~ With Egs. (2.4), v;;, vz can be
eliminated in favour of u;, uyp as well as Uy gy and I, Iy,
le2, ly2, lesH, lysy. It is seen that only 7 unknowns

w1, P1, P1, W2, P2, P2, Unse (3.32)
together with 6 unknowns
l:cSH, lySHy lzla lyla la:Zv ly2 ) (333)

remain. As the unknowns of the lists (3.32) and (3.33) belong
to the C and C, characteristics systems which are associated
with the longitudinal and transverse wave modes, we call them
longitudinal and transverse unknowns, respectively. The system
of characteristics at an oblique shock is shown in Fig. 3. The 7
longitudinal unknowns can be treated similarly as in the Her-
bold et al. (1985) case: 4 variables are determined by using one
relation each along the four (two Cf, one Cp, one C|) charac-
teristics and by 3 Hugoniot relations (Egs. (3.2), (3.3), (3.26)).
The case treated by Herbold et al. (1985) is reproduced after
setting equal to zero all six values listed in Eq. (3.33). Note that
in that case the characteristics C5, C; shown in Fig. 3 will be
absent.

The 6 transverse unknowns are treated using two relations
each (for the two transverse directions a, b) along the 3 (two
Cj and one C;) characteristics as seen in Fig. 3. This shows
that we have exactly the right number of equations to determine
the number of unknowns. We conclude that indeed we have a
necessary and sufficient set of equations for the computation of
the time-dependent solution.

3.4. The occurrence of purely longitudinal shocks

In the previous chapter we have discussed the general oblique
shock case, we now ask whether there are situations in which
purely longitudinal shocks (shocks without kinks) similarly to
the Herbold et al. (1985) case are possible. It is clear that the
Herbold et al. case is very special due to its high symmetry. In
this case a vertical tube is excited by a purely vertical piston
motion. From considerations of symmetry one has
h=h=lsp=1, , lu=lp , (3.34)
that is, the 6 transverse unknowns in the list (3.33) all vanish
and the entire transverse mode is excluded by symmetry.

Are there other situations where purely longitudinal shocks
are possible? The condition for such a shock is that there is no
kink,

@Y1 =@ = 0 (335)
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A careful listing of the unknowns and the relations available for
this case shows that one retains the 7 longitudinal unknowns of
the list (3.32), but that one has only 4 transverse unknowns

(3.36)

Ual, Ubl, lac, ly )

which represent the transverse velocity in front of the shock
and the direction of the tube. The 7 longitudinal unknowns are
treated similarly as in the Herbold et al. or the general oblique
shock cases. But with 6 relations along the three C; characteris-
tics (see Fig. 3) the 4 transverse unknowns are overdetermined.
Note that because the 4 transverse unknowns are those present
at an interior point, they can be computed using only the C3
and C; characteristics in front of the shock. This behaviour is
reminiscent of the case of Paper I.

Unfortunately, this picture is not consistent with the fact that
the transverse tube speed

)
P+ Pe

Ck=cCa 3.37)
suffers a jump, due to the jump in c4 and p at the shock. This
shows that the assumption of lp1 = 32, ly1 = Ly, thatis o1 = o,
must be wrong in most situations because a different transverse
tube speed on both sides of the shock should lead to a kink in
the tube.

There is, however, another possibility. Consider Fig. 3. In
front of the shock we have 5 characteristics due to the two tube
speeds cr, ci. Behind the shock there are two (C}, C5) char-
acteristics under the assumption that here the disturbances for
both tube speeds travel faster than the shock. Yet there might
be the case in which the shock travels faster than the C; char-
acteristic. In this case, the C; characteristic behind the shock is
absent, and we have exactly the situation described above where
the transverse unknowns behave like at an interior point.

This shows that purely longitudinal shocks occur in two
situations: a first case, where the transverse mode is absent due
to symmetry, which is the Herbold et al. (1985) case, and a
second case, where both tube wave modes occur, but where the
shock moves faster than the transverse tube speed, ci, behind
the shock.

4. Wave calculation
4.1. Obligue shock formation

We now show results obtained by implementing the above de-
rived equations in the time-dependent numerical code described
in Paper 1, based on the method of characteristics. In our first
example of a wave calculation with oblique shocks we assume
an initially vertical, exponentially spreading magnetic flux tube
of 1500 km height with a basal field strength of B=1500 G, sim-
ilar to the tube described in Paper 1. The tube is perturbed by a
sinusoidal piston motion along the tube and simultaneously by
a sinusoidal transverse motion to generate both longitudinal and
transverse waves. The periods of both excitations were P=30 s.
The longitudinal amplitude was 0.2 km/s, the transverse shaking
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Fig. 4. Horizontal vx and vertical vz velocity versus height for a
longitudinal-transverse wave with an oblique shock. The wave is shown
at time ¢t = 144 s and was excited at the bottom of the magnetic flux
tube by simultaneous longitudinal and transverse shaking
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-40 -20 0 20 40
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Fig. 5. Spatial display of the axis of the magnetic flux tube. For easy

readability the horizontal scale has been greatly magnified. x is the

horizontal, z the vertical distance. The wave is shown at time ¢ = 144 s

in the same phase as in Fig. 4 and at t =96 s

amplitude 0.6 km/s. A phase shift of 45° was introduced with a
leading longitudinal oscillation. The development of the wave
was followed up to shock formation and beyond. Preliminary
results for this wave calculation were reported by Zhugzhda et
al. (1994).

