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Abstract. An analytical investigation of the nonlinear interac-
tion of longitudinal and transversal waves in thin magnetic flux
tubes is presented and the nonlinear terms which give rise to
wave generation of other modes and to shock formation are
isolated. The nonlinear resonant three-wave interaction of lon-
gitudinal and transversal waves is studied together with the
growth and decay behaviour of these waves. This analytical
study clarifies our previous numerical computations of nonlin-
ear wave generation and of the steepening of longitudinal as
well as transversal wave profiles.
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1. Introduction

In recent years, particular attention has been given to various
problems of MHD wave propagation in magnetic flux tubes. A
main reason for this interest is the fact, that MHD waves may
be one of the basic mechanisms both for the heating of the outer
layers of late-type stellar atmospheres and for the production
of stellar winds (see e.g. Narain & Ulmschneider 1990, 1995,
Parker 1991; Hartmann & MacGregor 1982, Holtzer, Fla & Leer
1983, Cally 1987, Moore et al. 1991).

The fact, that the magnetic fields in the lower layers of the
solar photosphere have a filamentary structure and are concen-
trated in thin flux tubes, brings special features to the MHD wave
propagation, such as the appearance of new kinds of modes and
of dispersion. Unfortunately, the gravity induced pressure and
density stratification of stellar atmospheres leads to a flaring
of the magnetic tubes and a strong growth of the wave ampli-
tude which complicates a theoretical description of MHD wave
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propagation, especially in the nonlinear regime. A summary of
general results of the linear theory of MHD waves in magnetic
flux tubes may be found in the review of Roberts (1992).

A convenient model for the investigation of MHD waves
in magnetic flux tubes is the thin tube approximation (Defouw
1976, Roberts & Webb 1978, 1979, Spruit 1981). The use of
this approximation allows to decrease the number of physical
variables and arguments. Its main idea is to consider the tube
as a one-dimensional sequence of mass elements, where spatial
scales are large with respect to the tube radius and where the
physical variables do not change much across the tube from their
values on the tube axis. There are two different approaches in
the thin tube approximation. The first, suggested by Roberts &
Webb (1978) (see also Ferriz-Mas & Schiissler 1989 and Ferriz-
Mas, Schiissler & Anton 1989), allows to consider the dynamics
of longitudinal (sausage) and torsional (Alfvén) modes in the
straight vertical tube. Kinking motions of the tube is not con-
sidered in this model. The second approach was proposed by
Spruit (1981). His model allows to consider nonsymmetrical
perturbations of the tube (kink modes). The Spruit model has
been criticized by Choudhuri (1990) and Cheng (1992). Cheng
(1992) has rewritten the modified Spruit model in a very conve-
nient intrinsic form. There are two types of propagating modes in
the model, namely transversal (kink) and longitudinal (sausage)
modes. These waves are non-dispersive, i.e. a dependence of the
wave frequency upon the wave number is linear. Taking into ac-
count the wave structure in the tube surrounding may lead to an
appearance of dispersion (Roberts 1992).

Modern observations show the presence of large amplitude
wave motions in the magnetic flux tubes (see e.g. Muller et al.
1994, Roudier et al. 1994); consequently the wave dynamics
will often be nonlinear. In the absence of dispersion, nonlin-
ear processes lead to a formation of shock waves in the tube
(see e.g. Herbold et al. 1985, Ferriz-Mas & Moreno-Insertis
1987, Zhugzhda, Bromm & Ulmschneider 1995). The latter au-
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thors have found that there is the possibility of longitudinal-
transversal shock wave formation in the thin tube.

An elementary process, which is the physical basis of the
shock wave formation, is the nonlinear generation of second
harmonics of waves. Aside of this effect, the presence of sev-
eral types of modes gives an additional mechanism for the shock
wave formation, namely the nonlinear interaction of different
types of waves. This nonlinear mode-coupling may be a rea-
son for the production of longitudinal waves in higher layers
of the solar atmosphere and this effect appears to be important
for the problem of coronal heating. Ulmschneider, Zéhringer
& Musielak (1991) have numerically explored the nonlinear
behaviour of transversal tube waves and the mode-coupling be-
tween transversal and longitudinal waves. These results indicate
that nonlinear interactions are very important for these waves.
It would be interesting to provide an analytical basis for these
numerical results.

