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Abstract. Analytical treatment of the excitation of transverse magnetic tube waves in stellar convection zones
is presented. The waves are produced by the interaction between thin and vertically oriented magnetic flux
tubes embedded in stellar convection zones and the external turbulent motions. A general theory describing this
interaction is developed and used to compute the wave energy spectra and fluxes for the Sun.
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1. Introduction

The most prominent sources of the non-radiative energy
required to heat stellar chromospheres and coronae, and
to accelerate stellar winds, are obviously stellar convec-
tion zones. The fact that the wave energy is generated by
the turbulent convection has been known for many years
(e.g., Musielak 1990, with references to work going back
some 50 years). In non-magnetic regions of stellar convec-
tion zones, the non-radiative energy is carried mainly by
acoustic waves. The efficiency of excitation of these waves
can be calculated by using the Lighthill-Stein theory of
sound generation (Lighthill 1952; Stein 1967). In mag-
netic regions, which are typically associated with stellar
magnetic flux tubes, three different types of tube waves
can be generated: longitudinal, transverse and torsional
(e.g., Spruit 1982). Physical properties of free longitudi-
nal, transverse and torsional oscillations of magnetic flux
tubes have been extensively studied in the literature (e.g.,
Roberts & Ulmschneider 1997). An analytical treatment
based on the original Lighthill approach has been devel-
oped by Musielak et al. (1989, 1995) to describe the effi-
ciency of generation of longitudinal tube waves in stellar
convection zones. The main aim of this paper is to present
an analytical treatment describing the generation of trans-
verse tube waves. In principle, a similar approach can be
developed to compute the exicitation of torsional tube
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waves, however, this is beyond the scope of the present
paper.

Our recent work has shown that the description of tur-
bulence given in the Lighthill-Stein theory is physically
unjustified (Musielak et al. 1994). As a result, previously
calculated stellar acoustic wave energy fluxes (e.g., Renzini
et al. 1977; Bohn 1981, 1984) are incorrect. We have cor-
rected the Lighthill-Stein theory by incorporating an im-
proved description of the spatial and temporal spectrum
of the turbulent convection and used this corrected the-
ory to calculate new acoustic wave energy spectra and
fluxes for late-type stars (Ulmschneider et al. 1996, 1999).
These fluxes have been used by us to predict theoreti-
cally the level of the observed “basal flux” (Buchholz et al.
1998; Cuntz et al. 1999). This is an important result be-
cause it is the first time that the “basal flux” for late-type
dwarfs has been predicted purely theoretically. The re-
sult also shows that non-magnetic regions of stellar atmo-
spheres are heated by acoustic waves generated in stellar
convection zones.

We have also incorporated the isolated small-scale
magnetic (flux tube) structures (Stenflo 1978; Solanki
1993) into the theory of wave generation. The first cal-
culations of this sort by Musielak et al. (1989) evaluated
the energy flux carried by longitudinal tube waves from
the solar convective zone, where the interaction between
flux tubes and turbulent motions takes place, up into the
overlying atmosphere, where the dissipation of the wave
energy occurs. From that computation it became clear
that longitudinal tube waves may play an important role
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in the heating of magnetically active regions of stellar at-
mospheres. Since then, we have significantly improved our
analytical treatment of the generation of longitudinal tube
waves (Musielak et al. 1995) and recently used it to com-
pute the wave energy spectra and fluxes for a large number
of late-type dwarfs and subgiants (Musielak et al. 2000).
The analytical approach is restricted to linear waves but
takes into account the cancellation and amplification (cor-
relation) effects, which occur when magnetic flux tubes are
excited at many points along their length.

The analytical approach has been supplemented by
a numerical treatment that allows considering nonlin-
ear waves but cannot incorporate the correlation effects
(Ulmschneider & Musielak 1998). The latter approach has
also been used by Ulmschneider et al. (2000) to calculate
the amount of energy carried by longitudinal tube waves in
atmospheres of non-solar late-type dwarfs and subgiants.
Because of the difference in these two approaches, the an-
alytically and numerically calculated fluxes can be seen as
lower and upper bounds for the realistic stellar wave en-
ergy fluxes. Cuntz et al. (1998, 1999) have used such theo-
retical fluxes as the initial input to calculate the resulting
heating in magnetic regions of their stellar chromospheric
models.

As already discussed by Musielak et al. (1989), the
amount of energy carried by longitudinal tube waves is
much smaller than that carried by transverse tube waves.
The fact that it is much easier to generate transverse
tube waves than longitudinal ones has already been recog-
nized by Spruit & Roberts (1983). There have been sev-
eral attempts to estimate the amount of energy carried
by these waves in the solar atmosphere. Various authors
have based their estimates on observational data (Muller
et al. 1989, 1994), others have used analytical (Choudhuri
et al. 1993a,b) or numerical (Huang et al. 1995) meth-
ods. The obtained results (Ulmschneider & Musielak 1998)
show that transverse tube wave are generated 30 or even
40 times more efficiently than longitudinal tube waves.
Clearly, there is a lot of extra wave energy that is not
accounted for in our current theoretical models. An im-
portant point is that this extra energy is carried by trans-
verse waves, which are more difficult to damp than longi-
tudinal tube waves (Narain & Ulmschneider 1991, 1996,
also Ulmschneider et al. 1991) and, therefore, they can
transfer the energy to much higher layers of stellar atmo-
spheres. Obviously, some of the energy carried by these
waves will leak to the external medium (e.g., Huang et al.
1999) where it will enhance the acoustic heating. Thus,
it is essential to know the amount of energy carried by
transverse tube waves in stellar atmospheres and include
this energy in our theoretical models.

In this paper, we focus on the problem of the excita-
tion of transverse tube waves by external convective tur-
bulence. We assume that magnetic flux tubes are embed-
ded in a magnetic field-free, turbulent and compressible
medium, and that the waves are generated only by the
external turbulent motions. In order to solve the prob-
lem analytically, we assume that the tubes are thin and

vertically oriented. This assumption allows us to formally
separate the generation of compressible tube waves con-
sidered by Musielak et al. (1989, 1995) from the incom-
pressible tube waves discussed here. For non-vertical flux
tubes, the generated waves would have both compressible
and incompressible components and the coupling and en-
ergy transfer between these components would have to be
accounted for. In this paper, we develop a general the-
ory of the generation of purely transverse tube waves,
which means that non-vertical flux tubes are not consid-
ered. The developed theory is then used to compute the
resulting wave energy spectra and fluxes for the Sun. Non-
solar wave energy spectra and fluxes will be presented in
a succeeding paper.

In Sect. 2 the derivation and solution of the inhomo-
geneous wave equation are outlined while Sect. 3 presents
the calculated wave energy spectra and fluxes, and pro-
vides a discussion of the obtained results. Final remarks
and conclusions are given in Sect. 4.

2. Inhomogeneous wave equation and its solution

2.1. Tube model

We consider an isolated magnetic flux tube embedded in
a magnetic field-free, turbulent, compressible and isother-
mal medium. The tube is assumed to be thin, untwisted,
and vertically oriented, with circular cross-section, and in
temperature equilibrium with its surroundings. In addi-
tion, any distortions of the shape of the tube cross-section
caused by the external force are neglected here by av-
eraging physical quantities inside the tube over its cross-
section (e.g., Spruit 1981). We also assume that transverse
tube waves are excited by the external turbulence alone
and that there are no other motions outside or inside the
tube. Our approach is steady-state and restricted to the
case of subsonic turbulence, for which M (= ut/cS) < 1,
where M is the Mach number, and ut and cS are the rms
turbulent velocity and sound speed, respectively.

