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Abstract

The orbits of the exoplanets discovered so far have eccentricities
much higher than those in our own Solar system. Currently, there exist
no universally accepted explanation to this. One theory, however, is
that the fly-by of a neighbouring star might disturb the planetary
orbits enough for the orbits to cross. The planet-planet interaction at
one of the crossing points might then lead to the ejection of one of the
planets, leaving the other in a tighter, possibly more eccentric orbit.
In this project, we make an analytical approach to the problem of
planet-planet scattering in order to better understand what happens.
A program based on this theory was then written in order to simulate
this event for any initial properties of a two-planet system. The results
obtained are for certain initial properties able to fit quite well with
the eccentricity distribution of the known exoplanets.

1 Introduction

Astronomers have now successfully been looking for exoplanets for thirteen
years, resulting in roughly 300 known discoveries, with new ones found almost
every week. The orbital properties of the first exoplanet, 51 Peg b, came as
a big surprise (Mayor and Queloz [1995]). The planet was Jupiter-sized, but
instead of having an orbital period of twelve years like Jupiter, this planet
orbited its central star in just over four days. As new exoplanet discoveries
was made during the following years, it was found that the close orbit was
not an exception only for 51 Peg b. In the same way, a large part of the
planets found had oddly high eccentricities, much higher than any of the
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planets in the Solar system. Both these things were before the discoveries
not thought to be possible. When planets form, they do so in disks, and
when the planets accumulate the gas and dust is left in the disk, this should
mean a correction towards circularity. Why we are observing something
so significantly different from circular orbits is still being debated, with no
universally accepted theory to explain it.

Another thing astronomers had been certain of was the clear division
between terrestrial planets and Jovian planets. Terrestrial planets are the
smaller, rocky planets like our own Earth, that should only be possible to
form inside the ”snow line”’, where gas can not condense. The Jovian planets
are the gaseous giants, like Jupiter, which are thought to only form outside
the snow line (Hayashi [1981], Sasselov and Lecar [2000]). Instead of observ-
ing this as a rule among the exoplanets, several planets where found that
soon got the name ”hot Jupiters”, with masses like Jupiter, but with very
tight orbits well inside Mercury’s. It is worth noting that all methods of
finding exoplanets are currently relying on the orbital period of the planet.
As of today, it is not possible to find planets with periods above Jupiters,
roughly, simply because it takes time for all the necessary data to be col-
lected. It is not impossible at all that we during the following years will find
a lot of planet systems just like our own, but the fact that there exist hot
Jupiters or highly eccentric orbits at all is still surprising. In Fig (1), the
orbital properties of the currently known exoplanets have been plotted, to be
compared with the properties of Jupiter and Saturn that are also included.

Today still, thirteen years after the first discovery, the problem with the odd
properties of the exoplanets have yet to be answered. Some theories exist to
explain these oddities, however. One theory is about planetary migration.
The idea is that the heavier Jupiter-massed planets might accrete gas from
the disk before it dissipates, and the planet then loses angular momentum
and slowly spiral in towards a very tight orbit. This theory can explain the
existence of the hot Jupiters, but not the highly eccentric orbits, since the
correction from the gas would also mean a certain circularization (Lin et al.
[1996], Murray et al. [1998]).

To explain the high eccentricities, it has been suggested that a fly-by of a
neighbouring star might disturb one or several of the planetary orbits enough
so that they cross at some points. In this scenario, we only look at the in-
teraction between the planets at one of these crossings. The interactions will
then lead to changed orbital properties, and because orbits are closed, the
two interacting orbits will continue to do so until one of the planets is ejected.
The planet left behind would then lose energy and be left in a tighter, likely
also more eccentric orbit than before the fly-by (Laughlin and Adams [1998],
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Figure 1: a versus e for all the known exoplanets. Also included for compari-
son are the properties of Jupiter and Saturn. (Data taken from exoplanet.eu
as of 9th of June, 2008.)

Hurley and Shara [2002], Malmberg et al. [2007]).

During this project, I have made an analytical approach to a part of the
fly-by scenario. We imagine that a fly-by of a star has disturbed a coplanar
two planet system enough for their two orbits to cross. I then investigate
what would happen to the system after repeated interactions between the
two planets, disregarding any other effects than the actual planet-planet in-
teraction at the crossing. What would the resulting orbital properties be of
the planet left behind if the other planet is ejected? Is this work enough to
explain the eccentricity distribution of the exoplanets found so far?

The rest of this report is divided into five different sections. In Section 2, we
look at the properties of a general eccentric orbit and find an expression for
the distance between the planet and the central star as well as the velocity of
the planet at any point in the orbit. With these parameters known, we can
find the exact crossings between two orbits, which we in Section 3 use to de-
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termine what happens during the planet-planet deflection and how it affects
the orbital properties. In Section 4, we take a closer look at the programs
made during the project and take the more specific problems into account.
This is followed by Section 5, where the resulting plots are presented and
analyzed, and Section 6, where we discuss how this analytical approach can
be developed further.

2 Orbital properties

Before venturing deeper into the theories of planetary deflections and the
result these might have on the initial orbits, we will need to know more
about the basics of orbital properties. In this first section, our aim is to go
through all about the orbits that we will need, so that we can determine the
actual crossing points of any two orbits. A lot of the reasoning here is done
with the help of Szebehely [1989]. First of all, we begin with one of the facts
known from Kepler’s laws of planetary motion.

All planets move in eccentric orbits with the central star in one of the
foci. Fig (2) shows a generic eccentric orbit with some of its more important
properties marked out. An ellipse is a type of conic section that can be
described by knowing the size of it’s semi-major axis, a, and semi-minor
axis, b. Another more commonly used way to describe an eccentric orbit is
to use a along with the eccentricity, e. The eccentricity basically tells us
how flattened the ellipse is by measuring how far away the foci are from the
center of the ellipse, seen in the equation below

e =
c

a
(1)

In a circle, the focus lies exactly in the middle, giving us c = 0 and therefore
e = 0. At an e = 1, the orbit turns into a parabola and at e > 1 we get a
hyperbola. These two latter cases will not be discussed further here, but it is
important to know that planets with these eccentricities are unbound to the
star. Continuing looking at Fig (2), we can see that the point in the orbit
closest to the star is called periapsis, and the point farthest away is called
apoapsis. An easy way to describe any point in the orbit is by using polar
coordinates, r and φ, and we chose periapsis to represent the angle φ = 0.
This also means that the apoapsis is situated exactly φ = π radians from
periapsis. Another important term that we will come back to later is the
semi-latus rectum, defined as the distance from a focus to the ellipse a long
a line perpendicular to the semi-major axis.

That is about all the basics and the terminology needed for now, and we
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r
M*

Φ

b

c
rarp

p
periapsis

apoapsis
mp

a

Figure 2: The eccentric orbit with the star in one of the foci. Also marked
out are r, semi-major axis (a), semi-minor axis (b), semi-latus rectum (p),
periapsis, apoapsis and φ.

can start aiming at answering some of the questions we asked at the end
of the introduction. In the end of this section, we want to have derived
expressions with which we can determine the points of crossings for any two
orbits and the planetary velocities at these points, which is needed to then
determine the effect of the planet-planet scattering. An important thing to
know is that if two orbits cross, there will always be exactly two crossing
points no matter what the orbital properties are. To be able to determine
these points, we will first need to find a way to express the distance between
each planet and the central star at any point. Knowing this, we will also not
be far away from knowing the planetary velocities. To begin somewhere, we
know that the angular momentum can be expressed as L = r × p.1 Angular
momentum is an important quantity, but a more handy one for us is the
angular momentum per unit mass, c, that can be written as

c = ṙ × r (2)

1It can here be noted that the underline will be used throughout the article to symbolize
vectors.
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Figure 3: Enlarged figure of a part of the eccentric orbit showing mp, M∗, φ,
r along with v = ṙ with the two velocity components ṙ and rφ̇ marked out.