The aim of this work is to explore analytically the nonlinear
mode-coupling of transversal and longitudinal waves in the thin
magnetic flux tube. The work is based on Cheng’s intrinsic form
of the thin tube equations. We do not take into account effects
connected with gravity and steady flows in the tube. We assume
that the tube is vertical and straight. In Sect. 2 we show the ap-
proximations used. In Sect. 3 we discuss the linear propagation
of MHD tube waves in the model. A set of reduced equations
for the complex amplitudes of interacting waves is obtained in
Sect. 4. Solutions of the set of equations are discussed in Sect.
5. A summary and our conclusions are given in Sect. 6.

2. Governing equations

Consider a thin straight, vertical magnetic flux tube in the ab-
sence of gravity and dissipation. The tube is assumed to rest
in a nonmagnetic external medium. As a set of basic equations
we use the self-consistent equations derived by Cheng (1992,
1994). The set is a modification of Spruit’s equations (Spruit
1981), which takes into account the backreaction on the tube by
the surrounding plasma flowing around the tube.

The tangential and transverse equations of motions are given
by

ou 00 v, 10p
on _,,90 ., % _ 1 1
5t e U as T 50s M
Ovy P — Pe oo P , B2\o0o _
ot +<Ul+p+pevr 8t+p+pe Or 4mp 85_0’

@)

where p, p, v; and v, are density, pressure, tangential and trans-
verse velocities of the fluid inside the tube, respectively. v, is
the velocity of the plasma relative to the tube and is defined as
vy = (08/0t),, s being the arc-length and sy the arc-length at
the initial time. Variable 6 is the inclination of the tube with
respect to a fixed direction in the plane. The external density of
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the plasma is p, B is the magnetic field strength. The adiabatic
energy equation is given by

d(p\ _
i ()= o

where 1y is the ratio of specific heats.
The equations of continuity and induction may be combined
into one equation:

0p 0 pv

The variables vy, v, v, and € are connected by the following
relations:

6(1}1 "vr) - _6:0_

85 2 88 = 07 (5)
8’02 00 00
_8?+(U1 —Ur)'a—s =5 6

We assume pressure balance of the tube and its surroundings:
p+B /8 =p, ©)

where p and p, are the internal and external gas pressures, re-
spectively. The flows of the surrounding plasma are assumed to
be potential (Spruit 1981). Equations (1)-(7) is a self- consistent
hyperbolic system with two independent variables, time ¢ and
the arc-length s.

3. Small nonlinearity limit equations

Consider the dynamics of small perturbations of the plasma vari-
ables from the equilibrium state described by the unperturbed
internal po and external p. densities, as well as the internal
magnetic field By, the internal py and external p, gas pressures.
There are no stationary flows in the system. From Eq. (7), the
stable state variables are connected by the condition

po + B3 /8T = pe. ®)
We look for the solution of the set (1)-(7) in the following form

p=po+up, p=po+up, B=DBo+ub,
vy = ply, v = ply, Up =l 0= pb, )

where the dimensionless quantity p is the small positive pa-
rameter of nonlinearity. The quantities with tilde are full per-
turbations, and include both linear and nonlinear disturbunces.
For ease of notation the tilde will be omitted in the following
development.

