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The solar chromosphere can be characterized by two
signatures: the spectroscopic signature is an emission
spectrum for all radiation originating in the chromo-
sphere; only NLTE effects in the cores of strong lines
producing absorption features. And the dynamical
signature is in the form of oscillations, with a period of
3 min in the nonmagnetic chromosphere and a period
of 7 min in magnetic regions.

The paper explains these signatures in terms of
waves: The dynamics of the chromosphere is due to
acoustic waves in the magnetic-field-free atmosphere,
which produce K,, bright points, and to kink and
longitudinal waves in magnetic flux tubes, which pro-
duce network bright points. The heating of the
chromosphere is caused by acoustic waves whose
dissipation makes the kinetic temperature rise in the
outward direction, producing the emission spectrum.
As far as energy fluxes are concerned, the energy dissi-
pated in chromospheric heating outweighs the energy
visible in bright points by two orders of magnitude.

The paper interprets the observed oscillation periods
in the chromosphere as cutoff periods: for the 3 min
period, as the cutoff period of acoustic waves in a non-
magnetic, stratified atmosphere; and for the 7-min
period, as the cutoff period of kink waves in magnetic
flux tubes for field strengths typical of the magnetic
network.

1. Introduction

THE most prominent lines in the visible spectrum of the
chromosphere are the H and K lines of Ca II. Their
emission shows a separation of the atmosphere into
nonmagnetic and magnetic regions, which are referred to
as internetwork and magnetic network or, because of
their connection to convection, as interior and boun-
dary of supergranulation cells. This bifurcation of the
medium is further emphasized by the dynamical beha-
viour, which shows oscillations with periods of 3 min in
the internetwork chromosphere and 7 min in the network'
(Figure 1). Furthermore, the time variation of the intensity
is different: The 3-min oscillations are marked by a
sharply-peaked time variation of the intensity’ and a
strong preference for the blue emission peaks, H,, and
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Kjy, and the 7-min oscillations are accompanied by a
broad time variation of the intensity and a much less
pronounced preference for the blue peaks®. The bifur-
cation of the chromosphere that characterizes optical lines
is also found in the ultraviolet, where SUMER shows
3-min waves in emission lines and continua of neutral
metals from the internetwork chromosphere®, and 7-min
waves in emission of the Lyman continuum and several
Lyman lines from the magnetic network’.

In contrast to the dynamics, the differences in the
appearance of emission lines and continua are minor,
especially those from the layers of the low chromosphere”’.
It is therefore likely that the nonmagnetic and magnetic
chromospheres are heated by the same mechanism. It is
also noteworthy that the chromosphere produces emission
everywhere and all the time' and never the absorption
spectrum predicted by the chromospheric bright point
model of Carlsson and Stein™*,

The observations of chromospheric radiation thus suggest
a separation of the description of chromospheric phe-
nomena into (1) the dynamics of K, bright points with
3-min oscillations of large amplitude at a few, select
points in the internetwork medium, and the dynamics
of network bright points with 7-min oscillations of large
amplitude in magnetic flux tubes and (2) the general
heating of the chromosphere. The paper is structured
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Figure 1. Velocity power spectra from the Doppler motion of the Hj-

absorption minimum of the H line, at disk center. Network and

internetwork regions along the slit-are averaged separately. From Lites
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accordingly: Section 2 discusses chromospheric dynamics
on the basis of the hydrodynamic and magnetohydro-
dynamic equations. Section 3 considers the general chro-
mospheric heating requirements, while in Section 4 the
generation of acoustic waves in the convection zone and
the dissipation of this energy by weak acoustic shocks is
outlined. Section 5 summarizes the paper.