The vector product can also be expressed as

|c| = |ṙ × r| = |r| |ṙ| sin(α) (3)

In Fig (3), a part of the eccentric orbit from Fig (2) have been blown up. Seen
are the two bodies at a distance r. The velocity vector, ṙ, has been divided
into two components; ṙ which is parallel to r, and rφ̇ which is perpendicular
to r. Using simple trigonometry from the figure, we see that

sin(α) =
rφ̇

|ṙ|
⇒ |ṙ| sin(α) = rφ̇ (4)

If we now combine Eq (3) and (4), we can write c as

c = r2φ̇ (5)

The only force acting on the planet is the gravitational force between the
planet and the central star. We can therefore set the gravitational acceler-
ation equal to the acceleration in the two velocity components r̈ and rφ̇2,
resulting in

r̈ − rφ̇2 = −GM∗
r2

(6)
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Now, using Eq (5) in (6), we get

r̈ − c2

r3
= −GM∗

r2
(7)

To further evolve Eq (7), we can with the help of Eq (5) write the first and
second time derivative of r as

dr

dt
=
dr

dφ
· dφ
dt

=
c

r2
r′ (8)

d2r

dt2
=
c2

r4

(
r′′ − 2

r′2

r

)
(9)

where r′ = dr
dφ

and r′′ = d2r
dφ2

. Now, using these two expressions into Eq (7)
and simplifying, we get

c2

r4

(
r′′ − 2r′ 2

)
− c2

r3
= −GM∗

r2
(10)

r′′ − 2r′ 2 − r = −GM∗
c2

r2 (11)

To make this differential equation easier to solve, we introduce the substitu-
tion u = 1

r
. That would mean that r′ and r′′ can be written as

r′ = − u
′

u2
(12)

r′′ =
2u′2 − uu′′

u3
(13)

Eq (11) can now be written as

u′′ + u =
GM∗
c2

(14)

This is a differential equation we can solve, resulting in

u =
GM∗
c2

+ A cos(φ) (15)

Going back to r as the dependent variable, we finally get an expression for
the distance between the planet and the central star:

r =
c2/GM∗

1 + (Ac2/GM∗) cos(φ)
(16)
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But as have been discussed earlier, the ellipse is also a sort of conic section.
With polar coordinates, we can also write the distance between a focus and
any point in the ellipse as

r =
p

1 + e cos(φ)
(17)

where p is the already discussed semi-latus rectum. Comparing (16) and
(17), we can see that p can be written as

p =
c2

GM∗
(18)

Remembering Eq (5), we can use (18) to get

r2φ̇ =
√
p GM∗ (19)

Taking a step back, remembering Fig (2), we can see that the length of the
major axis can be expressed as

2a = rp + ra (20)

Using Eq (17) with the figure still in mind, we can see that rp and ra can be
described as

rp =
p

1 + e cos(0)
=

p

1 + e
(21)

ra =
p

1 + e cos(π)
=

p

1− e
(22)

Combining these two with Eq (20), we can finally get a useful expression for
p:

2a =
p

1 + e
+

p

1− e
(23)

p = a
(
1− e2

)
(24)

We now have enough knowledge to also describe the velocity of the planet
at any point in the orbit. We begin with describing the velocity component
parallel to r, ṙ, with the help of Eq (17), (19) and (24).

ṙ =
dr

dφ
· dφ
dt

=
pe sin(φ)

(1 + e cos(φ))2

√
p GM∗
r2

= ...

= e sin(φ)

(
GM∗

a (1− e2)

)1/2

(25)
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Our second component, rφ̇, can then be determined, starting with Eq (19)
followed by (17) and (24).

rφ̇ =

√
pGM∗
r

=
pGM∗
p

(1 + e cos(φ)) = ...

=

(
GM∗

a (1− e2)

)1/2

(1 + e cos(φ)) (26)

The size of the total velocity can then be calculated from the simple

v =

√
ṙ2 + (rφ̇)2 (27)

To verify our velocity equations, we can insert e = 0, the eccentricity of a
circle, into Eq (25) and (26), resulting in ṙ = 0 and

rφ̇ =

√
GM∗
a

(28)

Which, as we wanted, is independent of φ and is the well known velocity in
a circular orbit.

Orbit 1

Orbit 2

θ

Φ1

Φ2

Figure 4: Two eccentric orbits shifted with an angle θ between the two major
axes.
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We have now discussed the most important properties of a single eccentric
orbit and can describe the distance between the planet and the central star
at any point with the help of Eq (17) as well as the velocity with Eq (25)
and (26). We can therefore introduce a second orbit to our system. Since
M∗ >> mp, we can make a good approximation that the two planetary orbits
can be treated as two separate two body problems. The distances, r1 and r2,
can be described as

r1 =
a1 (1− e2

1)

1 + e1 cos(φ1)
(29)

r2 =
a2 (1− e2

2)

1 + e2 cos(φ2)
(30)

If the two orbits cross, they will always do so at two points, something that
has been discussed earlier. The crossings will happen when r1(φ) = r2(φ). As
we see in Fig (4), showing a schematic view of two generic orbits, the orbits
will almost always be shifted with an angle θ between the two semi-major
axes. According to the figure, we can see that θ can be written as

θ = φ1 − φ2 (31)

With that, we can express φ2 as a function of φ1 and θ, and Eq (30) can
subsequently be rewritten as

r2 =
a2 (1− e2

2)

1 + e2 cos(φ1 − θ)
(32)

As have previously been mentioned, the two crossings will occur when r1(φ) =
r2(φ). With Eq (29) and (32), we can therefore write our problem as

a1 (1− e2
1)

1 + e1 cos(φ1)
=

a2 (1− e2
2)

1 + e2 cos(φ1 − θ)
(33)

To find the crossings, we then have to solve the above equation for φ1. How
this have been done in the programs is discussed more thorough in Section
4. With the crossing problem solved, we have a φcross,1 and φcross,2 and can
then get the two velocity components from Eq (25) and (26). We can then
express the relative velocity between the two planets at the point of crossing
with

V (φcross) = v1(φcross,1)− v2(φcross,2) (34)
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3 DEFLECTION AND ITS EFFECTS

3 Deflection and its effects

In the previous section, we were able to determine the points of crossing be-
tween two orbits and the relative velocities between the two planets at these
points. The likelyhood of an interaction have not been examined during this
project, but it is safe to say that several of these interactions should occur on
an astronomical timescale. This section is dedicated to what will happen to
the planets when the event occurs. It is divided into three subsections where
we first find the deflection angle between the old and new velocity vector,
then look for the change in total velocity of both planets and finally calculate
the new orbital properties of both planets.

In the major part of this section, we will disregard the effect of the cen-
tral star and only focus on the planet-planet interaction. This can be done
since the deflection happens so locally that we can approximate the event to
happen only right at the point of crossing. The reason why this approxima-
tion can be done is based on the following line of reasoning. We first start off
with writing the force between the two planets, Fpp, and between a planet
and the star, Fps as

Fpp = G
m1m2

r2
pp

(35)

Fps = G
mpM∗
r2

ps

(36)

To simplify a bit, the masses are set to mp = m1 = m2. The point where the
two forces are equal is then when the above two equations are equal, and we
then evolve it a bit further

G
m1m2

r2
pp

= G
mpM∗
r2

ps

(37)

√
m1

M∗
=
rpp

rps

(38)

We now imagine two Jupiter-massed planets orbiting the Sun. The masses
would be mp = 10−3M� and M∗ = 1M�. Using the equation above, the
distance between the two planets, rpp would then be roughly three per cent
of the distance between one of the planets and the star, rps for the two forces
to be equal. There is still quite an approximation in saying that everything
happens at one single point, but it will greatly simplify our calculations.
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δ

Ψ

p

r
m1 m2

Φ’

Figure 5: The trajectory of one planet in the rest frame of the other during
a deflection. Marked out is the deflection angle, δ, as well as ψ, φ′ and the
impact parameter, p.

3.1 Deflection of planets

In this first subsection, based on Spitzer Jr. [1987], we determine the angle,
δ, between the old velocity, v, and the new velocity after deflection, ṽ. We do
not look for the change in size of the velocity vector at this point, since we
will first need δ for that. To determine δ, we switch to the rest frame of planet
1, and then look at the relative orbit planet 2 shows during the deflection. In
this frame, we can easily understand why only the relative velocity between
the two planets known from Eq (34) is important. A sketch of the relative
orbit is given in Fig (5). The dashed lines in the figure are the asymptotes
of the relative orbit. The angle φ′ is measured from the closest distance
between the planets in the same way as it was for the single orbit. We also
introduce a new property called the impact parameter, p, which is the closest
distance between the two planets in the unperturbed orbits. This parameter
basically tells us how high the interaction between the two planets will be,
and is therefore very important when determining the deflection angle.