Substituting expansion (9) in Egs. (1)-(7), and neglecting
terms of the third and higher orders in 11, we obtain the following
equations:

8v1 1 ap

E'F%'a';:%sh (10
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31)2 2 Po o0

ot Po + pe Os = HS, (1n
‘Zf -c? 3;’ = uS, (12)
% - 88“8 = 1S5, (14)
% - % = S, (15)
p+ %%? = w7, (16)

where C4 = By/+/4mpg is the Alfvén speed, Cs = \/vpo/po
is the sound speed. Egs. (10)—(16) contain only terms of first

(~ p) and second (~ p2) orders (terms of third and higher
orders in 4 have been neglected). On the left hand side, the
linear terms (~ p) are gathered and on the right hand side the
quadratic nonlinear terms (~ p?) are gathered with:

09 ov, p Op

=UV257 — Ur S a0 1
5 Vo TV Bs+p(2)8$ a7
_ PO — Pe a0
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S = (vr _'Ul)’a_, (22)
S
S; = —B*/8r. (23)

Equations (10)-(16) may be combined into two second order
differential equations:
0S¢
c:—=
k as ) b

” 0 89,
(az ‘Ckzgz‘) “H‘(W‘
o2 o2
(@ - C%@) p=

057
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24)
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693
0 053
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ayEv))
Here we use the usual notations of the kirk speed
Po
Ca, 26
po+pe 20
and the tube speed
CaCs
Or = —= 27)

Note, that the ratio of the internal unperturbed density py and
external unperturbed density p. may be calculated from the total
pressure equality (7) as

20?2
P _ ———s (28)
pe  ¥Ch +2C;
We suppose here, that the external sound speed C, = \/Ype/ pe
is given. In the linear limit 4 — O we can integrate the left hand
sides of Egs. (10)-(16) and write all perturbations in terms of p
and v,,

2
p= c? sPy Ur=01= __/8pd B = _47rC Ps
By
(91}2
0= | ==dt 2
55 Ot (29)

with which the terms Sy to S7 can be written

2
S = v 92 _ /apdt pdt Cs pa”,
p3 Os
1
Pot Pe
[202 / 9p gy 02 8“2 2 —C2+Chp / P ]
Sy = Ciy—19p°
3 Po 2 ot ’
ct o ap 1 0p?
5i=gaet o ([ B200) ~ |
82112 C4 2
Ss —’Uz/-a?dt, 56—0, S7— 20124/) p. (30)

In the linear limit, the right hand sides of the Egs. (24), (25) can
be neglected, and we have two independent wave equations,
which describe the propagation of transversal and longitudinal
waves in the magnetic flux tube, with velocities Cy, and Cr,
respectively. Note that the waves are without dispersion in our
derivation, because we neglect the perturbations of the external
medium. In the considered case (a straight vertical tube without
gravitation) the transversal and longitudinal waves propagate
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independently in the linear limit. The transversal wave corre-
sponds to the propagation of perturbations of the transverse ve-
locity of the fluid in the tube v, and of the inclination of the
tube 6, while the longitudinal wave is formed by perturbations
of density p, pressure p, magnetic field B, and the tangential
velocities v; and v,. Suppose that the perturbations are propor-
tional to exp(iwt — iks), where w is the frequency and & the
wavenumber. In this case, the frequency and wavenumber are
connected by the relation

w = Cik, 31
for the transversal, and
w = Crk, (32)

for the longitudinal wave.

4. Nonlinear interactions of the waves

We now assume that 4 is no longer infinitesimally small and
consider a mildly nonlinear situation. With y not too small, the
righthand sides of Egs. (24) and (25) will contribute appreciably.

Consider the longitudinal wave in Eq. (25). Inspection of
Eqgs. (30) shows that the terms S3, S4 and S7 appearing on the
right hand side of Eq. (25) contain perturbations ~ p?. This
means that the perturbations p will nonlinearly and resonantly
create second harmonics. Wave energy will be transferred to
higher frequencies which leads to a sharpening of wave fronts
and thus to shock formation. A given longitudinal wave with the
frequency w and wave number k will thus resonantly excite a
longitudinal wave with a doubled frequency and wave number.
Due to the absence of dispersion, the new wave will be a mode of
the medium, and may be a source for a next generation of waves
with still higher frequencies. This type of shock formation has
been studied numerically by Herbold et al. (1985).

Another type of longitudinal wave generation is by mode-
coupling. The terms S; and .Ss on the right hand side of Eq. (25)
contain perturbations ~ v3. This type of nonlinear nonresonant
wave generation, where a pure transversal wave generates lon-
gitudinal waves, has been studied numerically by Ulmschneider
etal. (1991).

