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Abstract. The behavior of MHD waves propagating in magstructures, such as magnetic flux tubes, sunspots, coronal loops
netically structured plasmas has been extensively investigaéed coronal holes, indicate that discontinuities exist on the Sun
inthe literature. In most of these studies, the wave treatment wasenflo 1978; Zwaan 1989; Solanki 1993). These discontinu-
restricted to the linear regime. This paper presents the resultgties can support MHD surface waves; the role of these waves
time-dependent and nonlinear numerical simulations of MHID chromospheric and coronal heating has been extensively ex-
body and surface waves propagating along magnetic slabs. Batired in the literature. It has been suggested that propagating
longitudinal and transverse waves are computed, and the wbldD body and surface waves may supply large amounts of
behavior in the linear and nonlinear regime is compared. Twoergy from the subphotospheric layers (generated there by tur-
physical processes are investigated in detail. The first is the balent convection) to the upper atmospheric layers. This wave
ergy leakage from the magnetic slab to the field-free extermalergy is thought to be dissipated in the coronal plasma by
medium. Itis found that the energy leakagé2$; for transverse mode-coupling, resonance as well as turbulent heating in the
slab waves, which means that the efficiency of energy transéaise of body waves and through resonant absorption and phase-
along the slab by these waves is significantly reduced. The setxing in the case of surface waves (see Narain & Ulmschneider
ond process is the excitation of MHD waves in two adjaceti©96, and references therein).
magnetic slabs by large amplitude acoustic waves from the ex- Previous studies have been primarily concerned with three
ternal medium. The slabs have physical parameters typical éfferent models of structured magnetic field configurations,
photospheric magnetic flux tubes. Itis shown thatdrh3% of namely, magnetic interfaces, magnetic slabs and magnetic flux
the energy carried by these acoustic waves is transferred tottitges. In this paper, the propagation of MHD waves along mag-
slabs, and that the efficiency of this process strongly depemdgic interfaces and slabs is considered, however, see Spruit
on the location of the slabs relative to the source of acous{i®981), Spruit & Roberts (1983), Herbold et al. (1985), Ulm-
waves and on the amplitude of these waves. Both physical pschneider et al. (1991), and Ziegler & Ulmschneider (1997a, b)
cesses are important for the problem of heating of magneticdity discussions of the propagation of MHD waves along mag-
structured regions in the solar and stellar atmospheres. netic flux tubes. For linear MHD surface waves on a single
magnetic interface, the resulting dispersion relations have been
Key words: waves — Sun: corona — Sun: chromosphere — mettterived and studied by Roberts & Webb (1978), Wentzel (1979)
ods: numerical — Sun: magnetic fields — MHD and Roberts (1981a). The studies show that on such magnetic
structures, body waves can either be longitudinal or transverse
depending upon the type of perturbation imposed, and that sur-
face waves can be either slow or fast depending on the relative
1. Introduction magnitude of the temperatures on both sides of the interface.

Magnetohydrodynamic (MHD) surface and body waves a'Fréme-dependentanalytical solutions of the initial value problem

known to be important n laboratory plasmas, in magnetosphelf linéar MHD surface waves on a single magnetic interface
physics and in astrophysics (Lanzerotti et al. 1973; Chen gve been found by Lee & Roberts (1986) for the case of an
Hasegawa 1974; Lanzerotti & Southwood 1979; Takahashi'BCOMPressible background medium. _
McPherron 1984; Bertin & Coppi 1985; Musielak & Suess The pro.paganon of MHD sqrface and body waves In mag-
1988; Roberts 1991; Goedbloed & Halberstadt 1994; Gooss&Fdc slabs is much more complicated than that on a single mag-
1994: Narain & Ulmschneider 1996: Poedts & Goedbloed 19dyetic interface due to the richness of modes that can exist in

Poedts et al. 1997). The observations of solar magnetic fi HJCh magnetic field structures (Robe_rts 1981b).’ and due to the
act that these slabs can effectively interact with the external

Send offprint requests to: P. Ulmschneider medium. The latter means that a two-dimensional treatment is
Correspondence to: ulm@ita.uni-heidelberg.de required and, as a result, the mathematical description may be-
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come too complicated to obtain analytical solutions even fekternal medium is again assumed to be field-free. More physi-
simple physical situations. Hence, in most cases a numerical details of this model are given in Sect. 6, where the excitation
approach will be necessary. Such an approach was developiahagnetic slab waves by external acoustic waves is discussed.
by Wu et al. (1996) who investigated the propagation of lin- A mathematical description of the considered physical mod-
ear MHD body and surface waves along magnetic slabs eets is given by the set of ideal and two-dimensional MHD equa-
bedded in an unstratified medium by using a two-dimensiontigns. After neglecting gravity, the set can be written in its con-
time-dependent numerical model. Their approach did not alloggrvative and dimensionless form (see Huang 1995) as follows
however, for large amplitude perturbations.