To describe the transverse oscillations of the tube, we
introduce a Cartesian coordinate system and assume that
the axis of a non-oscillating tube is oriented along the
z-axis. The gravitational acceleration assumed to be uni-
form and given by g = −gẑ. We also consider a local cylin-
drical coordinate system (r, φ, l) within the tube, with l
the vector along the tube (e.g., Spruit 1981). The tube
magnetic field, Bo, can then be expressed as Bo = Bo
(r, φ, l)̂l, where l̂ is the unit vector along the tube; note
that for non-oscillating tubes, l̂ = ẑ. In order to distin-
guish physical parameters inside and outside the tube, we
introduce subscripts o and e to denote the internal and
external parameters, respectively.

Because the tube is vertically oriented, the generation
of longitudinal and transverse tube waves can be sep-
arated. In this paper, we consider the latter case (see
Musielak et al. 1989 and 1995, for the former case), in
which the waves are fully described by the perturbations of
the tube velocity, v(z, t) = vx(z, t)x̂, and of the magnetic
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field, b(z, t) = bx(z, t)x̂; this restriction to oscillations in
the x-direction is made without any loss of generality since
there is no physical distinction between the x and y di-
rections. Thus, the total magnetic field in the Cartesian
coordinate system is given by Bo = Bozẑ + bxx̂, with
bx/Boz = lx. For purely transverse tube waves, there is no
variation in the tube cross section, and therefore the den-
sity (and pressure) perturbations can be neglected in the
set of ideal MHD equations; the density ρ (and pressure p)
within the tube can thus be replaced by their equilibrium
values ρo (and po). In addition, the MHD equations can
be further simplified by the two conditions ∇ · v = 0 and
(v · ∇)v = 0; the first condition describes the incompress-
ibility assumption and the second one is valid because we
consider small-amplitude (linear) waves.

2.2. Equation of motion

The momentum equation for a tube oscillating with the
velocity v can be written in the following form:

ρo
∂v

∂t
= −∇

(
po +

B2
o

8π

)
+

1
4π

(Bo · ∇)Bo + ρog, (1)

with the gas pressure, po, density, ρo, and magnetic field,
Bo, determined only within the tube.

Since there are turbulent motions outside the tube and
their velocity is u, the corresponding momentum equation
is

ρ
∂u

∂t
= −∇p+ ρg, (2)

where ρ is the total external density, defined here as
ρ = ρe+ δρt + δρw, with ρe being the external gas density,
and δρt and δρw represent density fluctuations caused by
the turbulence and by the external acoustic waves, respec-
tively. Similarly, for the total external pressure we have
p = pe + δpt + δpw. In general, both δρt and δpt may not
be necessarily small when compared to ρe and pe. Our
approach, however, is restricted to subsonic turbulence,
therefore, our analysis is constrained by the inequalities
< δρtδρt >

1/2
time<< ρe and < δptδpt >

1/2
time<< pe.

The external acoustic waves described by the terms
with δρw and δpw can be excited by either the stresses ex-
erted by the horizontal oscillations of the tube on its im-
mediate surroundings (e.g., Huang 1996) or the external
turbulent motions (Lighthill 1952; Stein 1967; Musielak
et al. 1994); these waves may interact with the tube and
lead to the excitation of transverse tube waves. According
to Spruit (1982), the former process is of a very low effi-
ciency for thin magnetic flux tubes and, therefore, it can
be neglected (see also Huang et al. 1999). The problem
of the acoustic wave generation in a convectively unstable
and non-magnetized fluid has been solved only in the limit
of weak wave motions that do not produce any backreac-
tion on the turbulent flow. This means that the computed
acoustic waves would only have minor effects on the tube
especially when compared to the effects caused by the tur-
bulent motions. As a result, in this paper, we will focus

only on the interaction of flux tubes and turbulence, and
neglect the influence of external acoustic waves on the
tube by taking δρw << δρt and δpw << δpt.

Using the above approximations, we write

(ρe + δρt)
∂u

∂t
= −∇(pe + δpt) + (ρe + δρt)g. (3)

The momentum equation for the tube and for the exter-
nal medium are related to each other by the horizontal
pressure balance

po +
B2
o

8π
= pe + δpt. (4)

Combining Eqs. (1), (3) and (4), we obtain

ρo
∂v

∂t
=

1
4π

(Bo · ∇)Bo + (ρo − ρe)g + ρe
∂u

∂t

+δρt

(
∂u

∂t
− g
)
. (5)

Since we are only interested in transverse motions of the
tube, we consider the perpendicular component of Eq. (5)
and calculate the total force that restores the tube’s equi-
librium. Following Spruit (1981), we obtain

ρo

(
∂v

∂t

)
⊥

= ρe

(
∂u

∂t

)
⊥

+
1

4π
[̂l× (Bo · ∇)Bo]× l̂

+(ρo − ρe)(̂l × g)× l̂+ δρt

(
∂u

∂t

)
⊥
− δρt(̂l× g)× l̂. (6)

Defining (v)⊥ = vx and (u)⊥ = ux, we may write Eq. (6)
as

ρo
∂vx
∂t

=
B2
o

4π
kx + (ρo − ρe)glxlz + ρe

∂ux
∂t

+δρt

(
∂ux
∂t
− glxlz

)
, (7)

where the horizontal and vertical components of l are
given by

lx =
∂ξ

∂z
=
(
∂

∂t

)−1
∂vx
∂z

, (8)

and lz = 1. In addition, the horizontal and vertical com-
ponents of the curvature vector k = ∂ l̂/∂l are given by

kx =
∂2ξ

∂z2
=
(
∂

∂t

)−1
∂2vx
∂z2

, (9)

and kz = 0.
In the derived equation of motion (Eq. (7)) two dif-

ferent velocities (vx and ux) appear. Clearly, we need to
consider the continuity of displacement at the tube sur-
face to find a relationship between these velocities. For
harmonic disturbances of the boundary, this constraint is
of the form v/(ω−k ·v‖) = u/ω, where ω is the frequency
of a perturbation of the boundary, k is the corresponding
wave number, and v‖ is the velocity of the internal fluid



544 Z. E. Musielak and P. Ulmschneider: Transverse tube wave generation

parallel to the boundary. In our case, v‖ = 0, so that the
constraint really is v = u. However, it must be noted that
the direction of v and u is different since the former is
directed toward the tube axis when the tube is bent, but
the latter is acting in the opposite direction leading to
bending the tube. Therefore, the velocities normal to the
interface within and outside the tube can be written as
(v)⊥ = −(u)⊥ or equivalently as vx = −ux, which also
gives lx = lox = −lex.

Thus, we write Eq. (7) as

(ρo + ρe)
∂2vx
∂t2

− B2
o

4π
∂2vx
∂z2

+ (ρo − ρe)g
∂vx
∂z

=
(
∂

∂t

)
δρt

(
∂

∂t

)−1(
∂2ux
∂t2

+ g
∂ux
∂z

)
. (10)

Note that in this equation we use vx for the first-order
(wave) quantities and ux for the second order quantities
describing the external turbulence; this well-known pro-
cedure of separating the first and second-order variables
was first introduced by Lighthill (1952) to treat the sound
generation by turbulence. It must be also pointed out
that the term ρe∂vx/∂t describes the apparent increase
of inertia of the tube resulting from the backreaction of
the external fluid on the oscillating tube (Basset 1961;
Spruit 1981). More recently, some authors (Choudhuri
1990; Cheng 1992; Fan et al. 1994; Moreno-Insertis et al.
1996; Osin et al. 1999) have criticized the treatment of this
term by Spruit and suggested several modifications. The
criticism and the resulting modifications have been exten-
sively discussed by Osin et al., who also proposed their
own modification of the equation of motion. To support
their analytical results, these authors have performed nu-
merical calculations and concluded that any modifications
become important only when there is a strong flow v‖ 6= 0
along the oscillating tube. Since we assume v‖ = 0 along
the tube in our approach considered here, we take into
account only the term originally introduced by Spruit.