From Eq (16) and (17), we can write the inverse distance 1/r between the
two planets as

1

r
=
G (m1 +m2)

c2
(1 + e cos(φ′)) (39)
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3.2 The vector triangle plot 3 DEFLECTION AND ITS EFFECTS

The total energy of planet 2 in Fig (5) is taken from the sum of the kinetic
and potential energy and can be written as

E =
m2v

2

2
− Gm1m2

r
(40)

But since we know that v2 = ṙ2 + (rφ̇)2, we can with the help of Eq (5) also
write the energy per unit mass, Eum as

2Eum =

(
dr

dt

)2

+
c2

r2
− 2G (m1 +m2)

r
(41)

Again with the help of Eq (5), we can replace dt with r2 dφ
c

, and get dr from
Eq (39). This yields

e2 = 1 +
p2V 4

G2 (m1 +m2)
(42)

where V is the relative velocity at no planetary interaction, Eum has been
replaced with V 2/2, which is the energy per unit mass at infinity, and c = pV
has been used, where p is the impact parameter. From Fig (5), we can see that
at the angles φ′ = π±ψ, r goes towards infinity, meaning that cos(φ′) = 1/e.
From Eq (42), we then get

tan(ψ) =
pV 2

G (m1 +m2)
(43)

From Fig (5), we can also see that ψ is related to δ as

δ = π − 2ψ (44)

And by combining Eq (43) and (44), we finally have a working expression for
δ. In the expression for ψ, we can see that the impact parameter, p, logically
plays an important role during the deflection of planets. At the same point of
crossing between two orbits, the other parameters are constant, but we never
have a fixed value on p for every interaction. There is actually a wide range
of p:s that are of interest to us, but how those are decided will be discussed
further in Section 4.

3.2 The vector triangle plot

Knowing the deflection angle δ from the previous subsection, we are now able
to determine the new velocities ṽ1 and ṽ2. In order to do this, we come up
with a trick that will greatly simplify our calculations and the understanding
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m2

m1

center of mass

v1,p

v2,p

vcm

v2

v1

Figure 6: The vector triangle figure for both planets. Marked out is the
center of mass, along with v, vcm and vp.

of what happens during the deflection. We switch to vectors related to the
center of mass of the two planets according to Fig (6). In this figure, the two
planets m1 and m2 are situated at a distance d1 = v1 ·t and d2 = v2 ·t from the
point of crossing between the two orbits. The beauty of this approach will
soon be explained, but let us first continue a little bit further. As can be seen
in the figure, the total velocity before the deflection can now be described
with

v1 = vcm + v1,p (45)

v2 = vcm + v2,p (46)

where vcm is the center of mass velocity, common for both planets according
to Fig (6), and vp is the planets velocity relative to the center of mass.
The center of mass velocity is basically a mass weighted velocity and can be
described by

vcm =
m1v1 +m2v2

m1 +m2

(47)

Since v1 and v2 at the points of crossings are known from earlier, we can
also determine vcm. From Eq (45), we can also get vp for both planets. The
fine thing here is that since the center of mass vector is identical for the
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δ

δ

Center of mass

v1,p

v1,p

~

v2,p

v2,p
~

Figure 7: The trajectory of the two planets during the deflection seen from
the center of mass frame. Included are δ, v1,p and v2,p along with the resulting
velocities ṽ1,p and ṽ2,p.

two planets and conserved during deflection, the deflection is only dependent
on the vp component. If we stand in the rest frame of the center of mass,
the planets movement would only seem to depend on v1,p and v2,p, which is
nicely illustrated in Fig (7). The interaction between the two planets is a
pure deflection, meaning that

∣∣vp

∣∣ =
∣∣ṽp

∣∣. Knowing this, we can write the
new velocity, ṽ, as

ṽ = vcm + ṽp (48)

Since the size of the vp component is constant, and the direction of it is
directly related to the angle of deflection, the whole range of possible ṽp will
describe a full circle as shown in Fig (8). This approach gives us an opportu-
nity to easily understand several interesting aspects of planetary deflection.
We can for example easily see that the largest deflection angle does not equal
the largest change in v, which one might spontaneously think. Instead, we
can from the figure easily see that we will get the maximum velocity of ṽ
when ṽp ‖ vcm. In the same way, we get the minimum velocity when ṽp and
vcm are oppositely aligned. We can also in an easy way explain why it is more
difficult to change direction of a higher mass planet than a lower one. Imag-
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m1

center of mass

v1,p

vcm

v1

v1,p v1
δ ~

~

Figure 8: Enlarged vector triangle for one of the planets. The circle is showing
all possible ṽ1,p.

ine a situation where m1 >> m2. This would mean that the center of mass
would lie almost on planet 1, resulting in v1,p << vcm and that vcm ≈ v1. No
matter how we rotate v1,p, the resulting change in velocity would therefore
not be very large.

Let us continue with looking at a system where two orbits are crossing, still
with the vector triangle in mind. The semi-major axes, as, and the angle
shift between these, θ, both seen in Fig (4), are arbitrary. We set e1 = 0 and
0 < e2 < 1. The velocity of planet 1 would be constant and given from Eq
(28):

rφ̇ =

√
GM∗
a1

Since the two orbits are always crossing at exactly a1 no matter what θ, the
escape speed for both planets at the deflection would always be

vesc =

√
2GM∗
a1

=
√

2v1 (49)
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3.3 The new orbital properties 3 DEFLECTION AND ITS EFFECTS

For any velocity larger than this, the planet would escape the system. Know-
ing |v1| =

∣∣ṽp

∣∣ and Eq (48), we can say that if either of the two following
conditions are true, escape is possible after deflection.

|vcm|+ |v1,p| ≥
√

2v1 (50)

|vcm|+ |v2,p| ≥
√

2v1 (51)

This line of reasoning does not, however, directly state how likely ejection
would be after a deflection. If either are true, however, given enough deflec-
tions, the planet fulfilling the above condition would be ejected. This is is
discussed in more detail later on.

3.3 The new orbital properties

We have now described what happens during the deflection, and will now
again have to consider the force between the star and each planet. In other
words; we know the point of interaction, r, and have just calculated the ṽ.
The only thing left is to find ã and ẽ for both planets. To find these, there are
two necessary parameters to know, the total energy and angular momentum
for each planet, E and L. The angular momentum of a planet is given by

L = m(rφ̇)r (52)

where rφ̇ is given by Eq (26). The total energy of the planet is as before the
sum of its kinetic and potential energy at the point of crossing:

E = T + U =
mpṽ

2

2
−GmpM∗

r
(53)

But the total energy of an orbit is also given by the expression below, allowing
us to determine ã:

E = −GmpM∗
2ã

⇒ ã = −GmpM∗
2E

(54)

Knowing both E and L, we can now also determine ẽ using the following
expression (derived in Shapiro and Teukolsky [1983]):

ẽ2 = 1 +
2EL2

G2µ3M2
≈ 1 +

2EL2

G2m3
pM

2
∗

(55)

We now know the new orbital properties for both the planets. However, we
also have to consider the new angle between the major axes, θ̃. We actually
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already have all the knowledge needed to solve this last question. As have
previously been discussed, we know that the old point of crossing will be
included in the new orbit. With the help of Eq (17), we can find two points
of the new orbit that are both situated at the distance rcross; one where the
planet approaches the central star, and one where it is receding it. Only one
of these are correct, however, and we will need to figure out which point that
is. This can be done with the help of the scalar product r · ṽ. In the same
way as using the derivative of a function to know if it is increasing or de-
creasing, we can from knowing the sign of the scalar product tell if the planet
is receding or approaching the central star. Doing this for both planets will
then let us determine the point of crossing in φ1 and φ2, and with Eq (31),
we can determine θ̃. We now, finally, have all the theory we need to create
the programs made during project.

There is one important thing to take notice of, before continuing, and that
is that because the energy of the system is conserved, both planets will after
one revolution in their new orbits get back to the exact same point where the
two orbits interacted the first time. This means that two orbits that cross
will always do so at that exact point no matter what new orbital properties
they get as long as both planets are bound. We can therefore keep on using
the whole line of reasoning from Sections 2 and 3 until we finally get an
ejection.

4 The programs

In order to answer the questions we asked ourselves in the beginning of this
project, two programs where written based on the theory of orbits explained
above. The first program, called Orbitcrossing, is the largest and made to
determine the new ã1, ẽ1, ã2, ẽ2 and θ̃ from some given set of a1, e1, a2, e2

and θ, utilizing most things derived in the two earlier sections. The second
program, named Boundtrial, uses some of the insight we got in the ”The
vector triangle plot” subsection in order to quickly analyze if ejection of a
planet is possible for a wide range of different starting orbits. But let us
begin with explaining the Orbitcrossing program in more detail.