To understand the behavior of nonlinear MHD body and su?—i’ + opVz) + o(pVy)
face waves, it is necessary to incorporate both the nonlinearﬁf/ Oz %
and the magnetic field discontinuities in the numerical model.
Such a model has been developed and is described in this p er) D(pV2)  A(pV.V) b {p + %(ch + BS)}

=0, (1)

(see Sect. 2; also Huang 1995, 1996). The model allows si Pz + + = —

lating both linear and nonlinear MHD body and surface waves ot Ox % Ox

in the presence of background magnetic field discontinuities, 2 {831-31; 533} @)
however, without gravity. The numerical model is implemented V8 Oy Oz |’

as two-dimensional and can incorporate either single or mul-

tiple magnetic interfaces such as a magnetic slab or multiple 1 p2 5 }
magnetic slabs with any type of magnetic field variation insidé(0Vy) | 9(pVaVy) n a(pVy) _ ? {p +55(B: + B,)
the slab. There are no gradients in the physical quantities othedt ox y oy

than the presence of discontinuities in the background mag- 2 [oB,B, 0B2

netic field and in the gas pressure to satisfy the pressure balance ~ + 5| ox . 5 ok 3)
across these discontinuities. The considered numerical model is K 4

based on ideal MHD, which means that there is no wave energy

dissipation. The numerical procedure and two tests performé®.  d(V.B, —V,B.) @)
to verify it are described in Sect. 3. The numerical simulation®t 0y ’

with their physical interpretation of our three model cases are

discussed in Sects. 4 to 6. The conclusions are summarized®,  9(V,B, — V,B,) 5
Sect. 7. o ox ’ (5)
2. Physical models and governing equations Olpp' ™) + Olpp' V) + pp” V) =0. (6)

ot ox y
IQ:Z? dg:'zzrienn:;hpizy;;;aélrmnc;jrﬁleslyOfalr;(i:;g?esIr:gagrc:g:irc);l?;(;teyrfgijﬁethis set, all variables are dimensionless and defined as follows:
, ' L d _ d 2 _ vd _ Rd
a single magnetic slab and two adjacent magnetic slabs. In ﬂ1§ g/épokpa;d?—/iil‘//im v%e:e?;e/s‘,/joérlgcri_ t]?d”/i?érs
singleinterface model, the background medium is separated b[l%_ T /[ Vsolo N ! P b

- ) ) A a dimensional quantity, andis the gas densityV is the
an interface into two regions with different strengths of the magélocity pis the gag press):Jan;gsi the maggnetic fieldyztrength

netic field; in a special case, the field can be zero in one of theSﬁ1 : : o g
. ; . i§,the time anat is the position vector. The quantitigs, B, and
regions. To satisfy the pressure balance across the mterfaceéhe

as pressure must be higher in the region where the magnoiié represent the reference density, magnetic field strength and
gas p 9 9 9N Ctind speed, respectively, ands the time scale. In addition,

field is weaker. It is assumed that the interface is located aIO{}g andV,, are the components of the velocif§, and B, are
Y £y Y

the y-axis of a cartesian (x,y) coordinate system. A more det o .
tailed description of this model is given in Sect. 4, where itdllge components of the magnetic field strengtis the ratio of

used to verify the developed numerical code. Specific heats, ang is the ratio of gas pressure to magnetic

In the single slab model, two magnetic interfaces are intro_pres_sure_;@ = 8mp/B?. Initially th(_are areé no waves or fluid
duced in the background medium to form a magnetic slab Tﬂ]ecmons in the systems. The velocity perturbations (see Sects. 5
"__and®)areintroduced inthe models at 0. Then, the unknowns

interfaces are located symmetrically with respect to the y-axis, -V, By, B, andp are computed as a functionafy and.