2. Chromospheric dynamics

Waves in the chromosphere are affected by the density
stratification due to gravity, which makes waves disper-
sive, and introduces cutoffs that separate propagating
from evanescent frequencies. For acoustic waves in the
nonmagnetic medium, where gas pressure provides the
restoring force in the wave equation, the cutoff frequency,
Ve, al the temperature minimum between photosphere
and chromosphere is equal to 5 mHz (cutoff period
P, = 1/v, =3 min). Waves with frequencies lower than
Vae @re evanescent, i.e. their phase velocity is infinite and
their group velocity is zero; thus they transport no energy
(in the low-amplitude limit). For internal-gravity waves in
the nonmagnetic medium, where gravity provides the
restoring force in the wave equation, the cutoff frequency
is the Brunt-Viiisild frequency, Nay. Waves with frequen-
cies lower than N,, can propagate, but they are excluded
from the purely vertical direction. In a neutral, monatomic
gas, Ny and v, have practically the same value. Thus the
two cutolf frequencies separate the wave spectrum into
the regimes of low f[requencies, where only internal-
gravity waves can propagate, and high frequencies, where
only acoustic waves can.

In the magnetic chromosphere, two wave-modes play
a role, namely, longitudinal flux tube waves, where gas
pressure provides the main restoring force, and transverse
flux tube waves, or kink waves, where the magnetic field
does’. For the magnetic-field strengths encountered in
the quiet network, the cutoff frequencies are v; =5 mHz
(Pz =3 min) for the longitudinal mode, and v, = 2.5 mHz
(Pr=7 min) for the kink mode. For both wave-modes,
propagating waves have frequencies above the cutoff, and
evanescent waves, below the cutoff,

A dynamical model by Carlsson and Stein’ of the
nonmagnetic chromosphere combined a sophisticated hydro-
dynamic code, incorporating NLTE radiative transfer of
the Ca II ion, with empirical driving, which was taken
from the Doppler velocity measured in a photospheric
Fe-I line in an hour-long observing run'. The empirical
approach sacrificed the search for the underlying cause of
the oscillations, but, in return, allowed firm conclusions
about the nature of the K;, phenomenon. Since the simu-
lation” reproduced to high fidelity the intricate intensity
and velocity variations in the core of the H line for two
out of the four bright points from the same observing run,
it is clear that the waves powering K, -bright points are
propagating acoustic waves,
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In the network bright points on the supergranulation
cell boundary, the periods of oscillation, typically near
7 min, are longward of the acoustic cutoff period and
of the Brunt-Viisili period, where acoustic waves are
evanescent but internal-gravity waves propagate. Some
observers have therefore considered the waves in the
magnetic network to be internal-gravity waves'™''. A
theoretical underpinning of this hypothesis by Lou'” found
the observed periods to be possible as resonances of
magneto-gravity waves in a chromospheric cavity. But a
heuristic picture of network bright points in terms of
internal-gravity waves by Deubner and Fleck!® was shown
by Kalkofen'* to fail in its intended purpose, namely, to
dissipate the wave energy in traveling downward in the
narrowing {lux-tube funnels.

An explanation of network bright points not based on
oscillations in a cavity was proposed by Kalkofen' who
noted the coincidence of the observed oscillation period
with the cutoff period of kink waves for magnetic field
strengths found in the magnetic network. Numerical
modeling by Choudhuri et al." and the analytic solution
of the MHD equations for impulsive excitation'® showed
that oscillations at the cutoff could indeed be produced. In
order to dissipate, however, the transverse waves have (o
transfer energy to the longitudinal mode, which forms
shocks'’.

Wave excitation in a magnetic flux tube produces both
transverse and longitudinal waves. But the power spect-
rum of waves in the network shows virtually no power at
5 mHz, the cutoff frequency of the longitudinal mode.
The scenario for network-bright points therefore requires
the wave excitation to produce mainly transverse waves.
This is indeed the case, as was shown with numerical
solutions'® and with analytic methods'?.

A consequence of the almost exclusive excitation of
transverse waves is that a significant flux in longitudinal
waves appears only in the chromosphere, where the non-
linearity of the waves facilitates the transfer of energy
between modes. This transfer is consistent with the low
value of the observed velocity coherence between the base
and the middle of the network chromosphere' (Figure 7),
which indicates that the dissipating longitudinal waves
do not arrive from below but are formed in the
chromosphere.