4.1 Orbitcrossing

The first thing we need to do when writing Orbitcrossing is to find a good
way to numerically determine the two points of crossing at a satisfactory
degree of accuracy. With the help of Eq (29) and (32), we can plot r1 and
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r2, versus φ1. The orbits cross when r1(φ1) = r2(φ1 − θ). In the program,
we calculate r for discrete values of φ equally spaced with ∆φ = 0.1 degrees
for the whole orbit. Because of this, we will almost never see the situation
where the two distances r1 and r2 are exactly equal. Instead, if we look at
the difference r1(φ1) − r2(φ1 − θ), we know that it will switch sign between
two adjacent φ when they cross. To get the exact crossing, we can linearly
extrapolate the function of r between the two adjacent angles for both orbits.
The linear equation for the two orbits would then be

r1 = k1φ1 +m1 (56)

r2 = k2φ1 +m2 (57)

where k is the slope of the line and can be determined from k = ∆r
∆φ1

. Knowing
r and its corresponding φ, we can then also determine m from m = r − kφ.
To get the angle where the two lines cross, we then set r1 = r2, and get the
following expression for the crossing angle:

φcross =
m2 −m1

k1 − k2

(58)

We can now calculate the two velocity components for each planet using
Eq (25) and (26) and get the relative velocity from Eq (34). To test if the
program so far works as it should, we know for a fact that the two crossings
should be π radians apart when the two orbits are identical but shifted with
an angle θ. With the same identical orbits, we can also test the relative
velocities. At a very slight shift in θ, the two velocities should be almost the
same resulting in a relative velocity close to 0. If we instead have a shift of
θ = π radians, the two planets would be oppositely aligned resulting in a
relative velocity twice the one of an individual planet.

To calculate the deflection at the crossing, we use Eq (43) and (44). At
this point, it is important to note that Orbitcrossing have been written in two
different versions. The first version runs the exact same interaction several
times for equally spaced p:s in the whole range of −pmax ≤ p ≤ pmax and
calculates the resulting orbits for each p. The value of pmax will be discussed
later. The second version randomly picks one p from the same range as above,
then determines the new orbital properties and continues running until one
of the planets is ejected. For the random pick, we use the Luxury random
number generator, giving a value RND ranging from 0 to 1. Because the
orbits of the two planets are coplanar, the p range is one dimensional and
can be described with the linear relation below

p = 2 · RND · pmax − pmax (59)
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Determining the value of pmax was done entirely empirical. We were in this
project only interested in the deflection where the change in orbital properties
was clearly noticeable. To get the right value, we looked at plots acquired
from the first version of the program showing δ versus a large range of p. We
also wanted the value of pmax to scale with any set of orbits, and found that
pmax = 0.05 · rcross AU worked well, resulting in deflections between around
10 to 350 degrees.

To find the resulting velocities after the deflection, we use Eq (48). When
translating the velocity components ṙ and rφ̇ to the new system, we need
to make an assumption that r1 ‖ r2, which is true if we remember the ap-
proximation that the interaction happens locally. With the help of Fig (8),
we can easily test our code by checking if the maximum and minimum ṽ are
situated δ = π radians apart. We can also check the total E and L for the
system before and after the deflection and see if they are conserved.

Finally, to get the resulting ãs, ẽs and θ̃, we use Eq (52), (53), (54) and
(55). A good way of testing this last part of the code is to set δ = 0 and
then check if the new orbital properties agree with the old ones. All the tests
mentioned in this subsection was performed and confirmed that the program
worked as it should.

4.2 Boundtrial

The Boundtrial program was written in order to be able to see if ejection of
a planet after deflection was possible, using the logics of ”The vector triangle
plot” subsection, specifically Eq (50) - (51). From these equations, we can see
that if the two velocity components, |vcm| and |v2,p| added together are larger
than the escape velocity, vesc, escape is possible by aligning the components
in the right way. The smaller difference between the |vcm|+|v2,p| and vesc, the
smaller the range of possible δs that lead to ejections. With this program,
however, we only check if escape is possible or not, and do not bother with
the probabilities.

The first orbit is set constant, with a1 = 1 AU and e1 = 0 to keep the
program simple. We then look at a large range of a2s and e2s and check if
ejection is possible or not for every individual case. The program consists
of parts of Orbitcrossing to determine the crossing points and velocities at
these points. We then use Eq (50) - (51) to see if escape is possible. For
some arbitrary set of two orbits that cross, we can imagine four different
possibilities:

1. Ejection is impossible for both planets

2. Ejection is possible for both planets
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a1 (AU) e1 m1 (M�) a2 (AU) e2 m2 (M�)

1 0 10−3 2 0.8 10−3

1 0 5 · 10−3 2 0.8 10−3

1 0 10−3 2 0.8 5 · 10−3

1 0 10−3 2 0.6 10−3

1 0 5 · 10−3 2 0.6 10−3

1 0 10−3 2 0.6 5 · 10−3

1 0 10−3 1 0.6 10−3

1 0 10−3 1 0.2 10−3

2 0.4 10−3 3 0.8 10−3

Table 1: All examined combinations of orbital properties.

3. Ejection is possible for planet 1, but impossible for planet 2

4. Ejection is impossible for planet 1, but possible for planet 2

In the program, with the limitations to orbit 1 that we always have e1 = 0 and
m1 = m2, we will actually only ever see the first two of these possibilities
occur. This is related to the conservation of energy and will be discussed
more in next Section.

5 Results

With the help of Orbitcrossing (attached in Appendix A) and Boundtrial (at-
tached in Appendix B), a number of different simulations was run with differ-
ent initial orbital properties and masses. In order to minimize the amount of
factors, only two different masses have been used; 10−3 M�, equal to around
one Jupiter mass, and 5 · 10−3 M�. In most cases, e1 has been set to 0, both
to simplify and to simulate an inner orbit that was not as affected by the
fly-by as the outer orbit. In the test runs, all kinds of θs have been used, but
for all plots given in ”Results”, θ have been set to π/2. This does in most
cases not matter, since we are rotation independent if either of the orbits are
circular. All runs have been listed in Table 1.

We start off with showing Fig (9), an example plot from Orbitcrossing where
we have plotted the complete range of equally spaced ps versus the resulting
eccentricities of both orbits after deflection, ẽ, in order to study the direct
effect of different impact parameters. First of all, we can note that both
curves seem to go towards the initial properties of e1 = 0 and e2 = 0.8 at
high ps, low interactions, which is a good way to see that our program seems
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to be working correctly. We can also see that the highest resulting eccen-
tricity does not come from the highest possible deflection, which is in line
with our discussion in the previous sections. It can also be noted that the di-
ameter of a Jupiter-massed planet would equal around 0.001 AU, effectively
excluding a bit of the middle portion of the plot because of planet-planet
collision. These collisions have not been directly included in the program,
and are discussed more in the Discussion. Both planets also seem to have an
ẽ > 1 for certain ps, which means that ejection after interaction is possible.

Finally, we can note that at the purely theoretical p = 0, which would
lead to a collision in reality, the properties of the two orbits seem to swap
resulting in ẽ1 = 0.8 and ẽ2 = 0.0. This is once again a feature that can be
explained with the help of our nice vector triangle. At p = 0, Eq (43) and
(44) says that we will get a δ = π radians. Since we also have m1 = m2, the
two velocity components relative to the center of mass will be of equal size.
These two facts combined with Eq (45) and (46) results in

ṽ1 = vcm + ṽ1,p = vcm + v2,p = v2 (60)

ṽ2 = vcm + ṽ2,p = vcm + v1,p = v1 (61)

Leading to exactly swapped orbits. Interestingly enough, we come to the
conclusion that any two crossing orbits with m1 = m2 can swap orbits in the
same way if we don’t take collisions into consideration.

We now continue with Fig (10), showing the resulting plot from Boundtrial
with m1 = m2. In the plot, we see the range of a2s and e2s where ejection is
possible for both, although not at the same time, and we also see the range
of a2s and e2s where ejection is always impossible. According to the figure,
when one of the planets have a circular orbit and both planets have the same
mass, only the two above situations are possible. If we look back at Fig
(9), it shows the same thing, with both planets having spikes above ẽ ≤ 1.
Again, the discussion around this subject will have to wait. In the program,
all different combinations of 0 ≤ a2 ≤ 8 and 0 ≤ e2 < 1 have been gone
through, so the white areas show where the two orbits do not even cross.
We can also see that both areas are nice and continuous, with no strange
oddities.