2.3. Wave equation

To transform Eq. (10) into an inhomogeneous wave equa-
tion, we introduce the characteristic velocity, ck, for trans-
verse tube waves

ck =
Boz√

4π(ρe + ρo)
, (11)

which is essentially the Alfvén velocity for transverse tube
waves. Noting that g(ρe − ρo)/(ρe + ρo) = c2k/2H, and
neglecting the third-order term b2x ∂

2vx/∂z
2, we obtain[

∂2

∂t2
− c2k

∂2

∂z2
+

c2k
2H

∂

∂z

]
vx(z, t) = Sx(z, t), (12)

where the source function Sx(z, t) is defined as

Sx(z, t) =
(
∂

∂t

)
δρt

ρe + ρo

(
∂

∂t

)−1(
∂2ux
∂t2

+ g
∂ux
∂z

)
· (13)

To determine this function, we follow the standard proce-
dure developed by Lighthill (1952) and assume that the
external flow is known. Note also that in the limit of no
motions outside the tube, we have Sx = 0, so that the
wave equation obtained by Spruit (1981) for freely prop-
agating transverse tube waves is recovered.

To remove the first derivative from the inhomogeneous
wave equation, we make the following transformation

vx(z, t) = ρ−1/4
o v1(z, t) (14)

which yields[
∂2

∂t2
− c2k

∂2

∂z2
+ Ω2

k

]
v1(z, t) = ρ−1/4Sx(z, t). (15)

This is inhomogeneous Klein-Gordon equation for trans-
verse tube waves and

Ωk =
ck
4H

, (16)

is the cutoff frequency for these waves (Spruit 1981). The
condition for propagation of transverse tube waves is de-
termined by the cutoff frequency Ωk, which restricts these
waves to be either propagating if ω > Ωk or evanescent
for ω ≤ Ωk. The obtained cutoff frequency is “global” (the
same along the entire tube) because both ck and H are
constant along the tube. The fact that ck = const along
the tube reflects the decreasing of both the gas density
and the tube magnetic field with height. We further note
that in our model, the external medium is assumed to
be isothermal, stratified, and convectively unstable (the
Brunt-Vaisala frequency is negative), and therefore the
medium supports only acoustic waves, which propagate
for all frequencies ω > ΩS, where the latter is the acous-
tic cutoff defined by ΩS = cS/2H (Lamb 1908; Moore &
Spiegel 1964). Therefore, Ωk and ΩS are the only cutoffs
that arise in our model. In order to compare them, we ex-
press the tube cutoff in terms of the acoustic cutoff, and
obtain

Ωk =
ΩS√

2γ(2β + 1)
, (17)

where β = 8πpo/B2
o . This result shows that transverse

tube waves can propagate with frequencies much lower
than external acoustic waves. The same conclusion can be
drawn from a comparison between the cutoff obtained for
longitudinal (Defouw 1976) and transverse (Spruit 1981)
tube waves; note that the former is almost identical to the
acoustic cutoff obtained for a thin and low-β flux tube
with γ = 5/3. The differences between these two cut-
off frequencies can in part account for the significantly
broader wave energy spectra obtained here for transverse
tube waves (see Sect. 3).

2.4. Source function

After deriving the inhomogeneous Klein-Gordon equation
for transverse tube waves and discussing the propagation
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conditions for these waves, we now proceed with the cal-
culation and discussion of the source function Sx(z, t). As
shown by Eq. (13), the source function depends on the
external density and velocity field, and is completely de-
termined when δρt and ux are known. Formally, we may
use the continuity equation for the turbulence to express
δρt in terms of the turbulent velocity. This gives

δρt = ρe

(
∂

∂t

)−1(
uz
H
− ∂uz

∂z

)
. (18)

Defining

St(z, t) ≡ ρ1/4Sx(z, t), (19)

we write

St(z, t) = ρ1/4
o

ρe
ρo + ρe

(
uz
H
− ∂uz

∂z

)

×
(
∂

∂t

)−1(
∂2ux
∂t2

+ g
∂ux
∂z

)
. (20)

This final expression for the source function obtained for
transverse tube waves driven only by the external turbu-
lence shows that the source term depends on both the x
and z-components of the turbulent velocity. In addition,
the source function depends on the term that explicitly
displays the gravity and this term accounts for the effects
of the fluctuating buoyancy force (Goldreich & Kumar
1988) on the wave generation (see Sect. 2.9, for more de-
tails). We emphasize that this source function describes
the net generation rate, since the interaction of the tube
with the external medium is already taken into account by
the apparent increase of the tube inertia (see Sect. 2.2).
Note also that our approach is formally not restricted to
the Boussinesq approximation but instead the turbulence
is treated as fully compressible.

2.5. Solution of the wave equation

Because all the coefficients in the inhomogeneous wave
Eq. (15) are constant, the solution can be obtained by
performing the Fourier transform in time and space. The
result is

v1(k, ω) =
St(k, ω)

k2c2k − (ω2 − Ω2
k)
, (21)

where

St(k, ω) =
1

(2π)2

∫ ∫
St(z, t)e−i(ωt−kz)dzdt, (22)

with St(z, t) from Eq. (20). After integrating the terms
involving the velocity derivatives ∂ux/∂t,∂ux/∂z and

∂uz/ ∂z by parts and assuming a finite turbulent region
with ux, uz 6= 0, the source function can be written as

St(k, ω) = − ρ
1/4
o

(2π)2

ρe
ρe + ρo

[
kω +

gk

ωH
− i
(
ω

H
− gk2

ω

)]
×
∫ ∫

ux(z, t)uz(z, t)e−i(ωt−kz)dzdt. (23)

We shall use this solution to calculate the wave energy
fluxes in the following section. Note that for St(k, ω) = 0,
the obtained solution reduces to the dispersion relation
for transverse tube waves with a linear wave amplitude
v(k, ω).

2.6. Wave energy fluxes and spectra

The energy flux for transverse tube waves can be evaluated
from the general expression for the MHD energy flux given
by Musielak & Rosner (1987, Eq. (4.2)). This gives the
energy flux (erg cm−2 s−1) in the z-direction in the form:

F (z, t) = −Boz
4π

bx(z, t) vx(z, t). (24)

The mean wave energy flux can be calculated from the
above equation by taking the time average, substituting
bx = Bolx and transforming vx to v1. Using Eqs. (8) and
(14) one obtains

< F (z, t) >time = − B2
oz

4πρ1/2
o

× < v1(z, t)
(
∂

∂t

)−1(
∂

∂z
+

1
4H

)
v∗1(z, t) >time . (25)

The next step in our derivation of the wave energy flux
is to express v1 and its complex conjugate v∗1 in terms of
their Fourier transforms and then take the time average
over the time scale to. We find

< F (z, t) >time = − B2
oz

4πρ1/2
o

lim
t0→∞

1
t0

×
∫ +t0/2

−t0/2
dt
∫ ∫ ∫ ∫

dk′dk′′dω′dω′′v1(k′, ω′)

× v∗1(k′′, ω′′)
−1
iω′′

(
ik′′ +

1
4H

)
ei(ω

′−ω′′)t−i(k′−k′′)z. (26)

We perform the time-integration with the δ-function∫ +∞

−∞
ei(ω

′−ω′′)tdt = 2πδ(ω′ − ω′′),

and then the ω′′-integration. Using

< F (z) >time =
∫ +∞

−∞
dω < F (z, ω) >time (27)

we obtain for the frequency dependent flux

< F (z, ω) >to= lim
to→∞

B2
oz

2toωρ
1/2
o c4k

I1(ko, ω) I2(ko, ω), (28)
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where

I1(ko, ω) =
∫ +∞

−∞

St(k′, ω)e−ik
′z

k′2 − k2
o

dk′, (29)

and

I2(ko, ω) =
∫ +∞

−∞

St(k′′, ω) (k′′ − i/4H)eik
′′z

k′′2 − k2
o

dk′′, (30)

with

k2
o =

ω2 − Ω2
k

c2k
, (31)

where for the propagating waves k2
o is always positive.