so that the slab extends along that axis. The slab thickness ﬁsh : .
O .~~~ The numerical procedure adopted to solve the governing MHD
free parameter in this approach and the external medium is as-

sumed to be field-free. More details are given in Sect. 5, Wheer%uatlons is described in the following section.
the model is used to investigate the behavior of nonlinear MHD
surface and body waves. 3. Numerical procedure
Finally, n thetwo ad z_‘;xcent magretic sabs ”‘00,'9" four in- The governing MHD equations described in the previous section
terfaces are introduced in the backgrounq medium to form t P of the hyperbolic type and can be cast in the form
slabs that are located parallel to the y-axis. Both slabs have the
same thickness and the same strength of the magnetic field. The- F, + G, = 0, @)
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whereU represents a conservation quantity, &ndndG flux  The appropriate time stefst then is the smaller one of the two
components in: andy directions, respectively. The explicit ver-time stepsit. andAt,:

sion of the well-known MacCormack scheme, which is second )

order accurate in both time and space (Hirsch 1990), is ugely= min(Ate, Atg). (13)

to discretize the above equation. According to this method, the Having described the numerical procedure, it is now re-

predictor step is calculated from quired to specify boundary conditions for the finite compu-

U, ;= Ul — me(Fiy ;- Fﬁj) — Ty(G?,jH -G}y, (8) tational domair) used in these numerical simulat!qns. For the
wave propagation problem, open boundary conditions are de-

B B o sired. Different methods have been used to implement these

Uij=Ul'; —7e(Fij — Fi_1;) —7y(Gi; —Gij-1).  (9) boundary conditions (see Forbes & Priest 1987, and references

and the corrector step is given by

The final step is given as therein). A comr_nonly used method is know_n asthe Spmmerfeld
1 _ radiation condition. Among the many versions of this method,
U{f}“l = §(Ui’j + Ui, ), (10) the simple approach developed by Orlanski (1976) has been

o o o o _ _ successfully applied to many wave problems. In this approach,
whereF'; ; = F(U,;), Gij = G(U;), Fi; = F(Ui;), the wave propagation speeds of the various physical quantities
G, = G(U, ), subscripts, j are grid indices7, = At/Az, atthe boundary points are calculated by using values of these
7, = At/Ay, whereAt is the time step, andhz and Ay are quantities at the nearby interior grid points. There is no inward
grid spacings in x and y directions, respectively. For simplicitpropagation of information from outside the computational do-
a uniform grid will be used in this work. The grid spacing ignain. If the Sommerfeld radiation condition is given by
chosen such that the wave structure is adequately resolved 5nd U —0 14
the numerical dissipation inherent in the scheme is minimized: Tevbe = (14)

A numerical scheme can either be implicit or explicit. Fofheret/ represents an arbitrary physical quantity apdthe
implicit schemes, the time step does not have to be restricteddave propagation speed, then the Orlanski prescription (note

the CFL (Courant, Friedrichs, Lewy) condition (Hirsch 1990}hat the original Orlanski paper contains printing errors) is to
Therefore, these schemes are valuable for problems where g@shpute

convergence to a steady state is desired. However, a special

attention must be given to the numerical iteration process. TpUe: Az Ui, - U2 (15)
explicitscheme is straightforward inimplementation, butits dis- At UM +UM2 - 20

advantage is that the time step has to satisfy the CFL condition.

The latter states that the grid spacing cannot exceed the 3i§—we" as

tance covered by a disturbance, traveling with maximum char; . | 1= ﬁ—;cU el Q%CU yn (16)
acteristic speed within the numerical time step utilized in tH& 1+ %CU i 1+ %CU i—1

simulations (Hirsch 1990). For wave problems, the advantage

of the implicit scheme is also not obvious because the tirHging a leap-frog finite difference scheme.

step is limited by the wave structure. In general, at least 15 grid Anotherimportantissue in solving MHD equations is the nu-

points within a wavelength are needed to resolve the wave strierical treatment of the solenoidal condition. It is well-known

ture; if the time steps used in the simulations are too large, tH8at an incorrect numerical treatment of the induction equa-
meaningless (unphysical) results can be obtained. Thus, in fif# may lead to a non-solenoidal magnetic field that varies in

paper, the explicit version of the MacCormack scheme is usé#ne and introduces a non-physical force along the field lines.
The time step\¢, from the CFL condition is given by Several numerical treatments have been proposed (Brackbill &