We now consider the transversal wave in Eq. (24). Here
inspection of Egs. (30) shows that the surviving term .S, contains
the perturbation only as product pv,. Thus in the absence of a
longitudinal perturbation p, a direct nonlinear steepening of the
transversal wave via the generation of harmonics is not possible.
The steepening of the transversal wave is due to the combined
nonlinear interaction of longitudinal and transversal waves. This
type of transversal (and longitudinal) shock formation has been
studied numerically by Zhugzhda et al. (1995).

The nonlinear terms on the right hand sides of Egs. (24)
and (25) show the possibility of three types of nonlinear inter-
action: the nonresonant formation of longitudinal waves out of
transversal waves and two types of resonant wave generation
processes: the nonlinear generation of the second harmonic of
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Fig. 1. Frequency (w)-wavevector (k) diagram for a resonant triplet of
interacting waves for the case C, > Cr. L and T indicate loci of lon-
gitudinal and transversal modes, respectively. The different interacting
waves are labeled a, b and c.
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15 2 25

0 0.5 1
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Fig. 2. Same as Fig. 1, however for the case C1 > Cy.

the longitudinal wave, and the three-wave interaction of two
transversal and one longitudinal waves.

Note that in terms of wave interactions, the resonant gen-
eration of the second harmonics of the longitudinal wave may
be considered as a degenerate resonant three-wave interaction,
where two of the three interacting waves are identical. Note that
the process is possible only for the longitudinal mode.

Let us now discuss the last process (resonant three-wave
interaction of two transversal and one longitudinal wave) in
greater detail. The frequencies and wavenumbers of the inter-
acting waves are connected by the resonant conditions:

ka+ ks = ke @3

{wa + Wwp = We
where the indices a, b, ¢ denote different interacting waves; the

index ¢ corresponds to the wave with the highest frequency.
Consider two different cases: C;, > Cr and Cy, < Cp.
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4.1. Case Cy, > Cr

For a resonant three-wave interaction which generates waves of
higher harmonics, we know from our development above, that
a transversal wave results from the interaction of a longitudinal
and a transversal wave, while a longitudinal wave from the in-
teraction of two longitudinal waves (excluded here as already
discussed above) or two transversal waves. The resonant con-
ditions (33) show that specifying the frequency or wave num-
ber of one of the interacting waves determines the frequencies
and wave numbers of the other two waves. Fig. 1, for the case
Ck > Cr, shows the frequency w-wavenumber k diagram for
the wave triplet a, b, c. The loci of the waves with phase speed
Cy, are labeled T' and those with phase speed C, are denoted
by L. A particular wave is indicated by a vector in the w — k
diagram on its respective locus. Eq. (33) describes a vector ad-
dition. It is seen that in the case of Fig. 1, where C, > Cr
the only possibility is, that the wave c of the highest frequency
is a transversal wave which in turn is composed of a longitu-
dinal wave propagating in the same direction and a transversal
wave propagating in the opposite direction. Thus, the indices
a, c correspond to the transversal waves and index b denotes
the longitudinal wave. Using relations (31)-(32), for a given k,
we derive the wave numbers and frequencies of the other waves
of the resonant triplet (33):

we = Ckey, wa = —Ckka, wp=Crkp,
we Cr — Cy, 2w,
= = 34
k C'kC'T+Ck b Ck+CT (34)

We now look for the solution of Egs. (24), (25) in the form
p = R(us, put) exp(iwpt — ikps) + c.c.,
vy = Ag(ps, pt) exp(iwgt — ikys)

+Ac(us, pt) exp(iwst — ikes) +c.c., (35)
where c.c. means complex conjugate terms. The expansion (35)
is well-known as the method of slowly varying amplitudes (Wei-
land & Wilhelmsson, 1977). Substituting (35) into Egs. (24),
(25), taking into account the resonant conditions (33), and ne-
glecting the terms of third order in p, we obtain the reduced
set of equations for the complex amplitudes of the interactive
waves:

8Aa aAa . *

gt~ vy~ i0adeR

oR R | .