Note also that the term (−i/4H) is dropped in our calcu-
lations to have the real wave energy flux.

Now, the integrals I1(ko, ω) and I2(ko, ω) represent the
asymptotic Fourier transforms and they are evaluated an-
alytically in Appendix A. Using these results, we get

< F (z, ω) >to= lim
to→∞

π2

8to
B2
oz

ρ
1/2
o

1
ωkoc4k

|St(ko, ω)|2. (32)

We next calculate |St(ko, ω)|2 by averaging position (zo)
and time (to). From Eq. (23) we have

|St(ko, ω)|2 =
ρ

1/2
0

(2π)4
η2
e |χ(k0, ω)|2

∫ ∫ ∫ ∫
dzdz′dtdt′

× < uxuzu
′
xu
′
z > eiω(t−t′)−ik0(z−z′) (33)

where

ηe =
ρe

ρe + ρo
, (34)

and

|χ(ko, ω)|2 =
ω2

H2
(1 + k2

oH
2)

(
1 +

ω4
g

ω4

)
, (35)

with ωg =
√
gko. We follow Stein (1967) to average posi-

tion and time and define

z0 =
1
2

(z + z′), t0 =
1
2

(t+ t′), (36)

and the relative quantities

r = z − z′, τ = t− t′. (37)

Integrating over z0 and t0 we obtain

|St(ko, ω)|2 =
ρ

1/2
0

(2π)4
η2
e |χ(k0, ω)|2z0t0

×
∫ ∫

drdτ < uxuzu
′
xu
′
z > ei(ωτ−k0r). (38)

It is seen that this calculation involves fourth order tur-
bulent velocity correlations, < uxuzu

′
xu
′
z >, which are re-

duced here to the transverse (< uxu
′
x >) and longitudi-

nal (< uzu
′
z >) second order correlations by using the

properties of isotropic and homogeneous turbulence (e.g.,

Hinze 1975). The Fourier transform of these second or-
der correlations gives the convolution integral, Jc(ko, ω),
which is defined below. Thus, we may write

|St(ko, ω)|2 = tozo
ρ

1/2
o

(2π)2
η2
e |χ(ko, ω)|2 Jc(ko, ω), (39)

with

Jc(ko, ω) =
1

(2π)2

∫ +∞

−∞
dr
∫ +∞

−∞
dτ Rxx(r, τ)Rzz(r, τ)

×ei(ωτ−kor), (40)

and explicit formulas for the correlation tensors

Rxx(r, τ) =<< ux(z, t) ux(z + r, t+ τ) >z>t, (41)

and

Rzz(r, τ) =<< uz(z, t) uz(z + r, t+ τ) >z>t (42)

are derived in Appendix B. To evaluate the correlation
tensors and the convolution integral, the turbulent en-
ergy spectrum must be prescribed (see Sect. 2.7). The
final formula for the convolution integral can be found
in Appendix C.

It is important to note that the source function |St

(ko, ω)|2 (see Eq. (39)) is completely determined by the
external turbulent velocity field but it also depends on ko,
which represents the propagation condition for transverse
tube waves through (see Eq. (31)). This dependence on
ko may imply that the source function approaches zero
when ko → 0. However, this is not the case. In the limit
of ko → 0 also ωg → 0 and |χ(ko = 0, ω)|2 = ω2/H2

(see Eq. (35)). Based on the results given in Appendix C,
we find that the convolution integral Jc(ko = 0, ω) 6= 0.
Hence, |St(ko = 0, ω)|2 6= 0 and some energy is generated
when ω = Ωk. The latter means that this energy cannot be
carried away by transverse tube waves because the waves
with the cutoff frequency Ωk are non-propagating. Since
we consider only propagating waves in this paper, we must
remove the non-propagating component (see Sect. 3.2, for
details).

Finally, we combine Eqs. (32) and (39), and derive the
mean wave energy generation rate [in units of erg cm−2

s−1 Hz−1]

<< F (ω) >to>zo= π

∫ zturb

o

dz ρeηe
ω

ko

Ω2
k

c4k

(
1 +

ω4
g

ω4

)

×(1 + k2
oH

2) Jc(ko, ω), (43)

where zturb is the thickness of the turbulent region in
the stellar convection zone. In deriving this expression,
we have taken into account the fact that only half of the
total generated flux propagates upward. In Sect. 3, we use
Eq. (43) to compute the wave energy spectra carried by
transverse tube waves propagating upward along a given
flux tube embedded in the solar atmosphere.
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2.7. Description of turbulence

By assuming that the source term is determined by a
given external flow, we are obliged to specify the physical
properties of the turbulence. Unfortunately, the properties
of realistic turbulence occurring in the solar and stellar
convection zones are presently unknown and currently no
first principle theory of turbulence exists. Therefore, the
properties of the turbulence occurring on and below the
solar surface are usually determined by specifying a turbu-
lent energy spectrum. For the turbulent energy spectrum
in the solar atmosphere many different shapes have been
proposed (e.g., Stein 1967; Bohn 1984; Musielak et al.
1989; Goldreich & Kumar 1988, 1990). Musielak et al.
(1994) have combined some theoretical arguments about
the turbulence with the results of numerical simulations
(e.g., Cattaneo et al. 1991) as well as observational re-
sults (e.g., Zahn 1987; Muller et al. 1989, 1994) and sug-
gested that the spatial and temporal parts of the turbu-
lent energy spectrum can be described by an extended
Kolmogorov spectrum with a modified Gaussian frequency
factor. Recently, Nordlund et al. (1997) have argued that
the Kolmogorov scaling with a power spectrum slope of
−5/3 may not apply in regions of highly non-isotropic
motions found in convection zone simulations. They also
argue that the turbulence is reduced in rising bulk flows
and enhanced in downflows. This could actually increase
our tube wave generation rates as the magnetic tubes are
indeed situated in the downflow regions.

The turbulent energy spectrum, E(k, ω), can be for-
mally factored into a spatial and temporal part (e.g., Stein
1967)

E(k, ω) = E(k)∆
(

ω

kuk

)
, (44)

where the mean velocity of the eddy with wave number k
is given by

uk =

[∫ 2k

k

E(k′)dk′
]1/2

, (45)

and where the form of E(k) and ∆(ω/kuk) must be pre-
scribed. As already discussed by Musielak et al. (1994),
the Kolmogorov spectrum must be well-represented, par-
ticularly as the tube excitation takes place at large optical
depths (at the point of the maximum of the convective
velocity at τ ≈ 10 to 100), where radiation effects are
still minor. For the range of this spectrum we feel that it
would be hard to deviate greatly from the typical length
scale in a gravitational atmosphere, the scale height H,
and the subsequent inertial breakup cascade to sizes as
small as H/100. Thus, we specify the turbulent energy
spectra appropriate for the solar and stellar convection
zones by taking an extended Kolmogorov spectrum E(k)

and a modified Gaussian frequency factor G( ω
kuk

). The
extended Kolmogorov spatial spectrum is given by

E(k) =


0 0 < k < 0.2kt

a
u2

t
kt

(
k
kt

)
0.2kt ≤ k < kt

a
u2

t
kt

(
k
kt

)−5/3

kt ≤ k ≤ kd

, (46)

where the factor a = 0.758 is determined by the normal-
ization condition∫ ∞

0

E(k)dk =
3
2
u2

t , (47)

and ut is the rms turbulent velocity defined as

ut =
√
ux(r, t)2 =

√
uz(r, t)2. (48)

Note that for homogeneous and isotropic turbulence, ut is
independent of space and time, and is the same in either
the x or z-direction. In addition, kt = 2π/H and kd is
the wave number at which the turbulent cascade ends.
According to Theurer et al. (1997), kd = 2π/L with L ≈
2.9 cm, however, for our calculations performed here it is
sufficient to take L = H/100.