. Barnes 1980; Marder 1987; Evans & Hawley 1988). In the lat-
At < min(Az, Ay)/Vin, (11) ter paper, the authors utilized a numerical technique called CT
whereV,,, = maz(Vs, Va) is the maximum of all characteristic (Constrained Transport) that allows transforming the induction
wave speeds/, is the Alfven speed. equation in such a way that it always maintains vanishing di-
For problems which involve discontinuities in the physicalergence of the field components to within machine round-off
variables, numerical viscosity is needed in the explicit MacCasrror. The CT technique is also adopted in this paper.
mack scheme to achieve numerical stability. Hence, a numerical Before presenting the results of our numerical simulations,
diffusion term in the form ofuV>®, ® being the velocity or jtis necessary to describe the time-dependent perturbations that
the magnetic field strength, will be added to the original set gfe introduced in the computational domain to generate the wave
governing equationsy is called “artificial viscosity”. The in- motions. In this paper, only sinusoidal velocity perturbations
troduction of artificial viscosity gives rise to another time stegre consideredV (z,,y,,t) = perc sin(2rt), whereV is a
Atq4. To obtain numerical stability of the central discretizatiogimensionless quantity and can eitheihgVs, or v, /Vs, and
of the numerical diffusion term, the following criterion has tQ.;-c represents the ratio between the velocity amplitiigeand
be satisfied for two-dimensional problems (HiI’SCh 1990) the reference sound Speé@g_ In addition,xp andyp represent
Atg 1 the location of the velocity perturbation in the computational

t 12) domain and will be specified for each considered case.

! min(Aa?, Ay?) ~ 4
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4. Verification of numerical code 090
The results of two specific tests performed to verify the numer- ,s
ical code are presented in this paper (see Huang 1995, for more
details and other tests). The first test involves the comparison of
analytical and numerical results. In the second test, the results
from two independent numerical codes are compared. In these .
tests two slightly different versions (see below) of the single
magnetic interface model introduced in Sect. 2 are used. oo
The first test is to solve numerically an initial value problem -
for linear surface waves propagating along a single magnetic in-
terface and compare the obtained results with the analytical solu-"
tions given by Lee & Roberts (1986). In their approach, a single ; P
magnetic interface is located in an incompressible and magné-""c. . . . .

tized plasma. The interface separates the background medium " oo X

Into two regions of dlfferent_magnetlc flelds_, namely;, for ig. 2. The wave-induced velocity field calculated analyticallpgder

z <0 andBT fora >0 (seg F,'g' 1). Note that |_n the perfqrme anel) and numerically lpwer panel) at the location of the vorticity
calculations both magnetic fields are normalized®y which jine ( = 4/ = 0.375) and in its vicinity. The presented results are
is taken to be eitheB; or B, whichever is stronger. To satisfysnapshots taken at the dimensionless tirse1.0.

the pressure balance across the interface, the temperature on

both sides of the interface is assumed to be different but the

density is the same. Lee and Roberts introduced the followiggmain we have used a grid spacing/ef = Az = 1/Ny.

surface wave type perturbation at tithe- 0 (see Fig. 1) The vorticity line is atz’ = 0.036. In Fig. 2, the velocity field

v, 0) = — Ade—lz="l gin(k 17y & the location of the vor_tic?ty line and in_ its vicinity_ is shown.
(4.0) ¢ sin(ky) (7 Fig. 3 shows the magnetic field perturbations at the interface and

V,(x,y,0) = Az — 2')|z — x/|flef\zfz’| cos(ky) (18) in its vicinity. It is clearly seen that the numerical results well

reproduce the shape of the surface wave at the interface and
wherek = m/2v3, A = 0.5 perc, perc = 0.001 andz’ is the velocity and magnetic field patterns outside the interface.
the location of the vorticity line (see Fig. 1), which is the onlysome differences seen at the vorticity line can be explained by
place in the computational domain where vorticity is initiallghe effect of numerical viscosity and by the fact that the plasma

non-zero. G in numerical simulations is finite, whereas in the analytical
To reproduce these analytical results with our numericiieatment is infinite.
code, it was necessary to run the code with= 100 to ac- The second testis to numerically solve an initial value prob-

count for incompressibility. We tooB; = 1.0 andB,. = 0.5. lem for MHD surface waves and compare the results with those
The comparison between analytical (upper panel) and numerdtained earlier by another numerical method. Here, the com-
cal (lower panel) results is given in Figs. 2 and 3.1As/Vs = parison is made with the numerical results obtained by Wu et
2/(vB) = rat, the number of points per wavelength ofl. (1996) who used a different numerical code. These authors
an Alfven wave is given byNaw = rat Ny, where Ny, considered a single magnetic interface that separates the back-
is the number of points per acoustic wavelength. We had gdoound medium, which is compressible, into two domains: one
chooseNy, = 400 to adequately resolve the ABwn wave. with the magnetic field and one without it. They assumed that
With N, = 81, NV, = 120 grid points in the computational the temperature is constant on both sides of the interface, which
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i Fig. 4. Snapshot of the velocity field induced by a linear surface wave
propagating along the magnetic interface. The presented results were
ﬁ%i H gngg obtained by using the code developed in this paper.
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Fig. 3. The magnetic field perturbations calculated analyticatp (
panel) and numerically lpwer panel) at the location of the interface
(x = 0.0) and in its vicinity. The presented results are snapshots te
at the dimensionless time= 1.0.