After a given deflection with some given set of orbits, it would be of interest
to identify the different new orbital properties we could get. Imagine running
the same planet-planet scattering, but with different ps each time. Would we
be able to see some kind of shape or relation between all the new properties,
or would they perhaps just be randomly distributed over a larger area? To

22



5 RESULTS

 0

 0.5

 1

 1.5

-0.05 -0.025  0  0.025  0.05

e~

p (AU)

Orbit 1
Orbit 2

Figure 9: Eccentricity versus impact parameter for orbit 1 and 2 (Initial
properties: a1 = 1 AU, e1 = 0, a2 = 2 AU, e2 = 0.8,m1 = m2 = 10−3 M�)

answer this question, we let Orbitcrossing run over the complete range of ps
for one specific encounter. The resulting ãs and ẽs for each individual p were
then plotted and is shown in Figs (11) and (12).

First of all, we can take note of the region free of points in the region
close to the initial orbital properties. These empty regions would contain
all points originating from low-deflection interactions belonging to the ps
we have excluded by selecting our pmax as we did. We can also, not very
surprising after having looked at Fig (9) with the narrow eccentricity peak,
see that the density of points is a lot higher close to the initial properties.
The most interesting thing we note by comparing Figs (11) and (12) is that
that even though the density of points differ between the two, the shapes are
actually identical. This only happens when two conditions are met; one of
the orbits have to be circular, and the masses have to be the same. Because
the masses are the same, we realize from Fig (6) that |v1,p| = |v2,p|. Because
of this, the resulting circle of possible ṽs must be exactly the same for both
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Figure 10: Orbital properties of planets where ejection is possible and where
it is not. (Properties of orbit 1: a1 = 1 AU, e1 = 0, m1 = m2 = 10−3 M�)

planets. In order to conserve momentum, ṽ1 and ṽ2 must also always be
exactly oppositely aligned for each deflection. This means that the shape for
the two planets will be identical, even though the density of points will still
differ. This finally explains why only two combinations, both bound or both
possible to get unbound, existed in the previous Boundtrial run. Since the
two shapes are always identical, we can never have a situation where only one
planet is possible to get ejected where there the other can not. We can also
finally note that the shape is closed, and never exceeds e = 1, which means
that ejection is impossible for this set of initial orbital properties. Comparing
with Fig (10) gives the same results.

Similar to the previous example, we once again run Orbitcrossing, now with
a different set of initial orbital properties. The previous scattering was not
able to result in any ejections, so we now see what happens when we know
ejections are possible, as was the case with the system used for Fig (9). Since
we still have one orbit circular and both planet masses identical, Fig (13) and
(14) shares the same shape. Since the initial properties are the same as those
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Figure 11: Properties of orbit 1 after deflection with p ranging from −pmax

to pmax (Initial properties: a1 = 1 AU, e1 = 0, a2 = 2 AU, e2 = 0.6,m1 =
m2 = 10−3 M�)

from Fig (9), we also expect to see at least a couple of points above e = 1,
signaling an unbound planet. However, higher es are associated with larger
as, and the few points above e = 1 also have huge as, not included in these
plots. We can however still see a tendency towards the unbound state in the
plot.

We have now discussed the case of one single event of planet-planet scattering.
However, to compare our simulations to the reality, we need to run several
simulations where we let the scattering event occur, leading to new properties
and new scatterings, finally resulting in the ejection of one of the planets.
We can then look at the properties of the planet left behind and see what
it looks like. In Fig (15), this was done with initial properties a1 = 2 AU,
e1 = 0.4, a2 = 3 AU, e2 = 0.8,m1 = m2 = 10−3 M� and a randomly picked
p for every interaction. The loop was then repeated 500 times, giving 500
points of a and e of the planet left behind.

Looking at the figure, we can see that the points are scattered across
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a wide area around a = 1 AU with a quite homogeneous distribution. The
interesting feature here is however that see a very sharp line at around a = 1.2
AU. Higher as do not seem to exist. This can actually be explained if we
express the total energy of orbit 1 and 2 before the ejection with the help of
Eq (54), resulting in:

E1 = −GM∗m1

2a1

(62)

E2 = −GM∗m2

2a2

(63)

After the ejection, the energy of the planet left, Efinal, can be expressed in
the same way as above, and the minimum energy of the ejected planet would
be obtained if vp,unbound = 0, resulting in

Efinal = −GM∗mp,bound

2ap,bound

(64)
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Figure 12: Properties of orbit 2 after deflection with p ranging from −pmax

to pmax (Initial properties: a1 = 1 AU, e1 = 0, a2 = 2 AU, e2 = 0.6,m1 =
m2 = 10−3 M�)
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Figure 13: Properties of orbit 1 after deflection with p ranging from −pmax

to pmax (Initial properties: a1 = 1 AU, e1 = 0, a2 = 2 AU, e2 = 0.8,m1 =
m2 = 10−3 M�)

Eejected = −GM∗mp,unbound

ap,unbound

(65)

Conservation of energy means that we can put the energies before and after
the deflection equal in the following way

Efinal + Eejected = E1 + E2 (66)

The least energy possible of the ejected planet would then be Eejected = 0,
meaning that the highest possible energy would be given to the bound orbit
and still have an ejection. According to Eq (54), a low binding energy is
associated with a large a. The largest possible a is therefore obtained just
when Eejected = 0, meaning that we can write our equation as

1

afinal

≥ 1

a1

+
1

a2

(67)

Inserting a1 = 2 AU and a2 = 3 AU, which is the initial set of properties we
are interested in, then results in afinal,max = 1.2 AU, which is exactly what
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Figure 14: Properties of orbit 2 after deflection with p ranging from −pmax

to pmax (Initial properties: a1 = 1 AU, e1 = 0, a2 = 2 AU, e2 = 0.8,m1 =
m2 = 10−3 M�)

we see in the plot.

In Fig (16), Orbitcrossing have been run in the same way as in the previous
case, but with a1 = 1 AU, e1 = 0, a2 = 2 AU, e2 = 0.8,m1 = m2 = 10−3

M� as initial properties. Where Fig (15) did not have any clear features,
this plot shows a clear shape almost resembling a hockey-stick, where the
point density is a lot higher than anywhere else. The fact that the density
is so much higher actually gives us a little lead to what has happened. The
idea is that this system is more keen on early ejections than the previous
one, leading to a high amount of prompt ejections. Since the setup of the
deflection is the same for so many ejections, we will have a naturally higher
density around the same area in the plot. The actual hockey-stick occurs
when the p is randomly selected, leading to slight differences between every
prompt ejection. If the ejection isn’t prompt, on the other hand, the points
will smear out and it gets more and more unlikely that any points will be
related in the same way to each other. To test this theory, the same setup
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Figure 15: Orbital properties of planet left after ejection (Initial properties:
a1 = 2 AU, e1 = 0.4, a2 = 3 AU, e2 = 0.8,m1 = m2 = 10−3 M�)

was run a second time, only allowing one single revolution and therefore only
showing the prompt ejections, and the hockey-stick is all we see.

To verify the theory a little further, we make histograms over the num-
ber of scatterings needed for each systems to eject one of the planets. Both
tested systems (e1 = 0, e2 = 0.8 in Fig (17) and e1 = 0.4, e2 = 0.8 in Fig
(18)) are included in the report. Here, we can clearly see that our theory
seems to agree with the results. In Fig (17), we can see that the majority of
ejects have occurred withing the first four or five scatterings. Roughly ten
per cent of the total ejections happen at the first scattering, giving rise to the
dense hockey-stick feature. When looking at Fig (18), which didn’t have the
kind of noticeable feature as the previous case had, there are not one single
ejection at the first scattering.

As a final test, we check our programs by comparing a couple of our simula-
tions to the real exoplanets given in Fig (1). With the fly-by theory, we want
to explain the large spread of eccentricities for the discovered exoplanets,
not the hot Jupiters, and therefore disregard the exoplanets with an a > 1
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Figure 16: Orbital properties of planet left after ejection (Initial properties:
a1 = 1 AU, e1 = 0, a2 = 2 AU, e2 = 0.8,m1 = m2 = 10−3 M�)

AU. The comparison is made by looking at the cumulative eccentricity dis-
tribution, showing how large fraction of the planets that have a certain e or
less. The two different runs are not meant to represent any specific fly-bys,
and are just random picks. Interestingly enough, we see that Run 1 actually
seem to fit pretty well with reality. There is a slight shift in height between
them, but the overall shape agree well. Not so surprisingly, Run 2 fits worse.
The steep slope at e = 0.8 represents the high density hockey-stick feature
seen in Fig (16), which we understood came from the prompt ejections. In
reality, we will never see such a hockey-stick, since we will also have a large
ratio of smaller interactions that we disregarded in Orbitcrossing. Also in-
cluding these would mean that the hockey-stick wouldn’t appear, and Run 2
is therefore just a purely theoretical result of our simulations.