The modified Gaussian frequency factor is described
by

G

(
ω

kuk

)
=

4√
π

ω2

|kuk|3
e−( ω

kuk
)2

. (49)

The results given by Eqs. (44), (46) and (49) are used
in Appendix C to evaluate the convolution integral (see
Sect. 2.6).

2.8. Wave luminosities

To compute the total wave luminosity, we integrate
Eq. (43) over the wave frequency ω and take into account
the number of flux tubes on the stellar surface, Nt. In ad-
dition, we separate the dimensional factors by using the
rms turbulent velocity ut and the turbulent length scale
lt. The total wave luminosity [erg s−1] due to transverse
tube waves can then be written as

Lt = (2π)4Nt

∫ zturb

o

(
1
2
ρeu

2
t

)
ut

lt
M3

t ηe dz̄

×
∫ ∞
o

ω̄

k̄oc̄k
Ω̄2
k (1 + k̄2

o H̄
2)

(
1 +

ω̄4
g

ω̄4

)
J̄c(k̄o, ω̄), (50)

where Mt(≡ ut/ck) is a coupling Mach number. The wave
and cutoff frequencies are dimensionless, and written in
terms of a characteristic turbulent frequency ωt = 2πut/lt.
Similarly, the convolution integral is dimensionless, and is
given as Jc = u3

t l
2
t J̄c.
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2.9. Wave sources

As shown by Eq. (50), the total wave luminosity for trans-
verse tube waves depends on the third power of the Mach
number, which clearly indicates that this is a dipole type of
emission with respect to Mach number. It is interesting to
note that the same type of emission was found to dominate
in the generation of longitudinal tube waves (Musielak
et al. 1989, 1995). This allows concluding that the inter-
action between the forced turbulence and magnetic flux
tubes leads only to a dipole nature of the wave source
emission. The dipole character of the excitation of both
longitudinal and transverse tube waves distinguishes our
results from those obtained earlier by Stein (1967), who
found that acoustic waves are generated in the solar con-
vective zone predominantly by quadrupole type of emis-
sion if no magnetic field is present, and by Ulmschneider &
Stein (1982) who argued that a monopole type of emission
should dominate in the wave generation if the magnetic
field is present. The latter suggestion has been confirmed
by calculations performed by Musielak & Rosner (1987),
who found that monopole emission is primary responsi-
ble for generation of compressible (slow) MHD waves in
an isothermal stratified medium with plasma β < 1, and
by Lee (1993), who considered the generation of longitu-
dinal (acoustic) waves in sunspots. However, the results
obtained here are similar to those given by Musielak &
Rosner (1987), who also found dipole type of emission
for the generation of purely incompressible MHD (Alfven)
waves in a stratified medium with an embedded weak uni-
form magnetic field (see also Collins 1989,b).

Having obtained Eqs. (43) and (50), we may now look
for frequency domains in which the fluctuating buoyancy
force dominates over the turbulent pressure. We define the
critical frequency, ωc, at which the contribution from both
source terms is identical. This requires

ω2
c =

ω4
g

ω2
c

=
g2

c2k

(
ω2

c − Ω2
k

ω2
c

)
, (51)

and because

g2

c2k
= 4(2β + 1)2Ω2

k, (52)

we obtain

ω2
c = 2(2β + 1)

[
(2β + 1)± 2

√
β(β + 1)

]
Ω2
k. (53)

For all ω > ωc the turbulent pressure dominates in the
wave generation; however, in the opposite limit, the con-
tribution by the fluctuating buoyancy force is more im-
portant. As shown by Eq. (51), the critical frequency ωc

is a sensitive function of the plasma β. For very low β, we
find that ωc ≈

√
2 Ωk, which restricts the dominance of

the fluctuating buoyancy force to a very narrow frequency
regime Ωk < ω <

√
2 Ωk. If β = 1, then the fluctuating

buoyancy force dominates for all wave frequencies that
satisfy the condition Ωk < ω < 6 Ωk. Finally, in the limit
of a high-β plasma, ωc ≈ 4βΩk and the frequency domain

where the fluctuating buoyancy force dominates shows fur-
ther broadening. Under typical conditions considered in
this paper, it is likely that β is of order of unity, and
therefore the fluctuating buoyancy force significantly con-
tributes to the generated wave energy spectra and fluxes.

3. Results and discussion

In this paper, we present the results only for one magnetic
flux tube embedded in the solar convection zone, which
means that the filling factor, representing the number of
magnetic flux tubes on the solar surface, will not be dis-
cussed here. In the following, we denote the flux carried
by transverse waves (and given by Eq. (43)) as Ftran and
the wave energy flux carried by longitudinal tube waves,
which are also discussed here, as Flong.

3.1. Solar convection zone model

The solar convection zone model used here to perform our
calculations of the generation of transverse tube wave is
a modified version of stellar envelope computer code orig-
inally used by Bohn (1981, 1984) and later modified by
Theurer (1993) and Ulmschneider et al. (1996). To run
this code, it is required to specify the effective temper-
ature Teff and the surface gravity g. The code employs
a mixing-length description of convection, which assumes
that the energy-containing eddies have spatial scales com-
parable to the local pressure scale height H (Prandtl
1925); this means that the so-called mixing-length param-
eter α = lmix/H, where lmix is the mixing-length, must be
of the order of unity. In the solar and stellar convection
zones, the mixing-length parameter may vary from 1.0 to
2.0 (Böhm-Vitense 1958; Trampedach et al. 1997). The
code takes also into account the formation of hydrogen
molecules and uses gray radiation transport. In all cal-
culations described in this paper, we used Teff = 5770 K,
g = 2.736 104 cm s−2, and α ranging from 1.0 to 2.0. In our
computations, we identified the turbulence velocity scale
ut with the convective velocity of the solar model. A com-
parison of the results obtained from this code with other
gray calculations has been recently given by Ulmschneider
et al. (1999), who also discussed potential difficulties of
this code.

The described solar convection zone model is calcu-
lated for three different values of the mixing-length pa-
rameter α = 1.0, 1.5 and 2.0, and used to represent the
external background medium that surrounds the tube.
Then, for each of these models, we compute the distri-
bution of physical parameters with height inside the tube
by specifying the strength of the tube magnetic field at
optical depth τ5000 = 1.0. Observations show that mag-
netic flux tubes at the solar surface typically have field
strengths of the order of Boz = 1500 G (Stenflo 1978;
Solanki 1993). On the other hand, it is known that a tube,
completely devoid of gas but in pressure equilibrium with
the outside gas, would have an equipartition field strength
Beq/8π = pe, where pe is the gas pressure outside the
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Fig. 1. The cutoff frequencies for acoustic and transverse tube
waves are plotted as a function of depth, z, in the solar pho-
tosphere and convection zone. The effect of the magnetic field
on the cutoff for transverse waves is shown

tube. Taking pe = 1.17 105 dyn cm−2 from model C of
Vernazza et al. (1981) at the height z = 0, one gets an
equipartition field strength of Beq = 1715 G. Thus, we
find a ratio Bc ≡ Boz/Beq = 0.875 and consider it as
typical for the solar magnetic flux tubes. Since this ratio
is likely to vary (e.g., Solanki 1993), we decided to con-
sider three different dimensionless surface field strengths,
namely, Bc = 0.75, 0.85 and 0.95. This choice of the tube
magnetic field strength has two main advantages: first, af-
ter the correct field strength is known, the appropriate
energy fluxes carried by transverse waves can simply be
interpolated and second, the dependence of these fluxes
on the field strength can also be investigated.