means that both domains must have different densities to
isfy the pressure balance across the interface. The nume
approach is limited to linear waves only. The comparisor
made between the velocity field calculated by our code and fF——————mmm-=---5552-=22220 0 IR
of Wu et al. (see Figs.4 and 5). Hefe= 1.2, N, = N, =66, L - ---ormmrrrr vorrnmerrrr iy
Ny = 33. _Thg similarities in the ov_erall pattgrn of the calCugi; 5 The same as Fig. 4 but obtained by Wu et al. (1996).

lated velocity fields are clearly seen in these figures. The overaﬁ

pattern of the computed magnetic field perturbations shows the

same similarities and thus is not presented here. After testimgdiumis field-free3..; = 0, and has the same temperature as
the code against analytical and numerical solutions for line&e slab7.,; = 7. The magnetic field inside the slab is uniform
MHD body and surface waves, we are now ready to investig@@d the pressure balance in the x-direction is satisfied with the
the behavior of nonlinear magnetic slab waves. gas density, lower thanp.,;. The surface and body waves are
generated by imposing longitudinal and transverse perturbations
on the slab. In the performed numerical simulations, the slab
thickness is assumed to be= 0.66, which corresponds to two
The single magnetic slab model already briefly introduced thirds of the acoustic wavelength,= 1, and Ny = 30 grid

Sect. 2 is used to investigate the behavior of MHD body ampwints are chosen per acoustic wavelength to achieve a good
surface waves. In the model shown in Fig. 6, the magnetic slabmerical resolution of the generated waves. In addition, the
with the physical parametefs,, Py, p; andT} is located at the CFL number (see the RHS of Eq. 11) is taken to be 0.4 and the
center of the computational domain, with its axis aligned alomymerical viscosity is chosen to 9e01; the latter effectively

the y-axis and with its thickness denoted thyThe external minimizes numerical oscillations.

5. Nonlinear MHD slab waves
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Fig. 6. Schematic description of single magnetic slab model used in X
numerical simulations described in the main text. Fig. 8. The wave-induced velocity field generated by longitudinal per-

turbations withperc = 0.2 imposed on a single magnetic slab. Same
as in Fig. 7, the snapshot is taken at the dimensionlessttine.0.

Fig. 7. Square of the velocity plotted on a logarithmic scale for a

nonlinear wave generated by the longitudinal perturbation inside thé ~
magnetic slab wittperc = 0.2 at the center of the computational x
domain.

Fig. 9. The same as Figs. 7 and 8 but for the magnetic field perturbation.

