working on fundamental physics at Heidelberg University, Zentrum für Astronomie. my scientific interests include cosmology, the formation and evolution of the cosmic large-scale structure, gravitational lensing and CMB-anisotropies as a probe of fundamental physics, and cosmostatistics

recent projects

information theory and inference

2021

Information entropies (like Kullback-Leibler or Rényi entropies) are measures of statistical randomness of distributions, if applied to the posterior of a distribution they serve as a quantification of remaining statistical uncertainty, i.e. how well measurements have been able to improve the knowledge on a given physical model. We work on the connection between more conventional tools in statistics and inference such as likelihoods and statistical tests, with novel concepts like information entropies, with an application to cosmological data sets.

constructive cosmology

2016

Constructive gravity asserts that there is a clear path of constructing a gravitational interaction for particles that is determined completely by their non-gravitational interactions. Our group works in cooperation with F.P. Schuller (Erlangen) and M.C. Werner (Kyoto) on cosmological tests of constructive gravity, and we work on astrophysical and cosmological applications of area-metric gravity, as well as on its conceptual construction.

Euclid

2015

The European Euclid mission is a space-based large-scale structure survey, where we are involved in the weak lensing programme, where we construct and test models of intrinsic alignments of galaxies, which result due to tidal interaction with the large-scale structure or by correlations in the initial conditions of structure formation. In addition, our group was active in computing second order effects in gravitational lensing, parameter estimation biases and the information content of Gaussian and non-Gaussian weak lensing maps.

statistical inference and information geometry

2013

Modern cosmology is a statistical science and we are interested in questions related to the information content of large-scale structure surveys, in particular in the nonlinear regime, selection of models and the effect of systematical errors on the parameter estimation and model selection process. In particular, we investigate what properties about gravity are in principle knowable from cosmological surveys, how non-Gaussian structures can be described in an efficient way and how information about fundamental physics can be extracted from non-Gaussian structures.

weak gravitational lensing

2010

Weak lensing refers to the weak distortion of the light bundles reaching us from distant galaxies caused by tidal gravitational fields in the cosmic large-scale structure. Weak lensing is an excellent tool for investigating gravity on large scales, and we have worked on tomographic methods, cross-correlations and higher-order statistics of the weak lensing signal, as well as effects gravitational light deflection at second order. We would like to understand how one can reach a precision prediction of the weak lensing signal, how one can use the lensing signal as a cosmoogical probe, and what statistical properties the lensing signal has.

intrinsic alignments

2010

Weak lensing operates under the assumption of intrinsically uncorrelated galaxy shapes, which might not be true because galaxies experience correlated tidal gravitational fields and share a similar angular momentum generation. We have worked on tidal interaction models for galaxies to derive ellipticity correlations for investigating their contaminating effect in weak lensing parameter inference. Starting from models of tidal shearing and tidal torquing for the orientation of elliptical and spiral galaxies, we are constructing more elaborate models for predicting and investigating intrinsic alignments, and hope to apply them to Euclid data.