3.2. Propagating wave fluxes

Transverse tube waves considered in this paper are prop-
agating waves only if their frequencies are higher than the
cutoff frequency, Ωk, (see Eq. (16)). The obtained expres-
sion for Ωk holds for an isothermal medium in which both
the scale height H and the characteristic wave velocity ck
are constant. Our models of the solar convection zone are
not isothermal and Ωk changes with depth. To deal with
this problem, we formally divide the model into equal size
layers and assume that each of these layers is isothermal,
so that Ωk can be treated as a locally constant quantity.
As shown in Fig. 1, the changes of Ωk and the acoustic
cutoff frequency, ΩS, are small throughout the region of
the wave generation in the convection zone. However, it is
seen that Ωk calculated for the magnetic field Bc = 0.85 is
almost 2.5 times lower than ΩS; this simply means that the
frequency interval for propagating transverse tube waves
is much broader than that for acoustic waves. The results
presented in Fig. 1 also demonstrate that the effects of the
magnetic field on Ωk are relatively small.

As discussed in Sect. 2.6, the source function given
by Eq. (39) is non-zero at the cutoff frequency Ωk, which
means that some energy is generated in the form of non-
propagating waves. The problem is common for this kind
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Fig. 2. Transverse tube wave energy spectra computed for
three different solar convection zone models obtained with the
mixing-length parameter α = 1.0, 1.5 and 2.0. In all mod-
els, the tube magnetic field at τ5000 = 1.0 was assumed to be
Bc = 0.85

of calculations (see Ulmschneider et al. 2000, for exten-
sive discussion of this problem) and the non-propagating
component must be removed. To achieve this goal, we
multiply the wave energy flux given by Eq. (43) by a
factor (1 − Ω2

k/ω
2)2, which reduces the non-propagating

component to zero as ω → Ωk; factors of this form typi-
cally appear in expressions for group velocities for different
waves propagating in inhomogeneous media (e.g., Lighthill
1960). The effects caused by this factor on the wave energy
spectra and fluxes are relatively small because it mainly af-
fects only two frequency points near the cutoff (see Figs. 2
and 3) and reduces the total wave energy fluxes by 10%
or less. All results presented in the next two subsections
have been obtained by using this factor. This guarantees
that the generated energy is always carried away by the
propagating transverse tube waves.

3.3. Wave energy spectra

The dependence of the calculated wave energy spectra on
the mixing-length parameter α is shown in Fig. 2. It is seen
that the shape of the spectrum slightly changes when α
increases. In addition, the maximum shifts toward higher
frequencies when α is increased.

The wave energy spectra presented in Fig. 3 have been
computed for α = 2.0 and for three different values of
the dimensionless magnetic field strength Bc = 0.75, 0.85
and 0.95. The results show that the shape of the spectrum
is practically independent from the magnetic field, except
some small modifications at low frequencies. It is also seen
that the maximum shifts toward higher frequencies when
Bc is increased; however, this effect is likely to be caused
by the decrease of the cutoff frequency with increasing
magnetic field strength.
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Fig. 3. Transverse tube wave energy spectra computed for
three different values of the tube magnetic field: Bc = 0.75,
0.85 and 0.95. In all models, the tube magnetic field was speci-
fied at τ5000 = 1.0 and the mixing-length parameter was taken
α = 2.0

Table 1. Total wave energy fluxes Ftran (erg/cm2 s) generated
as transverse waves in a magnetic flux tube embedded in the
solar convection zone are compared to the fluxes for longitudi-
nal tube waves, Flong, computed by Musielak et al. (1995)

α Bc = Boz/Beq Ftran Flong

1.0 0.85 2.3 107 6.4 106

1.5 0.85 5.8 107 1.4 107

2.0 0.85 1.2 108 2.4 107

2.0 0.75 1.8 108 5.6 107

2.0 0.95 7.6 107 6.0 106

3.4. Wave energy fluxes

The total wave energy fluxes for one magnetic flux tube
embedded in the solar convection zone are obtained by
integrating the wave energy spectra over the frequency
range Ωk ≥ ω ≤ 25Ωk. The results are presented in
Table 1. It is seen that the total flux Ftran increases with
α, which reflects the fact that the convective velocity de-
pends on α. Based on these results, the dependence of
Ftran on α can approximately be given as

Ftran ≈ 2.3 107 α2.4 ergs cm−2 s−1 . (54)

This α-dependence of the transverse wave generation rate
is higher than the value of 1.8 found for longitudinal tube
waves by Musielak et al. (1995) but it is much lower than
the value of 3.8 obtained by Musielak et al. (1994) for the
acoustic wave generation.

The results presented in Table 1 also show that the to-
tal wave energy flux Ftran decreases with increasing mag-
netic field strength Bc. The dependence of Ftran on Bc can
approximately be fitted by the expression:

Ftran ≈ 6.4 107 B−3.6
c ergs cm−2 s−1 . (55)

It is interesting to compare this dependence with that
of longitudinal tube waves. For linear longitudinal waves

energy fluxes are also given in Table 1. We find that
Flong ≈ 4.2 106B−9.4

c (see Musielak et al. 1995, 2000; also
Ulmschneider & Musielak 1998). The comparison of these
results clearly indicates that the process of shaking of mag-
netic flux tubes, which is responsible for the generation of
transverse tube waves, does not depend as strongly on
the magnetic field as the process of squeezing these tubes,
which leads to the excitation of longitudinal tube waves.

The difference can be explained by the role played by
the “stiffness” of magnetic flux tubes in the wave genera-
tion process. The “stiffness” is determined by the strength
of the magnetic field, Bc, and is greater for Bc = 0.95 than
for Bc = 0.75. Greater “stiffness” means that there is less
gas inside the tubes and thereby less material to support
the propagation of longitudinal tube waves. In longitu-
dinal waves the potential energy density is due to the
compression of the gas. For transverse waves the gas den-
sity is not as important because the potential energy den-
sity is due the tension of the magnetic field resulting from
the curvature. From Table 1, we find that Ftran decreases
by a factor of 2 and Flong decreases by one order of mag-
nitude when the “stiffness” is increased from Bc = 0.75
to Bc = 0.95. This gives Ftran/Flong ≈ 3 for Bc = 0.75
and Ftran/Flong ≈ 13 for Bc = 0.95 and Ftran/Flong ≈ 5
for Bc = 0.85. Thus, the amount of gas inside the tubes is
essential for the existence of longitudinal tube waves but
its effect on transverse tube waves is much reduced.

Now, by comparing directly Ftran and Flong, we see
that the transverse wave energy fluxes are always much
higher than the corresponding longitudinal fluxes. For typ-
ical solar values, α = 2 and Bc = 0.85, we find that
Ftran/Flong = 5. This simply means that it is much easier
for the external turbulent motions to shake magnetic flux
tubes than to squeeze them (e.g., Spruit & Roberts 1983).