5.1. Longitudinal perturbations the surface wave which propagates along the slab boundaries,

The following longitudinal velocity perturbations are imposednd the external acoustic wave & —0.33 andz > 0.33)
on the slabV,(z,,y,,t) = perc sin(2nt), at the center of which is propagating isotropically in the external medium.
the computational domairnz( < z, < z,,y, = 2.5), with From a more detailed inspection of the velocity as seen in
x; = —b/2 = —.33, 2, = b/2 = .33. Recall thatt is the di- Fig. 8, one can see that the velocity inside the slab is essentially
mensionless time. The computational domain is giveiWpy=  in the y-direction, which is the propagation direction of the in-
161, N, = 150 points with grid distancéz = Ay = 1/Ny,. ternal body wave. This indicates that the internal body wave is
The perturbation extends over the entire widlth x,.—z; (0f20 longitudinal as expected from the imposed perturbation. The fig-
points) of the magnetic slab region. As a result of these perturhb@e also shows some asymmetry in the resulting velocity field.
tions,V, is initially zero. The velocity perturbation amplitude isThis is caused by the fact that the longitudinal perturbations,
assumed to bgerc¢=0.2, that i20% of the sound speed, whichwhich resemble a piston moving up and down, are imposed first
means that finite (nonlinear) amplitude waves are generatedioyhe upward direction leading thereby to the observed asym-
the imposed motions. metry in the velocity field. Note also that despite the fact that the
The snapshots of the resulting velocity field and magneiidtial perturbation is imposed only inside the slab there is sig-
field perturbations at = 2.0 are shown in Figs. 7 to 9. Fig. 7 nificant wave energy leakage to the external medium; the latter
shows the logarithm of the velocity square, that is, the quantitydiscussed separately in Sect. 6. The magnetic field perturba-
Q = log V?+0.001, whereV? = V2 4+ V2. Itis clearly seenin tions displayed in Fig. 9 in the vicinity of the slab axis show the
Fig. 7 that three types of waves are excited, namely, the intertyical behavior of the sausage mode. Clearly, the longitudinal
body wave which is confined to the slab({(.33 < = < 0.33), perturbation, which s inthe direction of the magnetic field, does
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Fig. 11. Square of the velocity plotted on a logarithmic scale for a non-
Fig. 10. Longitudinal velocityV, is plotted versug for linear and non- linear wave generated by the transverse perturbation inside the mag-
linear waves generated by the longitudinal perturbation pétre =  Nhetic slab withperc = 0.2 at the center of the computational domain.
0.01 andperc = 0.2, respectively. The results are shown for the di-
mensionless timé = 2.0 and at the location = 0.
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not disturb very much the magnetic field lines inside the slab
but only at its boundaries, where the surface wave is generated
Fig. 10 shows a comparison of the veloclty on the slab
axis between the linear and nonlinear cases. The initial pertur-
bation is imposed at = 2.5. Longitudinal body waves are seen ,
propagating along the slab axis in the upwayd> 2.5) and
downward {; < 2.5) direction with respect to the location of
the wave source. The steepening of the initially sinusoidal waves
is evident in the case of the nonlinear perturbatign¢ = 0.2)
but it is not present for the linear case whemc = 0.01. The
observed steepening is a consequence of the finite amplitude 0
the perturbations and will eventually result in the development x
of sawtooth shock waves. Note also that the decrease of g 12. The wave-induced velocity field generated by transverse per-
wave amplitude with distance from the wave source is causggbations withperc = 0.2 imposed on a single magnetic slab. Same
by wave energy leakage to the external medium and the resulti#zdn Fig. 11, the snapshot is taken at the dimensionless timg.0.
excitation of external acoustic waves (see Sect. 6 for details).

acoustic waves. There is also a prominent wave energy leakage
to the external medium; see Sect. 6 for more details.

In this numerical simulation the physical parameters are the The observed asymmetry in the x-direction of the magnetic
same as described above. The only difference is that the field can be explained by the fact that the very first perturbation
locity perturbation is now transverse instead of longitudindk imposed to the right with respect to the slab axis. The swaying
which means that/, = 0 andV,.(z, y,,t) = perc sin(2nt)), of the magnetic field lines which is a characteristic behavior of
with z; < z, < z, andy, = 2.5. The obtained results for the kink mode is shownin Fig. 13. Itis seen that the field lines act
the velocity field and magnetic field perturbations are showniim unison, however, lines located closer to the slab boundaries
Figs. 11 to 13, respectively. As seen in Fig. 11, three typeslafy behind. This is a typical behavior of the slow surface mode
waves are excited: the internal body wave, the surface wave(sae Roberts 1981b). Note that fast surface waves can only exist
the slab boundaries and the external acoustic wave. The intehen the background medium is not isothermal, which is not
nal body wave is essentially transverse (see Fig. 12), whichlig case considered here.

easily understood considering the form of the imposed perturba- Fig. 14 shows the velocitie®, andV, at the slab axis for
tion. Note that the surface wave is mainly longitudinal althoughe downward ¢ > 2.5) and upward ¢ < 2.5) propagating

the imposed perturbation is transverse. The latter and the “vamaves excited aj = 2.5. The amplitude of the transverse wave
tex structure” seen in this plot are caused by the transition \gf decreases with distance from the wave source as a result of
the fluid motion from the transverse body wave to the externahve energy leakage to the external medium and due to the gen-

5.2. Transverse perturbations
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6. Applications to the Sun

It has long been known that the distribution of magnetic fields
on the solar surface is highly inhomogeneous and that magnetic
inhomogeneities outside sunspots form flux tube structures (e.g.
Stenflo 1978; Zwaan 1989; Solanki 1993). Individual magnetic
flux tubes are regions of intense magnetic fields that rapidly
diverge in the solar chromosphere. The typical strength of the
magnetic field inside these tubes at the base of the photosphere
is aboutl 500 G but can also be less. There are turbulent motions
in the solar convection zone where the tubes are rooted, but also
in the solar photosphere. These motions may interact with the
tubes leading to the generation of tube waves. High resolution
white light observations of the Sun performed by Muller (1989),

-2 =1 0 1 2
x Nesis etal. (1992) and Muller et al. (1994) show that the velocity
Fig. 13. The same as Figs. 11 and 12 but for the magnetic field pert@f turbulent motions can be as large2agm /s.
bation. Itis important to find out how efficiently the observed turbu-

lent motions generate linear and nonlinear magnetic tube waves.
The problem of generation of these waves has been treated
both analytically (Musielak et al. 1989, 1995; Choudhuri et al.