E + CTE = ’LO'bACAa, (36)
0A. . DA, .

Tk T ioedal,

where the coefficients of the nonlinear interaction are

Og = ! 20? koke
2(po + pe)

8

2
—ecz+cpEl,
c
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_ o mCh [ (B RN,
7 2w+ CD) [‘”” <wc o) Hhelke =Ko, (D)

1 [ZCszkbka

g.=
©7 2(po + pe)

The set (36) is well-known in the different branches of physics
(see e.g. Weiland & Wilhelmsson 1977). In the case considered
the coefficients o, p . are all negative and decrease linearly with
growing frequency or wave number of any one of the interacting
waves. If the frequency or the wave number tends to zero, the
coefficients also go to zero.

k2
- (2C% + 0,3)-“} .
Wy Wq

4.2. Case Cp > C},

Analogous to the reasoning in the previous section, we find, that
the wave with the highest frequency is longitudinal, and that this
wave interacts with two transversal waves. One of these waves
propagates in the positive direction, and other propagates in neg-
ative. Thus the indices a, b correspond to the transversal waves
and index c corresponds to the longitudinal wave. The expres-
sions for the frequencies and wavenumbers of the interacting
waves by means of a given k. are

wp = Crkp,

1 [ w w 1l [w w
ko===——-="1, ky=x(==+—=].
4 2(0T Ck> ’ 2<CT Cr
The wave with index a propagates opposite to both of the others,
as in the previous case. The resonant triplet is shown in Fig. 2.

In this case, we look for the solution of Egs. (24), (25) in the
form

We = Ocha Wq = _Ckkaa

(398)

p = R(us, pt) exp(iw.t — ik.s) +c.c.,
vy = Ag(us, ut) expliwgt — tkes)+

Ap(us, ut) exp(iwpt — ikps) + c.c.. (39)

Substituting (39) into Egs. (24), (25), taking into account the
resonant conditions (38) and neglecting the terms of third order
in u, we obtain the set of equations for the complex amplitude
of the interacting waves:

0A 04,

6_ta - Ckw =1io,RA},

% , ck% = ioyRA?, (40)
% + ch—f = (0. Aq Ab,

where

ou= s |22+ oD 035,

= o [(203 + 0,3)% —-2C? kwk“] , @n
o, = -#Cfcg) [kcaca +kp) — we (5—2 + (’j—‘j’))] :
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5. The behaviour of the wave in the tube

It is essential that the coefficients o, 03 and o are of the same
sign for both cases considered. This is no surprise, because all of
the waves considered have a positive energy. The sets (36) and
(40) have analytical solutions in terms of elliptical functions (see
e.g. Weiland & Wilhelmsson 1977). Here we limit ourselves to
consider several specific cases. Consider the temporal behaviour
(8/8x = 0) of the interacting waves, if the amplitude of one
wave is fixed, that is, if we have a wave source with a fixed
amplitude.

i) The case Cy > Cr: If A. = const, one gets from (36)

R
—EtT - O'aO'bIACI2R =0,
%A,
proae 0a0p|A* Ay = 0. 42)

Thus, in this case, if the amplitude of the transversal wave c is
given, then the amplitude of the transversal wave propagating in
the opposite direction, and that of the longitudinal wave, grow
exponentially. This is a decay instability. The growth rate ¢ is
determined by the nonlinear coefficients and the energy of the
wave with the fixed amplitude

43)

If the amplitude of the longitudinal wave is given, R = const,
then the temporal dependence of other waves is as follows:

2

% +0,0|R[*A, =0,

0?A,
o2

We see that there are oscillations of the amplitudes of the

transversal waves with the period

2

\/aaac}RIZ.

Note, that the oscillations are a slow modulation with respect to
the wave oscillations with frequencies w,, and w,.

0a0b|Acl?

+0,0c|RI?’A, = 0.