3.5. Comparison to previous results

The results presented here must now be compared to those
obtained in previous papers. The efficiency of the genera-
tion of transverse tube waves in Sun has been calculated
by Huang et al. (1995), who investigated the nonlinear re-
sponse to purely transverse shaking of a thin and vertically
oriented flux tube embedded in the solar atmosphere. In
this approach, the shaking velocities are represented by a
spectrum of partial waves with random phases and their
amplitudes determined from a description of the convec-
tive turbulence. The shaking is imposed on the tube at
only one specific height, which means that the correlation
effects (see Sect. 1) are not accounted for. Typical wave
energy fluxes obtained by this method are of the order
of 109 erg/cm2 s. Hence, they are one order of magnitude
higher than the fluxes computed here by using our analyt-
ical approach. Clearly, the fluxes calculated with the non-
linear effects included must be regarded as upper bounds
for the realistic wave energy fluxes carried by trans-
verse tube waves in the solar atmosphere. However, the
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analytically computed fluxes represent only lower bounds
for the realistic fluxes.

The fact that nonlinear effects and particularly shocks
can be important in the excitation of transverse tube
waves has been demonstrated by Choudhuri et al. (1993,b)
and Zhugzhda et al. (1994), who used analytical methods,
and by Muller et al. (1994), who based their estimates on
observations. The results obtained by Muller et al. seem
to indicate that the actual wave energy fluxes carried by
transverse tube waves can be as high as 1010 erg/cm2 s.
However, the latter has to be taken with caution because
of a number of assumptions underlying this estimate.

In Sect. 3.4, we have already compared the obtained
transverse wave energy fluxes with the fluxes calculated
analytically for longitudinal tube waves by Musielak et al.
(1995). The comparison shows that the former are 5 times
(or more) higher than the latter ones. Finally, we need to
compare our results to those obtained by Ulmschneider &
Musielak (1998), who have used similar method as Huang
et al. (1995) to compute the efficiency of the nonlinear
generation of longitudinal tube waves. Without taking the
correlation effects into account, they obtained for the Sun
the flux of the order of 2 108 erg/cm2 s, which is very
similar to the flux found here for transverse tube waves.
Clearly, the contribution to the chromospheric (and likely
coronal) heating by transverse tube waves must be in-
cluded in theoretical chromospheric models recently con-
structed by Cuntz et al. (1998, 1999). The wave energy
spectra and fluxes computed in this paper for transverse
tube waves can be used as the initial input to these
theoretical models.

4. Conclusions

From our analytical studies of the generation of linear
transverse waves in a magnetic flux tube embedded in the
solar convection zone, the following general conclusions
can be drawn.
1. As a result of the interaction between the magnetic flux
tube and the external turbulent motions transverse tube
waves are generated by the process of dipole emission;
2. The shapes of the wave energy spectra calculated for
different values of the mixing length parameter, α, and
the tube magnetic field strength, Bc = Boz/Beq (where
Boz = 1500 G is the observed and Beq the equipartition
field strength on the solar surface), are not very sensitive
to changes of these parameters;
3. Typical fluxes carried by linear transverse tube waves
along one solar magnetic flux tube are of the order of
108 erg/cm2 s. They are one order of magnitude lower
than the fluxes carried by nonlinear transverse waves. The
linear transverse fluxes are between 3 to 13 times higher
than the fluxes carried by linear longitudinal waves along
the same tube;
4. The total transverse wave energy fluxes do not depend
as strongly on the strength of the tube magnetic field as
the longitudinal fluxes. The difference can be explained by

the different roles played by the “stiffness” of the magnetic
tube in the wave generation process;
5. Our results are valid only for linear excitation, which
means that the obtained wave energy fluxes must be re-
garded as only lower bounds for realistic energy fluxes
carried by these waves.
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Appendix A: The asymptotic Fourier transforms

To evaluate the integrals I1(ko, ω) and I2(ko, ω), we follow
Musielak et al. (1995) and write them in the following
general form:

I1,2(ko, ω) =
∮
C

F1,2(η, ω)
(η − ko)(η + ko)

dη, (A.1)

where F1,2 represent the numerators of the integrands of
Eqs. (29) and (30), η is a complex number, and C is a
closed contour to be specified (see below). Since the in-
tegrand has two simple poles at η = ±ko, with ko being
always real for the propagating waves, Cauchy’s principal
value must be used to evaluate these integrals. It is also
required that the integrands in Eq. (A1) go to zero faster
than 1/η. Using this criterion, we find that the integrands
of I1 and I2 are convergent only in the lower (η∗) and
upper (η) half of the complex plane, respectively.

Thus, we choose the contour C in the lower half of the
complex plane for the integral I1 and perform the inte-
gration in the counterclockwise direction along contours
surrounding the poles η∗ = ±ko. By applying the residue
theorem, we obtain the Cauchy’s principal value of the
integral I1 to be given by

P I1(ko, ω) = − iπ

2ko
[F1(ko, ω)− F1(−ko, ω)] . (A.2)

Now, for the integral I2, we take the contour C to be in the
upper part of the complex plane and perform the integra-
tion in the clockwise direction along contours surrounding
the poles η = ±ko. This gives

P I2(ko, ω) =
iπ

2ko
[F2(ko, ω)− F2(−ko, ω)] . (A.3)

According to the so-called radiation condition (e.g.,
Sommerfeld 1909; also Lighthill 1960), only outward prop-
agating waves are present in our approach because there
are no other wave sources which could generate inward
propagating waves. Therefore, to satisfy this condition,
we must assume that F1(−ko, ω) = 0 and F2(−ko, ω) = 0.
To obtain Eq. (32) in the main text, we take F1(ko, ω) =
|So(ko, ω)| exp(ikoz) and F2(ko, ω) = ko|So(ko, ω)| exp(−i
koz), and omit P as the obtained results are convergent
for all values of ko and ω.



552 Z. E. Musielak and P. Ulmschneider: Transverse tube wave generation

Appendix B: The correlation tensors

In general, the correlation tensor Rij is defined as

Rij(r, τ) ≡ << ui(x, t) uj(x+ r, t+ τ) >x>t, (B.1)

where the average is taken over all points x of a large vol-
ume, which can be considered infinite, and over all times t,
which are long compared to all other time scales, and thus
can also be considered infinite. A situation in which Rij
is independent of x and t is called time-independent ho-
mogenous turbulence. We can introduce the spectral ten-
sor, Φij(k, ω), and Fourier transform Rij(r, τ). This gives

Φij(k, ω) =
1

(2π)4

∫
d3r

∫ +∞

−∞
dτ Rij(r, τ) ei(ωτ−k·r)(B.2)

and its inverse transform

Rij(r, τ) =
∫

d3k

∫ +∞

−∞
dω Φij(k, ω) e−i(ωτ−k·r). (B.3)

For homogeneous and isotropic turbulence, Rij(r, τ) =
Rij(r, τ) and Φij(k, ω) = Φij(k, ω), where r = |r| and k =
|k|. Clearly, the correlation tensors can be evaluated when
the corresponding spectral tensors are known. It was first
shown by Batchelor (1960) that the spectral tensors for the
homogeneous and isotropic turbulence can be expressed in
terms of a 3-D turbulent energy spectrum, E(k, ω), and
given by

Φij(k, ω) =
E(k, ω)
8πk2

(
δij −

kikj
k2

)
. (B.4)

Taking d3k = k2 sin θ dk dθ dφ and performing ana-
lytically the angle integration over φ and θ (see Musielak
et al. 1995, for details), we obtain

Rxx(r, τ) =
∫ ∞

0

dω cosωτ
∫ ∞

0

dk E(k, ω)

×
(

sin kr
kr

+
cos kr
k2r2

− sinkr
k3r3

)
, (B.5)

and

Rzz(r, τ) = 2
∫ ∞

0

dω cosωτ
∫ ∞

0

dk E(k, ω)

×
(

sin kr
k3r3

− cos kr
k2r2

)
. (B.6)

According to Eq. (44) in the main text, the turbulent en-
ergy spectrum can be separated in a spatial and tem-
poral factor, namely, E(k, ω) = E(k)∆(ω/kuk), where
E(k) and ∆(ω/kuk) are represented by the extended
Kolmogorov energy spectrum (see Eq. (46)) and by the
modified Gaussian frequency factor (see Eq. (49)), respec-
tively. Formally, the ω-integration in Eqs. (B5) and (B6)
can be performed, and the result is∫ ∞

0

dω cosωτ E (k, ω) = E(k)
∫ ∞

0

dω ∆
(

ω

kuk

)
cosωτ

= E(k)
(

1− α2τ2

2

)
e−α

2τ2/4 (B.7)

where α = kuk.