For the analytic modeling of chromospheric oscilla-
tions we consider the hydrodynamic equations. From a
small-amplitude expansion of the equations for a one-
dimensional, isothermal atmosphere we obtain the Klein—
Gordon equation™;

8>
Z
0z° or”

u—u=0, (1)

which is written here for the ‘reduced’ velocity u and in
terms of the dimensionless depth and time variables z
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and r. For acoustic waves, the ‘physical® velocity » is
obtained as

u&, ) = wg, et 2

in terms of the physical depth and time variables  and 7.

The derivation of the wave equation (1) for acoustic
waves assumes that the atmosphere is one-dimensional,
isothermal and stratified in plane-parallel layers with a
constant scale height H. In the vertical direction, only
acoustic waves are allowed (i.e. internal-gravity waves are
excluded from the vertical direction). The velocity »
grows exponentially with height ¢ with a scale length of
twice the density-scale height.

Magnetic waves propagating in the expanding geometry
of a thin magnetic flux tube, in pressure equilibrium with
the surrounding medium, satisfy the same wave equa-
tion””, but with different definitions of the dimensionless
variables. An additional requirement (which is satisfied
here) is a constant ratio (= 87p/B®) of gas to magnetic
pressure inside the tube. The physical velocity » is now
obtained as

(&, 7 = u(f, De, (3)

showing slower exponential growth for tube modes, with a
scale length of 4H because of exponential spreading of the
tube cross section.

The solution of the wave equation for a velocity im-
pulse at z =0 and += 0, in an infinite medium is given by

Lambgl,
J ||l,2 B/
—‘[J%)— -zl @)
L

where & is the Dirac S-function; =¥ is the Heaviside
function and J; is a Bessel function, The argument of both
the &-function and the Heaviside function expresses the
propagation of the head of the wave (lzl = 1), at the sound
speed for acoustic waves and at the tube speeds for the
flux-tube waves. The tube speeds in dimensioned units are
given by ¢z =c¢.[2/(2 + ¥3)]"* for the longitudinal mode.
and ce=c 2001 + 280" for the transverse mode,
where ¢; is the sound speed and y(= 5/3) is the ratio of
specific heats.

Behind the head of the wave, the atmosphere oscillates
initially with frequencies in a broad spectrum, but
this narrows with time until it results in an oscillation at
the cutoff**, as shown by the asymptotic solution of the
Klein-Gordon equation:

. t
H(z,f)=%b(_r-lzl)—5

cos (f) 5
5

in which the (reduced) velocity becomes independent of
height z. The solution implies that gas eclements at all

>z20, (5)

iz, t) ~
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heights reach maximal amplitude simultaneously. At the
cutoff”* frequency, the phase velocity, which is given by

w

utp = 4 !}grou it

is infinite and the group velocity is zero.
In dimensioned units, the cutoff periods are given by

P. =4rnHlc,,

P, = P, (J(60+508)/(63+485), (7)

P =P,.2y(1+2p),

for acoustic waves and for longitudinal and transverse
flux-tube waves, respectively®.

It is interesting to note that the highest phase velocities
are reached near the origin of the wave, and that they
increase with the order of the maximum behind the head
of the wave'S. For comparison with observations it needs
to be remembered that these analytic results are for an
isothermal atmosphere initially at rest; even the observed
values of the photospheric velocity allowed to reproduce
the H-line observations only when the waves were laun-
ched into a disturbed atmosphere’.

The asymptotic solution of the Klein—-Gordon equation
shows that an impulse can excite oscillations at the cut-
off of the respective mode. Any sudden change in the
forcing function has the same consequence, An example
of the former is found in the seismic events following the
collapse of an intergranular lane™, an example of the
latter in stochastic excitation™. Thus there are two possible
models for the generation of Ka,-bright points: (1) Indi-
vidual events at a few, discrete points in the internetwork
medium. They might account for the strong bright points
observed by Liu (1974)* or by Brandt e al. (1992)* with
a filling factor of about 1%, or modeled’. (2) Ubiquitous
generation of oscillations from the turbulence in the con-
vection zone”’, leading to bright points that are visible
anywhere in the K line®, or in UV lines? where they are
observed in half the positions along the slit of the
SUMER instrument.