6 Discussion

With the results obtained during this project, we can neither confirm nor dis-
card the theory that the fly-by mechanism is the reason behind the strangely
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Figure 17: Histogram of the amount of scatterings needed for ejection for
500 runs. (Initial properties: a1 = 1 AU, e1 = 0, a2 = 2 AU, e2 = 0.8,m1 =
m2 = 10−3 M�)

large spread of orbital eccentricities of the exoplanets discovered so far. Still,
with the analytic approach taken, we have come to a better understanding
of what happens during planet-planet scatterings. We have also been able
to produce highly eccentric orbits after the ejection of one of the planets,
and by looking at the results of a some simulations with different initial con-
ditions, we were also able to almost reproduce the cumulative eccentricity
distributions of the exoplanets discovered. There has however not been time
for any serious investigations that would include statistic weighting of differ-
ent likely initial conditions. This would definitely be needed for some better
comparison between the simulations and reality.

To be able to write the program used here, we’ve had to do some approxi-
mations. A couple of these may be a bit stretchy. Everything done have for
example assumed thatM∗ >> mp, meaning the we have completely neglected
the effect of the planet on the central star. For Jupiter-massed planets and
heavier, this approximation might not be good enough, and at this stage we
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Figure 18: Histogram of the amount of scatterings needed for ejection for
500 runs. (Initial properties: a1 = 2 AU, e1 = 0.4, a2 = 3 AU, e2 = 0.8,m1 =
m2 = 10−3 M�)

simply do not know how this would affect the results. This is not impossible
to fix, and to get better precision we could use reduced masses. We have
also had to make the approximation that the planet-planet interactions hap-
pens locally at one single point in the orbit to avoid having to work with
a three-body problem. In reality, we actually have a larger area where the
planet-planet interaction occurs. For Jupiter-massed planets, approximating
this area to one single point might be a bit too much of an approximation as
we saw in Eq (38).

There are a lot of possible follow-ups to this project. With the orbital theory
explained in this report, it wouldn’t take that much more work to expand
Orbitcrossing to run multiple-orbit simulations. Each orbit could still be
counted as a two-body problem as we did in Section 2, and when looking at
the planet-planet scatterings, we would simply need some kind of weighted
randomization to work out which crossing to look at if there are several. It
is currently believed that most planet systems are formed with more than
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Figure 19: The cumulative eccentricity distribution for the known exoplanets
versus the same for two simulations from Orbitcrossing. (Run 1: a1 = 2 AU,
e1 = 0.4, a2 = 3 AU, e2 = 0.8,m1 = m2 = 10−3 M�, Run 2: a1 = 1 AU,
e1 = 0, a2 = 2 AU, e2 = 0.8,m1 = m2 = 10−3)

two planets, and at this point we do not know how this fact would affect the
resulting as and es of the planets left behind, if at all.

Another logical thing to do would be to introduce a third dimension,
where we can have planets with an inclination to a reference plane. This
would complicate the theoretical approach by quite a bit, but we would gain
an even better fit to reality.

One more variable that would be possible to insert into Orbitcrossing
would be the probability of collisions. These have been completely disre-
garded in the program, as have been mentioned earlier. Including them,
however, would mean that a certain, narrow range of ps equal to the di-
ameter of the planets would be excluded. Since the planets we have been
focusing on in this project are Jupiter-massed gas giants, collisions would
lead to merging of the two planets rather than elastic collisions, we actually
already know what would happen, if we remember Eq (45), (46) and (48).
We know that after a merge, we will have v1,p = v2,p. Since we also need to
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abide conservation of momentum, we realize that ṽ need to equal vcm. We of
course also know rcross, which means that we can determine the new orbital
properties for the merged planets with the help of Eq (52) - (55). Considering
that the excluded range of ps due to collisions will be very small compared to
the whole range of ps, collisions will be very unlikely, and almost non-existent
for the more stable systems. However, for tighter systems where ejections are
more unlikely or perhaps impossible, collisions are probably something that
we need to take into consideration. The new type of orbits acquired from
the mergers might perhaps be able to explain some of the odder planetary
orbits that any other theory can not.
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A Appendix: Orbitcrossing

PROGRAM Orbitcrossing

USE LUXURY

IMPLICIT NONE

!!! Determines the points of crossing between two orbits, finds

!!! the velocities at these points, calculates the deflection

!!! and the resulting new orbital properties

DOUBLE PRECISION,DIMENSION(3600) :: dist1,dist2,diffdist

DOUBLE PRECISION,DIMENSION(3600,2) :: r1,r2

DOUBLE PRECISION,DIMENSION(2,2) :: k,m

INTEGER,DIMENSION(2,2) :: crossing

DOUBLE PRECISION,DIMENSION(3600) :: phid

DOUBLE PRECISION, DIMENSION(2,2) :: vrad,vtan,vtot,vconst

DOUBLE PRECISION :: ecc1,ecc2,a1,a2,m11,m12

DOUBLE PRECISION :: mu1,mu2,G,M1,M2,PI,phir1,phir2,theta

DOUBLE PRECISION, DIMENSION(2) :: phicross

DOUBLE PRECISION, DIMENSION(2,1) :: vrel1,vrel2

INTEGER :: n,phi,i

DOUBLE PRECISION :: psi,p,distcross

DOUBLE PRECISION, DIMENSION(2) :: rcross,v1,v2,v1p,v2p,vcm

DOUBLE PRECISION, DIMENSION(2) :: vn1p,vn2p,vn1px,vn1py,vn2px,vn2py

DOUBLE PRECISION :: E1,E2,J1,J2

DOUBLE PRECISION :: E1t,E2t,J1t,J2t,an1t,an2t

DOUBLE PRECISION :: pmax,pmin,delta

DOUBLE PRECISION, DIMENSION(2) :: vn1,vn2

DOUBLE PRECISION :: an1,an2,eccn1,eccn2,ptab,vn1size,vn2size

INTEGER :: loop_number,loops

DOUBLE PRECISION, DIMENSION(2) :: nphicross1,nphicross2

DOUBLE PRECISION :: rv1,rv2

DOUBLE PRECISION :: E1test,E2test,an1test,an2test,ecc1t,ecc2t

REAL :: randVec(1)

INTEGER :: IV(8), myseed

G = 1.0
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pi = 3.141592

vconst = 29.79

m11 = 1.D-3

m12 = 1.D-3

m2 = 1.

mu1 = G*(m11 + m2)

mu2 = G*(m12 + m2)

pmin = 1.D-3

open(unit=9,file="ejectionstats.txt")

!!! Get random seed for Luxury RNG

CALL DATE_AND_TIME(VALUES=IV)

myseed = (IV(1)*IV(2)+IV(3))*IV(7)+(IV(5)*IV(6)+IV(3))*IV(8)+2.

CALL RLUXGO(4,myseed,0,0)

outest_loop: do loops = 1,500

ecc1 = 0.

ecc2 = 0.8

a1 = 1.

a2 = 2.

theta = 90.

loop_number = 1

outer_loop: do

!!! Finds distances between orbits and central star ranging

!!! from 1-360 degrees phi

!!! Writes distances for all phi and the 2D orbits to files

do phi=1,3600

phir1 = 0.1*phi*PI/180.0

phir2 = 0.1*(phi-10*theta)*PI/180.0

phid(phi)= 0.1*phi
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dist1(phi)= a1*(1.-ecc1**2.)/(1.+ecc1*cos(phir1))

r1(phi,1) = -dist1(phi)*cos(phir1)

r1(phi,2) = -dist1(phi)*sin(phir1)

dist2(phi)= a2*(1.-ecc2**2)/(1.+ecc2*cos(phir2))

r2(phi,1) = -dist2(phi)*cos(phir1)

r2(phi,2) = -dist2(phi)*sin(phir1)

end do

diffdist = dist1-dist2

open(unit=1,file="orbitdist.txt")

do i=1,3600

write(1,10),phid(i), dist1(i), dist2(i),diffdist(i)

end do

10 format(f10.5,f10.5,f10.5,f10.5)

close(1)

open(unit=2,file="2D-orbits.txt")

do i=1,3600

write(2,20),phid(i), r1(i,1), r1(i,2), r2(i,1), r2(i,2)

end do

20 format(f10.5, f10.5, f10.5, f10.5, f10.5)

close(2)

!!! See if the orbits ever cross

if (a1 > a2) then

if (a1*(1.-ecc1) > a2*(1.+ecc2)) then

print *, "The two orbits do not cross (1)"

print *, ’ecc1 = ’, ecc1

print *, ’ecc2 = ’, ecc2

exit outer_loop

end if

else if (a2 > a1) then

if (a2*(1.-ecc2) > a1*(1.+ecc1)) then

print *, "The two orbits do not cross (2)"

print *, ’ecc1 = ’, ecc1

print *, ’ecc2 = ’, ecc2
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exit outer_loop

end if

end if

!!! Finds the approximate crossings

n=1

do phi=1,3599

if (diffdist(phi) == 0) then

crossing(n,1)=phi

crossing(n,2)=phi

n=n+1

elseif ((diffdist(phi) > 0 .AND. diffdist(phi+1) < 0) .OR.