Appendix C: The convolution integral

We want to evaluate the convolution integral (see Eq. (40))
given in the following form:

Jc(ko, ω) =
1

(2π)2

∫ +∞

−∞
dr
∫ +∞

−∞
dτ Rxx(r, τ)Rzz(r, τ)

×ei(ωτ−kor), (C.1)

where the correlation tensors Rxx(r, τ) and Rzz(r, τ) are
given by Eqs. (B5) and (B6). Using these results and also
taking into account Eq. (B6), we obtain

Jc(ko, ω) =
1

2π2

∫ +∞

−∞
dr e−ikor

∫ ∞
o

dk1

∫ ∞
o

dk2

×
[(

sin k1r

k1r
+

cos k1r

k2
1r

2
− sin k1r

k3
1r

3

)(
sin k2r

k3
2r

3
− cos k2r

k2
2r

2

)]

×
∫ +∞

−∞
dτeiωτ

(
1− α2(k1)τ2

2

)(
1− α2(k2)τ2

2

)
× E(k1) E(k2) e−α

2(k1)τ2/4 e−α
2(k2)τ2/4. (C.2)

Now, the τ -integration can be performed analytically (see
Musielak et al. 1995) and the result is

Jc(ko, ω) =
1

4π

∫ +∞

−∞
dr e(−ikor)

∫ ∞
o

dk1

∫ ∞
o

dk2

×
[(

sin k1r

k1r
+

cos k1r

k2
1r

2
− sink1r

k3
1r

3

)(
sink2r

k3
2r

3
− cos k2r

k2
2r

2

)]
× E(k1) E(k2) g(k1, k2, ω), (C.3)

where

g(k1, k2, ω) ≡ 4√
π

1
(α2

1 + α2
2)1/2

[
3α2

1α
2
2

(α2
1 + α2

2)2

+2ω2α
4
1 + α4

2 − 4α2
1α

2
2

(α2
1 + α2

2)3
+ 4ω4 α2

1α
2
2

(α2
1 + α2

2)4

]
× exp[−ω2/(α2

1 + α2
2)]. (C.4)

where α1 = α(k1) = k1uk1 and α2 = α(k2) = k2uk2.
The integral over r can also be evaluated analytically

(Musielak et al. 1995). We define

I(ko, k1, k2) ≡
∫ +∞

−∞
dr
[(

sin k1r

k1r
+

cos k1r

k2
1r

2
− sin k1r

k3
1r

3

)

×
(

sin k2r

k3
2r

3
− cos k2r

k2
2r

2

)]
e−ikor, (C.5)

and rewrite it as

I(ko, k1, k2) =
1
4

∫ +∞

−∞
dr
[

sin k1r

k1r
− 1
k2

1

d2

dr2

(
sin k1r

k1r

)]

×
[

sin k2r

k2r
+

1
k2

2

d2

dr2

(
sin k2r

k2r

)]
e−ikor. (C.6)
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With

sin kr
kr

± 1
k2

d2

dr2

(
sin kr
kr

)
=

1
2

∫ +1

−1

dueikru ∓ 1
2

∫ +1

−1

du u2eikru,

I(ko, k1, k2) can also be expressed as

I(ko, k1, k2) =
1
16

∫ +1

−1

du
∫ +1

−1

dv [(1 + u2)(1− v2)]

×
∫ +∞

−∞
e−ir(ko−k1u+k2v) dr. (C.7)

Introducing x = k1u and y = k2v, we have

I(ko, k1, k2) =
π

8k1k2

∫ +k1

−k1

dx
∫ +k2

−k2

dy
[
1 +

x2

k2
1

− y2

k2
2

−x
2y2

k2
1k

2
2

]
δ(ko − x− y). (C.8)

To perform the integration over y, we define the distribu-
tion Π such that Π(y) = 1 for |y| ≤ 1/2 and Π(y) = 0 else,
and write∫ +k2

−k2

dy f(y) =
∫ +∞

−∞
dy f(y)Π

(
y

2k2

)
. (C.9)

With this because of the peak of the δ-function at y =
ko − x we get

I(ko, k1, k2) =
π

8k3
1k

3
2

[
−1

5
x5+

ko
2
x4+

1
3

(k2
2−k2

1−k2
o)x

3

+kok2
1x

2 + (k2
2 − k2

o)k2
1x
]B
A

Π
(
ko − x

2k2

)B
A

(C.10)

where the limits A andB have to be selected by taking into
account the distribution Π(y) and the integration limits
of the integral I(ko, k1, k2). There are 6 different cases.
Case 1: Π to the right of I, no overlap, integral vanishes,
I(ko, k1, k2) = 0. Case 2: Left corner of Π overlaps right
corner of I, then A = ko − k2 and B = k1, and

I(ko, k1, k2) =
π

24k1k2

[
2(k2+2k1)−3ko−k3

o

(
1
k2

1

− 1
k2

2

)

+2k2
o

(
k2

k2
1

− 2
k1

k2
2

)
− 3

2
ko

(
k2

2

k2
1

− 3
k2

1

k2
2

)

+
2
5

(
k3

2

k2
1

− 4
k3

1

k2
2

)
+

1
10

k5
o

k2
1k

2
2

]
. (C.11)

Case 3: I is completely inside Π, then A = −k1 and B =
k1, and

I(ko, k1, k2) =
π

3k2

(
1− k2

o

k2
2

− 2
5
k2

1

k2
2

)
. (C.12)

Case 4: Π is completely inside I, then A = ko − k2 and
B = ko + k2, and

I(ko, k1, k2) =
π

6k1

(
1 +

k2
o

k2
1

+
1
5
k2

2

k2
1

)
. (C.13)

Case 5: Right corner of Π overlaps left corner of I, then
A = −k1 and B = ko + k2, and

I(ko, k1, k2) =
π

24k1k2

[
2(k2+2k1)+3ko+k3

o

(
1
k2

1

− 1
k2

2

)

+2k2
o

(
k2

k2
1

− 2
k1

k2
2

)
+

3
2
ko

(
k2

2

k2
1

− 3
k2

1

k2
2

)

+
2
5

(
k3

2

k2
1

− 4
k3

1

k2
2

)
− 1

10
k5
o

k2
1k

2
2

]
. (C.14)

Case 6: Π to the left of I, no overlap, integral vanishes,
I(ko, k1, k2) = 0.

For propagating waves, ko > 0, and we have: Case 3
if k2 > k1 + ko, Case 4 if k2 < k1 − ko, Case 6 if either
k2 + k1 ≤ k0 or k1 = 0 or k2 = 0, and Case 2 in all other
situations.

For non-propagating waves, ko < 0, and we have: Case
3 if k2 > k1 + |ko|, Case 4 if k2 < k1−|ko|, Case 6 if either
k2 + k1 ≤ |k0| or k1 = 0 or k2 = 0, and Case 5 with ko to
be replaced by |ko| in all other situations.

Finally, the convolution integral is evaluated from the
following formula:

Jc(ko, ω) =
1

4π

∫ ∞
o

dk1

∫ ∞
o

dk2 E(k1) E(k2) g(k1, k2, ω)

× I(k0, k1, k2), (C.15)

where the function g is given by Eq. (C4) and the function
I by Eqs. (C11)–(C14), depending on the considered case.
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