For network bright points Muller ef al.*® have observed the
interaction of fast granules with magnetic-flux tubes. This
process was modeled by Choudhuri ef al.”®, as footpoint
motion of a flux tube, resulting in a kink wave in the tube.

While the various processes make plausible the exci-
tation of oscillations at the cutolf of a mode, observational
confirmation of a link between a photospheric event and,
after a delay accounting for the wave travel time, of a
chromospheric brightening is still lacking.

An interesting puzzle is posed by the dynamical
modeling of H,,-bright points’. On one hand, the simu-
lation reproduced to high accuracy the complex variation
of the intensity and shape of the H line, including the
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proper time delay between the motion of the photospheric
Fe-I line and that of the resulting H line, and on the other
hand, it predicted an absorption spectrum from any
location in the internetwork chromosphere and most of the
time, whereas the observations® with SUMER show only
an emission spectrum. The high spatial and temporal
resolution of the space observations exclude the possi-
bility of spatial and temporal averaging to hide a chromo-
spheric absorption spectrum behind the observed emission.
Thus the chromosphere must have a permanent tempe-
rature rise in the outward direction, as shown by empirical
models. The flaw in the model” was traced to the input
velocity spectrum by Kalkofen er al®® who argue that
the dynamical model uses only about 1% of the acoustic
energy flux available. The hidden flux has frequencies in
excess of 10 mHz. The flux critical for the bright point
phenomenon is emitted between 5 mHz and 10 mHz. That
flux is found in the observed velocity spectrum and
accounts for the success of the dynamical simulation. In
the following section we address the generation of the
flux that is missing from the simulation’ and treat its
dissipation by means of the theory of weak shock waves.

Chromospheric energy losses and the heating
requirements

The empirical chromosphere model of Vernazza et al.®
has been constructed by fitting the observed ultraviolet
C 1, SiIand H I continua with the simulated emission
from a hydrostatic equilibrium model with an arbitrary
lemperature distribution. This temperature distribution
was subsequently modified until an optimal fit between
the observed and simulated emission was obtained. For
the average sun model C, these authors subsequently
computed the chromospheric energy-loss rate in H, H,
Ca II and Mg 11 due to lines and continua. They ﬁ)und a
total radiative cncrny loss of Fr=4.6x 10° ergem2 57,
Anderson and Athay® later improved on this dctcrm1n‘1~
tion by including the abundant line emission from Fe II
and found a total Lhrommpher ic radiative energy loss of
Fr=14x 10" erg cm™s™". In addition, they found (sce
Figure 2) that the LOOlll'lg rate @, in most of the chromo-
sphere is proportional to the mass density p,, which leads
to a characteristic height dependence of the chromo-
spheric emission.

The question is how this persistent encrgy loss is balan-
ced and how the continuous supply of energy is provided.
The time scale in which an excess temperature would
cool down to the boundary temperature if the mechanical
heating were suddenly disrupted is given by the radiative
relaxation time for which one has

AE pc, AT pc,
Ipag == = 3
loxo T

@y 16KcT AT il
R Koil~

Here we used from the VALS1 model that at z = 1280 km,
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T=6200K, p=9.8dyn/cm’, !c Ip=4.1x 10" cm¥g, c,=
9.6 x 10712 glem®, 6=5.6 x 107 erglem’s K'. It is seen
that in timescales of a fraction of an hour, the chromosphere
would cool down to the boundary temperature if mecha-
nical heating would suddenly stop.