Figure 4 shows the horizontal and vertical velocities, vx
and vz, of the wave at time t = 144 s after the start of the
computation. At 1050 km height an oblique shock is seen while
at 800 km a shock is about to form. The bumps in vz at 850 and
1100 km are due to the nonlinear coupling from the transverse
oscillations which generates longitudinal perturbations of twice
the frequency of the transverse wave. For more details on such
a nonlinear coupling see Paper I. The geometrical shape of the
tube axis in the xz-plane is shown in Fig. 5. Note the different

T N T T T T T T T T N T T T T T
4 Phases 4 -
L | .
L 3 §
L 2 | ]
{ S ]
o
Q _
£ _
3 —_—
> £ \ 4
G - T T
2
S .
>
vZ i
s VX 1
K -
-4 PR RS U BN S S R R 1
0 200 400 600 800 1000

height [km]
Fig. 6. Horizontal vx and vertical vz velocity versus height for a
longitudinal-transverse wave with an oblique shock. The wave is shown
attimes t = 3, 53, 82 and 110 s and was excited at the bottom of the
magnetic flux tube by a pure transverse pulse of amplitude 5 km/s
lasting for 1 s

scales of the vertical and horizontal distances. The shock at 1050
km height is associated with a kink by an angle of 1) = 1+, =
35°. Figure 5 shows that the wave at 800 km height is on its way
to develop a kink shock as well. To show the development of
the oblique shock out of a progressively sharpening kink, Fig.
5 displays the wave also at an earlier time ¢ = 96 s. Here the
physical meaning of the mathematical result ¢ = , becomes
clear, it is a symmetry condition, where the ever sharpening
bend in the tube cracks in such a way that the shock lies in the
symmetry axis.

In the present and other wave calculations we almost always
find that the waves generate a common shock, that is, both the
longitudinal and transverse waves form shocks together, and the
shocks propagate with a common speed. This is surprising in
view of the different propagation speeds, cr and ¢y, of the longi-
tudinal and transverse waves and indicates the strong nonlinear
mode-coupling introduced by the shock.

A second wave calculation is shown in Fig. 6. Here the same
tube as above is excited by a pure transverse pulse with ampli-
tude 5 km/s and 1 s duration. Events of this type and magnitude
have been observed on the Sun by Muller et al. (1994) as well
as Title (1994, private communication). The time- development
of the horizontal and vertical velocity, vx and vz, of this pulse
is shown in Fig. 6 at times 3, 53, 82 and 110 s. It is seen that
strong mode-coupling converts a large amount of energy into a
longitudinal wave pulse which completely dominates the wave
calculation. A very likely outcome of such a transverse pulse ex-
citation is the formation of spicules (see Cheng 1992a, 1992b).

4.2. Missing terms in the basic equations

In the present wave calculations we did not yet implement the
terms which Choudhuri (1990) and Cheng (1992) correctly
claimed to be missing in the transverse momentum equation
(Eq. 24 of Paper I), called Spruit’s equation by Cheng (1992).
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However, estimates of the importance of these terms for wave
calculations of the type discussed in Paper I showed that al-
though the correction term for the centrifugal force was fairly
small, the correction term for the Coriolis force was quite im-
portant. It is thus definitely necessary to include these correction
terms in future wave calculations, particularly in cases where
considerable longitudinal flows occur in the tube. It should be
noted, however, that the above mentioned missing terms do not
change the main results of the present paper, namely our derived
equations to handle shocks. This is because these equations rep-
resent the conservation of mass, momentum and energy in a tube
together with a symmetry condition for the kink angle.

5. Conclusions

1. We have derived Hugoniot-type jump conditions which are
valid for the treatment of oblique shocks in thin magnetic flux
tubes. It was found that the kink angles between the shock and
the tube directions are symmetrical with respect to the shock.
2. Time-dependent wave computations using these equations
show that, despite of different propagation speeds of the longi-
tudinal and transverse tube modes, a common shock develops
which propagates with a common shock speed. This indicates
that the shock introduces severe nonlinear mode-coupling which
should be very important for the mechanical energy transport
as well as for the heating and momentum transfer (wind gener-
ation) in magnetic flux tubes.

3. Purely longitudinal shocks (without a kink) develop not only
in the trivial case where symmetry conditions suppress the trans-
verse mode, but also when special propagation conditions apply.
4. The centrifugal and Coriolis terms which Choudhuri (1990)
and Cheng (1992) correctly found to be missing in the equations
which govern longitudinal-transverse waves in thin magnetic
flux tubes depend on the magnitude of longitudinal flows intro-
duced in the tube. For typical wave calculations the centrifugal

Y.D. Zhugzhda et al.: Propagation of nonlinear longitudinal-transverse waves. II

term was relatively small but the Coriolis term was found to be
quite important. It thus is necessary to include these missing
terms in future wave calculations.
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