0'04: 1993a, b) and numerically (Huang et al. 1995; Ulmschneider
0.02f & Musielak 1998). The work by Huang et al. shows that the
. typical wave energy fluxes carried by nonlinear transverse tube
000 waves are of the order af)® erg/cm?s. However, the amount
i of energy which can be transferred to the chromosphere remains
S '0'02; uncertain because the process of energy leakage to the external
0.04 medium has not been taken into account. This is due to the use
C of the thin flux tube approximation by these authors. To esti-
-0.06 mate the efficiency of the leakage process, the slab structure is
i used to approximate a magnetic flux tube embedded in the solar
-0.08 photosphere (see Sect. 6.1).
odob L L L L ] Observations and numerical simulations show also evidence
0 1 2 v 3 4 5 for the existence of large amplitude acoustic waves travelling

horizontally in the upper layers of the solar convection zone
Fig. 14. Transvers#, and longitudinal/, velocities are plotted versus (Nordlund & Dravis 1990; Cattaneo et al. 1991; Nordlund &
y for nonlinear waves generated by the transverse perturbation Witein 1991 ; Steffen 1993; Steffen et al. 1994). Itis of interest to
perc = 0.2. The_ results are shown for the dimensionless #me2.0 investigate how efficiently these acoustic waves can supply en-
and atthe locatiom = 0. ergy into the magnetic flux tubes. The efficiency of this process
is estimated here by using the model of two adjacent magnetic
slabs (see Sect. 6.2).
eration of longitudinal waveg,, that propagate inside the slab.
The process responsible for the excitation of these Iongitudiréai
waves is called nonlinear mode coupling and its efficiency has™
been investigated by Ulmschneider et al. (1991) in their on€he results presented in Sect. 5 clearly show that in both cases of
dimensional numerical studies of the propagation of magnetie longitudinal and transverse perturbation the energy carried
flux tube waves in the solar atmosphere. They suggested thatifighe body and surface waves leaks to the external medium.
main reason for the appearance of longitudinal waves is the clis-a result of this process, external acoustic waves are gener-
vature force that results from the swaying of the magnetic fiedded. The wave energy leakage has been extensively discussed
lines and is perpendicular to these lines. The consequencéyHuang (1996) who obtained the results for magnetic slabs
this process is that the generated longitudinal waves take awath 3 < 1 and demonstrated that more tha¥% of the en-
part of the energy carried by the internal transverse body wawegy carried by transverse slab waves and alri6%t of the
and, as a result, the latter are damped when they propagatenkrgy carried by longitudinal slab waves can leak out to the
must be noted that the longitudinal waves may form shocks aexternal medium within two wave periods. In our present work
dissipate the wave energy leading thereby to the heating of the slab structure is used to simulate a flux tube embedded in
background plasma. the solar photosphere and to estimate the efficiency of wave en-
ergy leakage. Itis well known that the solar photosphere may be

Wave energy |eakage
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approximated by a model consisting of two media: a magneiscused here as a quantitative measure of the amount of wave
region where the plasma is of order unity or smaller, and aenergy leaking to the external medium. The averaging fiine
weak field region wherg is very high. In the simulations per-is chosen ag.0 in these calculations. In general, it is desired
formed here, the value ¢ in the slab is chosen to ble The to carry out the time average over a very long period of time.
external medium is assumed to be field-free, which means thimwever, this is not feasible numerically as it would require an
G is infinite there. At the optical depth= 1, the photospheric infinitely large computational domain to account for the wave
flux tubes have typical diameters of approximatlg km and spreading in time. Since the finite computational domain is used
the sound speed is aroudem/s. For waves with periods of here, the simulations are stopped just before the fastest prop-
arounds0 seconds, the diameter of the tube isnormalizédtd agating wave reaches the boundary; the latter always happens
which is taken to be equal to the slab thickness. The velocihenT, > 2.0.
perturbation amplitude is chosen to(e5, which corresponds  The calculated energy leakage ratid)i§2, which means
to a velocity perturbation d km/s and is in agreement with that62% of the energy carried by nonlinear slab waves leaks to
the observations (see above). Only transverse velocity pertilne external medium within two wave periods. Now, applying
bations are considered. this result to the wave energy fluxes calculated by Huang et al.
Snapshots of the resulting velocity field looks similarly agl995) for transverse tube waves, it is seen that more than half
in Figs. 11 to 12. There are prominent acoustic waves in the @fthe total wave energy flux (a0° erg/cm?s) carried by these
ternal medium. Since the perturbations are imposed only on thiaves will be transferred to the external medium and propagate
slab, it is evident that a significant amount of wave energy mubkere as acoustic waves. As shown recently by Ziegler & Ulm-
be leaking from the slab to the external medium. To estimaehneider (1997a,b), the efficiency of wave energy leakage can
this amount of energy, we use the wave energy leakage rdi@meven higher for more realistic magnetic flux tubes.
Wiear defined as