In a purely hydrodynamic environment there are few
possibilities to persistently heat a medium: acoustic waves
or pulsational waves. For a rwaew on heating mechanisms
see Narain and Ulmschneider™®. Acoustic waves generated
in the convection zone are the most likely possibility. To
see what acoustic wave heating might do, consider a
typical acoustic disturbance in the solar chromosphere.
Assume a characteristic perturbation of size L =200 km,
temperature A7'= 1000 K and velocity Az = 3 km/s. Using
appropriate values for the thermal conductivity Ky, = 10°
erg/em s K and viscosity 1y = 5 x 107" dyn s/fem?® we find
for the thermal conductive and viscous heating rates

d . df kel

B B0, =3x1077 | -ZE_| 9
% dz - dz L2 em’ s ™
oY ny, Avt
g | TR | LEMOR oy S (10)
v Vis S
dz I cm™ s

These heating are inadequate by a large margin to bal-
’mc,c the [yp:ml empirical chromospheric cooling rate of
107" erg/lem® s found in the model®. Only when the length
scale L is decreased by several orders of magnitude
can the heating rates be raised to acceptable levels. For
acoustic waves, this is accomplished by shock formation.
This shows that in pure hydrodynamic situations only
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Figure 2. Cnmpaﬂmn of the theoretical limiting acoustic flux F‘\J,%m

(ergem™®s™'y with the solar chromospheric ra(lnuvu. loss ﬂu\ E
determined empirically by Anderson and Aths ay™. @y (ergem™ 57 s
the empirical net radiative cooling rate. Po/S and Py/10 label different
assumptions as to the acoustic frequency spectrum. Star symbols show
empirically determined acoustic fluxes by Deubner,
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shock heating has sufficient power to balance the
observed cooling rates. The same very likely is the case
for the heating of chromospheric magnetic flux tubes,
where the shock heating is by longitudinal tube waves.
Note as discussed in the review’, this is different in the
transition layer where in addition other types of heating,
like microflare heating become important.

4. Weak shock heating and the generation of
acoustic waves

Small-amplitude acoustic shock waves behave essentially
like acoustic waves, excepl that they dissipate at the shock
front (see below). In particular, the amplitude relations
are identical. Consider linear small-amplitude sawtooth
waves with pressure and velocity variations p = pg+ pu
— 2p P, v = v, — 20,t/P, where P is the wave period, 1
the time and subscript m indicates maximum amplitudes,
the wave energy flux (erg cm”s7') is given by:

FM = %L‘:(P_ PO}?" dr = %sz’m = 11_2}, PGCSTFIE! “1)
where py is the unperturbed pressure, ¢s the sound speed,
ythe ratio of specific heats and where for weak shocks one
has for the total pressure, velocity, temperature and density
jumps 2p, = ¥poTh 20, = ¢s1, 2T, = (Y- DTN, 2pm = Pol].
Here the shock strength is defined as 1= (p2—p1)/p1,
where pj, ps are the densities in front and behind the
shock™. By expanding the entropy jump AS per unit mass
at the shock front, the shock dissipation rate (erg em™ s7)
of the wave can be written

_pTAS __pocd [ pafpa)’
MR yy-DP | g | Py

(12)
LR

3
m g 2

The approximate equality is only valid for weak shocks
where the entropy jump is small. Let us assume a gravi-
tational atmosphere and in analogy to ray optics that the
quantity Fycs is conserved. Differentiating eq. (11) with
respect to height z and using (12) gives an equation for
the shock strength

3 dcé

(y+1n
2,3_\3 dz '

CgP

(13)

where g is the gravitational acceleration. The refractive
term involving delldz is small in the chromosphere and
can be neglected. For an isothermal, nonionizing, gravi-
tational atmosphere eq. (13) can be solved for various
initial shock strength’s 7 and shows that irrespective of
the 1o the shocks eventually reach a limiting shack
strength n'™ given by

1500

lim vgP

T =i

(14)

From eq. (11) one obtains a limiting wave energy flux

) i Y:agzpz
Pt =———=——p,. (15)
TR es

Eq. (13) has the property that for small shock strengths
one initially has an exponential growth due to flux con-
servation which results from the first term on the RHS of
the equation, This growth of the sawtooth wave is similar
to that for acoustic waves in a gravilational atmos-
phere assuming flux conservation, pot” ~ pocan’® =const.
The increase in shock strength is eventually balanced by
the increasing shock dissipation described by the last
term of eq. (13). Limiting strength is reached when 7
becomes constant and the flux proportional to the gas
pressure po.