(diffdist(phi) < 0 .AND. diffdist(phi+1) > 0)) then

crossing(n,1)=phi

crossing(n,2)=phi+1

n=n+1

end if

end do

if (n /= 3) then

print *, "The two orbits do not cross (3)"

exit outer_loop

end if

!!! Finds the more exact crossings by approximating short

!!! interval linearity

do n=1,2

if (crossing(n,1) == crossing(n,2)) then

phicross(n) = 0.1*crossing(n,1)

else

k(n,1) = (dist1(crossing(n,2)) - dist1(crossing(n,1))) /

(crossing(n,2)-crossing(n,1))

m(n,1) = dist1(crossing(n,1)) - k(n,1)*crossing(n,1)

k(n,2) = (dist2(crossing(n,2)) - dist2(crossing(n,1))) /

(crossing(n,2)-crossing(n,1))

m(n,2) = dist2(crossing(n,1)) - k(n,2)*crossing(n,1)

phicross(n) = 0.1*(m(n,2)-m(n,1))/(k(n,1)-k(n,2))
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end if

end do

rcross(1) = a1* (1.-ecc1**2.) / (1.+ecc1*cos(phicross(1)*PI/180.0))

rcross(2) = a1* (1.-ecc1**2.) / (1.+ecc1*cos(phicross(2)*PI/180.0))

!!! Calculate the velocities at interaction points

do n=1,2

phir1 = phicross(n)*PI/180.0

phir2 = (phicross(n)-theta)*PI/180.0

vrad(n,1)= ecc1*sin(phir1) *sqrt( m2/ (a1*(1.-ecc1**2)) )

vrad(n,2)= ecc2*sin(phir2) *sqrt( m2/ (a2*(1.-ecc2**2)) )

vtan(n,1)= ( 1.+ecc1*cos(phir1) ) *sqrt( m2/(a1*(1.-ecc1**2)) )

vtan(n,2)= ( 1.+ecc2*cos(phir2) ) *sqrt( m2/(a2*(1.-ecc2**2)) )

vtot(n,1)= sqrt( vrad(n,1)**2 + vtan(n,1)**2 )

vtot(n,2)= sqrt( vrad(n,2)**2 + vtan(n,2)**2 )

end do

E1test = m11*vtot(1,1)**2/2. - G*m11*m2 / rcross(1)

E2test = m12*vtot(1,2)**2/2. - G*m12*m2 / rcross(1)

an1test = -G * m11*m2 / (2.*E1test)

an2test = -G * m12*m2 / (2.*E2test)

!!! Find the relative velocities between the two planets at

!!! the interactions

vrel1(1,1) = vrad(1,1)-vrad(1,2)

vrel1(2,1) = vtan(1,1)-vtan(1,2)

vrel2(1,1) = vrad(2,1)-vrad(2,2)

vrel2(2,1) = vtan(2,1)-vtan(2,2)

open(unit=3,file="crossingvel.txt")

write(3,30),’crossing1 = ’,phicross(1), ’crossing2 = ’,phicross(2)

write(3,30),
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write(3,30),’(First number is orbit, second number interaction)’

write(3,30),’vrad11 = ’, vrad(1,1)*vconst, ’vrad21 = ’,

vrad(1,2)*vconst

write(3,30),’vrad12 = ’, vrad(2,1)*vconst, ’vrad22 = ’,

vrad(2,2)*vconst

write(3,30),

write(3,30),’vtan11 = ’, vtan(1,1)*vconst, ’vtan21 = ’,

vtan(1,2)*vconst

write(3,30),’vtan12 = ’, vtan(2,1)*vconst, ’vtan22 = ’,

vtan(2,2)*vconst

write(3,30),

write(3,30),’vtot11 = ’, vtot(1,1)*vconst, ’vtot21 = ’,

vtot(1,2)*vconst

write(3,30),’vtot12 = ’, vtot(2,1)*vconst, ’vtot22 = ’,

vtot(2,2)*vconst

write(3,30),

write(3,30),’The resulting relative velocities at the two

interaction points:’

write(3,30),’vrelrad1 = ’, vrel1(1,1)*vconst, ’vreltan1 = ’,

vrel1(2,1)*vconst

write(3,30),

write(3,30),’vrelrad2 = ’, vrel2(1,1)*vconst, ’vreltan2 = ’,

vrel2(2,1)*vconst

write(3,30),

write(3,35),’myseed = ’, myseed

30 format(a,f10.5)

35 format(a,i10)

close(3)

!!! Planetary deflection

sevp_loop: do n = 1,1 ! Loop only used when we want several p

! for same orbital properties

!!! Randomly pick a p ranging from -pmax to pmax with the help of

!!! the Luxury RNG

pmax = 0.05 * rcross(1)
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CALL RANLUX(randVec,1) ! To be used when using the RNG

! randVec(1) = real(n) / 1000. ! To be used when not using the RNG

p = 2.0*randVec(1)*pmax-pmax

! if (abs(p) <= abs(pmin)) then ! To be used when we want to

! consider collisions

! Skip head on collisions

! else

psi = atan( p * (vrel1(1,1)**2.+vrel1(2,1)**2.) / (G*(m11+m12)) )

delta = PI-2.*psi

!!! Calculate the new velocity vectors

v1(1) = vrad(1,1)

v1(2) = vtan(1,1)

v2(1) = vrad(1,2)

v2(2) = vtan(1,2)

vcm = (m11*v1+m12*v2)/(m11+m12)

v1p = v1 - vcm

v2p = v2 - vcm

vn1px = cos(delta)*v1p

vn1py(1) = sin(delta)*v1p(2)

vn1py(2) = sin(delta)*(-v1p(1))

vn1p = vn1px + vn1py

vn1(1) = vn1p(1) + vcm(1)

vn1(2) = vn1p(2) + vcm(2)

vn1size = sqrt(vn1(1)**2.+vn1(2)**2.)

vn2px = cos(-delta)*v2p

vn2py(1) = sin(-delta)*(-v2p(2))

vn2py(2) = sin(-delta)*v2p(1)

vn2p = vn2px + vn2py
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vn2(1) = vn2p(1) + vcm(1)

vn2(2) = vn2p(2) + vcm(2)

vn2size = sqrt(vn2(1)**2.+vn2(2)**2.)

!!! Get the new orbital properties

E1 = m11*( vn1(1)**2 + vn1(2)**2 ) /2.0 - G*m11*m2/rcross(1)

E2 = m12*( vn2(1)**2 + vn2(2)**2 ) /2.0 - G*m12*m2/rcross(1)

an1 = -G * m11*m2 / (2.*E1)

an2 = -G * m12*m2 / (2.*E2)

J1 = m11 * vn1(2) * rcross(1)

J2 = m12 * vn2(2) * rcross(1)

eccn1 = sqrt( 1.+2.*E1*J1**2 / ( G**2*( m11 )**3*(m2)**2) )

eccn2 = sqrt( 1.+2.*E2*J2**2 / ( G**2*( m12 )**3*(m2)**2) )

open(unit=4,file="newecca.txt")

write(4,40), p, delta, eccn1, an1, eccn2,an2,vn1size*vconst,

vn2size*vconst

40 format(f12.7, f12.5, f12.5, f12.5, f12.5, f12.5, f12.5, f12.5)

end do sevp_loop

close(4)