Eext (19) 6.2. Generation of magnetic slab waves
Eert + Eint by external acoustic waves

whereE..; andE,, represent the energy carried by the externab calculate the efficiency of the generation of magnetic slab
acoustic waves and the internal slab waves, respectively. Thges excited by external acoustic waves, the model of two

VVleak (t) =

are given by identical magnetic slabs is considered (see Sect. 2) and the ex-
ternal medium is field-free. The slabs are placed side by side
Eert = /EdSemt, (20) inthe computational domain and the distance between them is
half an acoustic wavelength (see Figs. 15 and 16). The computa-
and tional domain and the grid size are similar those chosen for our
[ /edS 21) !ongitudinal and transverse wave calculations. The slab Whigh
int ints is located closer to the center of the computational domain is

h is th | . ‘ _called the first slab and the other the second slab. The distance
wheree is the total wave energy density, afig,, andSiy. rep al?]%tween the first slab and the center of the computational do-

resent the part of the computational domain that is external ) :
internal to the slab, respectively. According to Landau & Lit[nam,where the source of the external acoustic waves is located,

shitz (1959), the kineticef.;, ), thermal €,,0r,,) and magnetic is one acoustic wavelength. The first slab liesat= —1.01,

(emagn) €Nnergy densities contribute to the total wave ener e_secc_md at = _1'52_' The wave source is aI_|gned along the
density as -direction and has a width df/15 of the acoustic wavelength.

It must be noted that the values of these three parameters may
€ = €kin + €therm + €magn. (22) have wide ranges in reality and that the particular values used
here are chosen only for the purpose of simulation.

with The numerical results obtained fore= 2.0 are presented in

hin = %P(Vf i V;), (23) Figs. 15 and 16, which show that at the time when the simulation
was stopped, the external acoustic waves have already reached
1 p? both slabs. It is seen that the propagating acoustic waves pass

€therm = 5717?7 (24) through both slabs and, as a result, MHD body and surface
waves are excited in the slabs; the latter can be even better seen

and in Fig. 16. Obviously, the body and surface waves generated
1 P 9 in the first slab are stronger than those observed in the second

Emagn = W(Bm + By), (25)  slab. The amount of energy that is lost by the acoustic waves

Do , - _due to the excitation of the magnetic slab waves on the first
whereV,, Vy, o, B; andB, are perturbed quantities. The timeg)ap js3% and the corresponding value for the second slab is

average o#V,.qx(t) defined as 1.1%. Although these numbers are small, it is expected that the
- To closer the slabs are to the wave source, the more energy will
Wieak = T Wieardt, (26) be transferred to them. The amount of energy transferred must

0Jo
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scheme. Again, good agreement has been found between the
results obtained by the two different numerical codes.

4. Our numerical code has been used to investigate the behavior
of nonlinear MHD surface waves propagating along a magnetic
slab and both longitudinal and transverse velocity perturbations
with finite amplitudes were excited. The resulting wave patterns
and nonlinear features have been shown and discussed.

5. The process of wave energy leakage from a magnetic slab to
the field-free external medium has been studied. The obtained
results show thai2% of the energy carried by transverse slab
waves leaks to the external medium within two wave periods.
This means that the efficiency of the energy transfer by these
waves along the slab is significantly reduced.

* 6. The process of excitation of MHD waves in two adjacent
Fig. 15. The velocity field induced by the external acoustic waves gemagnetic slabs by large amplitude external acoustic waves has
erated by perturbations wiglerc = 0.25 at the center of the computa-also been investigated. It is found that oly- 3% of the en-
tional domain. Interaction of these waves with two adjacent magnegpgy carried by these acoustic waves is transferred to the slabs,
slabs. Both slabs have= 0.21 and3 = 1.0. The presented results 3nq that the efficiency of this process strongly depends on the
are snapshots taken at the dimensionless time2.0. location of the slabs relative to the source of acoustic waves and
“““““ - 0onthe amplitude of these waves.
7. The leakage rates found are important for the problem of
heating of magnetically structured regions in the solar and stellar
atmospheres.
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