Figure 2 shows limiting-strength acoustic-healing
fluxes Fy® for wave periods P=Py5 and P=PJ/10,
where P, = 4meg/(yg) is the acoustic cut-off period. It is
seen that the fluxes log Fu™ risc lincarly with the
logarithm of the mass column density m, since m = polg
and from eq. (15) F™ ~ po. The figure therefore shows
that acoustic shock waves are able to explain the observed
height dependence of the chromospheric emission. As will
be shown below, acoustic wave generation calculations
for the solar convection zone by Musielak et al.™? also
provide the correct wave period for Figure 2. As shown
below one finds that P = P,/5 is roughly the period of the
maximum of the acoustic-wave spectrum generated in the
convection zone. Using this value one has from the above
equations

i LA woe (16)
5y+1
Hm 4n :
FM = 5 CS-DU:()']23CSPG (17)
73 (y+1)°
=10° py = 24x107 m,
and a heating rate per gram
| dFy By B WS ¥
o) = = — Cs.g
ez |y dm 75 r+1)*
P fim p (y+1) (18)

=2.4 % 107 erg glgh.

The computation of the generation of acoustic energy
in stellar convection zones dates to the theory of
quadrupole sound generation from turbulence deve-
loped by Lighlhillﬂj" and Proudman™. Considering a
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Figure 3. Acoustic wave spectra for different values of the mixing-length parameter o ( left panel), different contributions to the acoustic spectrum
(right panel), computed with the Lighthill-Stein theory, after Musielak ef af.™.

Kolmogorov turbulence spectrum, Lighthill has derived
an expression

&
Fy =38 p_;";{ dz, (19)

Cg

called Lighthill formula, where z is height, H is the scale
height, po the density, ¢s the sound speed and u the
turbulent velocity. This famous u®-formula was found to
be in excellent agreement with measurements in terres-
trial applicdtions. Lighthill’s theory was further extended
by Stein®" to allow for the computation of the acous-
tic frequency spectrum and was recently revisited’>. To
compute the acoustic flux using the Lighthill-Stein
theory, one must first calculate a convection zone model
where one uses the mixing-length theory, which depends
on a free parameter, the mixing-length parameter c.
Musielak et al.** on the basis of a description of the
turbulence with an extended Kolmogorov spectrum and
a modified Gaussian frequency factor, found total acous-
tic fluxes Fy=13x10"ergem™s™ for @=1.0 and
1.7 x 10° erg cm™ 57! for v = 2.0.

Figure 3 shows the acoustic spectra obtained by these
authors and demonstrates that quadrupole generation (also
used in the Lighthill formula) is the most important con-
tribution to the acoustic-wave flux. Since the frequencies
in Figure 3 are circular frequencies, the spectra have a
maximum at periods P =79, 58 and 41 s for = 1.0, 1:5,
2.0, respectively. Recent numerical convection zone cal-
culations show that ¢, the ratio of the mixing-length L
to the scale height H, typically varies only in a narrow
range of o=2.0-2.16 (ref. 38). Taking a temperature
T=Tu= 5770 K, the acoustic cut-off period is found to
be 216s such that P=P,/5=43s is a good estimate
for the maximum of the generated solar acoustic wave
spectrum. Note that Figure 2 shows also empirical acoustic
fluxes by Deubner®® which are in rough agreement with
the empirical losses.
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5. Conclusions

Waves are responsible for the characteristic features of
the chromosphere: the permanent outward temperature rise,
which is due to acoustic waves that dissipate in shocks,
the 3-min oscillations of the nonmagnetic chromosphere,
whose period matches the cutoff period of acoustic waves,
and the 7-min oscillations, whose period matches the
cutoff period of transverse flux tube waves for a pressure
ratio of = 0.25.

The empirical radiative emission rate of the chromo-
sphere can be understood on the basis of the dissipation
rate of weak-shock theory, and the appearance of the
cutoff periods in the chromospheric oscillations can be
understood as due to impulsive or stochastic wave exci-
tation, which causes the atmosphere behind the head of a
wave to oscillate at the cutoff period.
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