(44)

T = (45)

i) The case Cy < C7: In this case the presence of the source
of the longitudinal wave (R = const) leads to an exponential
growth of the amplitudes of the transversal waves with the in-
crement

0| R|%. (46)

On the other hand, the fixing of the transversal wave amplitude
Ay = const leads to oscillations both of the amplitudes of the
transversal wave which moves in the opposite direction, and the
longitudinal wave propagating in the same direction with the
initial wave. The period of these oscillations is given by

2T

V UaUCIAbIZ .

An investigation of the spatial dependence of the interacting
wave amplitudes may be carried out in the same manner.

T= (47)
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6. Summary and conclusions

Neglecting gravity, we have investigated analytically the nonlin-
ear interaction of longitudinal and transversal waves in thin mag-
netic flux tubes. Perturbing the magnetohydrodynamic equa-
tions in the thin flux tube approximation as given by Cheng
(1992), and retaining only terms up to second order, wave equa-
tions for the longitudinal and transversal waves were derived
which include terms describing the nonlinear interaction of
these waves. Both resonant and nonresonant wave generation
due to these nonlinear terms was investigated with the aim to
better understand our previous numerical work.

1. Writing all perturbations in terms of a longitudinal (density)
perturbation p and a transversal (velocity) perturbation v,, we
find that the interaction terms for the longitudinal wave contain
nonlinear terms ~ p?,v2, while the transversal wave has only
those ~ pv,.

2. The generation of higher harmonics by these nonlinear terms
clarifies why in the numerical longitudinal wave computations
(Herbold et al. 1985) we have steepening of the longitudi-
nal wave and for purely transverse numerical wave excitations
(Ulmschneider et al. 1991) we obtain nonresonant longitudinal
wave generation.

3. The direct generation of transversal shocks due to the forma-
tion of higher harmonics is impossible if only transversal waves
are present. Yet the steepening of the transversal wave is possible
if both longitudinal and transversal waves are present, clarify-
ing the numerical transverse shock formation computations by
Zhugzhda et al (1995).

4. The resonant nonlinear three-wave interaction of MHD tube
waves was investigated in terms of a normal mode analysis and
the growth and decay of the wave amplitudes were discussed.
It was found that there must always be a longitudinal and two
transverse waves present. The frequencies and wave numbers of
the interacting waves are connected by the resonant conditions.
The change of the wave number or frequency of any one wave
leads to the change of the frequencies and wavenumbers of the
other waves in the resonant triplet.

5. In the case C; > Cr the wave with highest frequency is
transversal and the other waves consist of a longitudinal wave
in the same and a transversal wave in the opposite direction,
while in the case Cr > Cj the wave of highest frequency
is longitudinal and the others are two oppositely propagating
transversal waves.

6. A set of reduced equations, which describes the dynamics of
the complex amplitudes of the interacting waves, was obtained.
The absolute values of the coefficients of the nonlinear interac-
tions depend upon the frequency or wave number of the incident
wave. In the both cases, the absolute values of the coefficients
increase with growing frequency of the highest frequency wave.
The efficiency of nonlinear interaction, which may be defined as
the absolute value of the coefficients of interaction, is stronger
in the case C, > C, and depends, of course, on the amplitudes
of the interacting waves.

7. Inrealistic situations, where there is a MHD wave noise back-
ground, the interactions are possible also in the absence of some
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of the waves in the resonant triplet. In this case the required wave
number and frequency will be picked out of the noise spectrum
and amplified.

8. An analysis of the set of reduced equations for the complex
amplitudes of the interacting waves shows either a possibility of
a decay instability of the waves if there is a source for a highest
frequency wave, or a formation of long period pulsations (with
respect to the periods of the interacting waves) if there is a source
for one of the two low frequency waves. The increment of the
decay instability and the period of the pulsations are determined,
in particular, by the initial amplitudes of interacting waves.

9. For the formation of the transversal shock wave by Zhugzhda
et al. (1995) we suggest that the wave energy is transferred to
the high frequency part of the spectrum due to a cascade of the
three-wave interaction, which includes the longitudinal wave.
The initial transversal wave (combined with the other transversal
wave of possibly small amplitude) excites the longitudinal wave,
while the longitudinal wave excites the transversal wave with
higher frequency, etc.
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