!!! Check if any of the two planets become unbound

ecc1 = eccn1

ecc2 = eccn2

a1 = an1

a2 = an2

if (ecc1 >= 1.) then

write(9,99), a2, ecc2, loop_number

exit outer_loop

else if (ecc2 >= 1.) then
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write(9,99), a1, ecc1, loop_number

exit outer_loop

end if

!!! Find new theta between the semi major axes

nphicross1(1) = acos(an1*(1.-eccn1**2.) /(eccn1*rcross(1))-1./eccn1)

nphicross1(2) = 2.*pi - nphicross1(1)

nphicross2(1) = acos(an2*(1.-eccn2**2.) /(eccn2*rcross(1))-1./eccn2)

nphicross2(2) = 2.*pi - nphicross2(1)

rv1 = rcross(1)*vn1(1)

rv2 = rcross(1)*vn2(1)

if (rv1 >= 0. .and. rv2 >= 0.) then

theta = nphicross1(1)-nphicross2(1)

else if (rv1 >= 0. .and. rv2 <= 0.) then

theta = nphicross1(1)-nphicross2(2)

else if (rv1 <= 0. .and. rv2 >= 0.) then

theta = nphicross1(2)-nphicross2(1)

else if (rv1 <= 0. .and. rv2 <= 0.) then

theta = nphicross1(2)-nphicross2(2)

end if

theta = theta*180.0 / pi

if (loop_number == 100) then

exit outer_loop

end if

loop_number = loop_number+1

end do outer_loop

end do outest_loop

99 format(f8.3, f8.3, i4)

close(9)

END PROGRAM Orbitcrossing
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B Appendix: Boundtrial

PROGRAM Boundtrial

IMPLICIT NONE

!!! Determines the points of crossing between two orbits, and

!!! checks if the velocities at these points are high enough

!!! to lead to ejections during the deflection

DOUBLE PRECISION,DIMENSION(3600) :: dist1,dist2,diffdist

DOUBLE PRECISION,DIMENSION(3600,2) :: r1,r2

DOUBLE PRECISION,DIMENSION(2,2) :: k,m

INTEGER,DIMENSION(2,2) :: crossing

DOUBLE PRECISION,DIMENSION(3600) :: phid

DOUBLE PRECISION, DIMENSION(2,2) :: vrad,vtan,vtot,vconst

DOUBLE PRECISION :: ecc1,ecc2,a1,a2,m11,m12

DOUBLE PRECISION :: mu1,mu2, G,M1,M2,PI,phir1,phir2,theta

DOUBLE PRECISION, DIMENSION(2) :: phicross

DOUBLE PRECISION, DIMENSION(2,1) :: vrel1,vrel2

INTEGER :: n,phi,i

DOUBLE PRECISION :: psi,p,distcross

DOUBLE PRECISION, DIMENSION(2) :: rcross,v1,v2,v1p,v2p,vcm

DOUBLE PRECISION, DIMENSION(2) :: nphicross1,nphicross2

DOUBLE PRECISION :: rv1,rv2

INTEGER :: ecc2_loop,a2_loop,loop_number

DOUBLE PRECISION :: vcmsize,v1psize,v2psize,vescsize

G = 1.0

PI = 3.141592

vconst = 29.79

m11 = 1.D-3

m12 = 1.D-3

m2 = 1.

mu1 = G*(m11 + m2)

mu2 = G*(m12 + m2)

open(unit=1,file="1u2u.txt")

open(unit=2,file="1u2b.txt")

open(unit=3,file="1b2u.txt")
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open(unit=4,file="1b2b.txt")

ecc1 = 0.

a1 = 1.

theta = 90.

loop_number = 1

ecc_loop: do ecc2_loop = 1,99

ecc2 = real(ecc2_loop) / 100.

a_loop: do a2_loop = 10,800,10

a2 = real(a2_loop) / 100.

!!! See if the orbits ever cross

if ((a1 > a2) .and. (a1*(1.-ecc1) > a2*(1.+ecc2))) then

! Skip if orbits don’t cross

else if ((a2 > a1) .and. (a2*(1.-ecc2) > a1*(1.+ecc1))) then

! Skip if orbits don’t cross

else

! Proceed with the rest of the program

!!! Finds distances between orbits and central star ranging

!!! from 1-360 degrees phi

!!! Writes distances for all phi and the 2D orbits to files

do phi=1,3600

phir1 = 0.1*phi*PI/180.0

phir2 = 0.1*(phi-10*theta)*PI/180.0

phid(phi)= 0.1*phi

dist1(phi)= a1*(1.-ecc1**2.)/(1.+ecc1*cos(phir1))
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r1(phi,1) = -dist1(phi)*cos(phir1)

r1(phi,2) = -dist1(phi)*sin(phir1)

dist2(phi)= a2*(1.-ecc2**2)/(1.+ecc2*cos(phir2))

r2(phi,1) = -dist2(phi)*cos(phir1)

r2(phi,2) = -dist2(phi)*sin(phir1)

end do

diffdist = dist1-dist2

!!! Finds the approximate crossings

n=1

do phi=1,3599

if (diffdist(phi) == 0) then

crossing(n,1)=phi

crossing(n,2)=phi

n=n+1

elseif ((diffdist(phi) > 0 .AND. diffdist(phi+1) < 0) .OR.

(diffdist(phi) < 0 .AND. diffdist(phi+1) > 0)) then

crossing(n,1)=phi

crossing(n,2)=phi+1

n=n+1

end if

end do

if (n /= 3) then

! Skip if orbits don’t cross

else

!!! Finds the more exact crossings by approximating short

!!! interval linearity

do n=1,2

if (crossing(n,1) == crossing(n,2)) then

phicross(n) = 0.1*crossing(n,1)

else
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k(n,1) = (dist1(crossing(n,2)) - dist1(crossing(n,1))) /

(crossing(n,2)-crossing(n,1))

m(n,1) = dist1(crossing(n,1)) - k(n,1)*crossing(n,1)

k(n,2) = (dist2(crossing(n,2)) - dist2(crossing(n,1))) /

(crossing(n,2)-crossing(n,1))

m(n,2) = dist2(crossing(n,1)) - k(n,2)*crossing(n,1)

phicross(n) = 0.1*(m(n,2)-m(n,1))/(k(n,1)-k(n,2))

end if

end do

rcross(1) = a1* (1.-ecc1**2.) / (1.+ecc1*cos(phicross(1)*PI/180.0))

rcross(2) = a1* (1.-ecc1**2.) / (1.+ecc1*cos(phicross(2)*PI/180.0))

!!! Calculate the velocities at interaction points

do n=1,2

phir1 = phicross(n)*PI/180.0

phir2 = (phicross(n)-theta)*PI/180.0

vrad(n,1)= ecc1*sin(phir1) * sqrt( m2/ (a1*(1.-ecc1**2)) )

vrad(n,2)= ecc2*sin(phir2) * sqrt( m2/ (a2*(1.-ecc2**2)) )

vtan(n,1)= (1.+ecc1*cos(phir1)) * sqrt( m2/(a1*(1.-ecc1**2)) )

vtan(n,2)= (1.+ecc2*cos(phir2)) * sqrt( m2/(a2*(1.-ecc2**2)) )

vtot(n,1)= sqrt( vrad(n,1)**2 + vtan(n,1)**2 )

vtot(n,2)= sqrt( vrad(n,2)**2 + vtan(n,2)**2 )

end do

v1(1) = vrad(1,1)

v1(2) = vtan(1,1)

v2(1) = vrad(1,2)

v2(2) = vtan(1,2)

vcm = (m11*v1+m12*v2)/(m11+m12)

v1p = v1 - vcm

v2p = v2 - vcm

vescsize = sqrt(2.)*sqrt( v1(1)**2+v1(2)**2)



B APPENDIX: BOUNDTRIAL

vcmsize = sqrt( vcm(1)**2 + vcm(2)**2)

v1psize = sqrt( v1p(1)**2 + v1p(2)**2)

v2psize = sqrt( v2p(1)**2 + v2p(2)**2)

!!! Check if escape is possible

if ( (v1psize + vcmsize >= vescsize) .and.

(v2psize + vcmsize >= vescsize)) then

write(1,10), a2, ecc2

else if ( (v1psize + vcmsize >= vescsize) .and.

(v2psize + vcmsize <= vescsize)) then

write(2,10), a2, ecc2

else if ( (v1psize + vcmsize <= vescsize) .and.

(v2psize + vcmsize >= vescsize)) then

write(3,10), a2, ecc2

else if ( (v1psize + vcmsize <= vescsize) .and.

(v2psize + vcmsize <= vescsize)) then

write(4,10), a2, ecc2

else

print *, "Something odd happened at e2 = ",

ecc2, " and a2 = ", a2

end if

end if

end if

loop_number = loop_number +1

end do a_loop

end do ecc_loop

10 format(f8.2, f8.2)
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close(1)

close(2)

close(3)

close(4)

print *, ’loop_number = ’, loop_number

END PROGRAM Boundtrial


